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Modulation of the QT interval duration in hypertension
with antihypertensive treatment

Jan Klimas1, Peter Kruzliak2 and Simon W Rabkin3

The duration of the QT interval as measured by 12-lead electrocardiography is a measure of myocardial repolarization and is

widely used to describe cardiac abnormalities, to determine the presence of cardiac toxicity and to evaluate drug safety. In

hypertension, the QT interval is a predictor of the risk of both coronary events and cardiovascular death, after adjusting for the

effects of additional risk factors. The mechanism of QT interval prolongation is multifactorial and includes cardiomyocyte

hypertrophy and increased left ventricular mass, with accompanying changes in left ventricular transmural dispersion of

repolarization, as well as changes in the tone of the autonomic nervous system of some patients with hypertension and mechano-

electrical feedback, although this mechanism is less likely. Antihypertensive drugs vary in their effect on QT interval duration.

The mechanisms underlying their effect depend on changes in left ventricular mass and autonomic nervous system tone, as well

as changes in the activity of cardiac ion channels. Although blood pressure reduction is the primary goal of antihypertensive drug

therapy and although the choice of antihypertensive drug treatment regimens varies among different individuals, the data

regarding the disparate effects of antihypertensive drugs on the duration of the QT interval warrant consideration when

implementing long-term pharmacotherapy for hypertension.
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INTRODUCTION

Abnormalities of ventricular repolarization are an important compo-
nent of both ECG diagnostics and medical decision-making. The
duration of the QT interval as measured by 12-lead electrocardio-
graphy is a measure of repolarization and is widely used to describe
cardiac abnormalities, to determine the presence of cardiac toxicity or
to evaluate drug safety.1–6 QT interval duration is a predictor of the
occurrence of cardiovascular events,7–11 and increased QT duration is
associated with the risk of sudden cardiac death in the hypertensive
population, even among individuals without clinically recognized
cardiac disease.12 The increased risk of cardiovascular events, including
sudden cardiac death, is a well-described consequence of sustained
arterial hypertension.13 Even small, non-specific abnormalities of
repolarization may increase the risk of cardiovascular events in the
hypertensive population.14

In subjects with uncomplicated hypertension, a prolonged QT
interval (corrected for heart rate) carries a twofold increase in the risk
of coronary events and cardiovascular death, after adjusting for the
effects of age, sex, diabetes mellitus, serum cholesterol level, serum
creatinine level, smoking, left ventricular hypertrophy (LVH) and 24-h
systolic blood pressure (BP).15 In a hypertensive population with

electrocardiographic LVH, an analysis of maximum QT intervals
identified persons at an increased risk for cardiac mortality despite
effective BP-lowering treatment.9 Prolonged QT intervals are a marker
of cardiovascular morbidity and mortality in patients with resistant
hypertension, even after taking into account traditional cardiovascular
risk factors, including both hypertension and LVH.16 The question
arises as to whether hypertension modulates the QT interval and
therefore accounts for a mechanism by which hypertension increases
the likelihood of the occurrence of fatal cardiac events despite the
effects of antihypertensive agents on the QT interval.

THE ELECTROPHYSIOLOGICAL BASIS OF THE QT INTERVAL

The electrophysiological basis of the QT duration is the duration of
the action potential of a single ventricular cardiomyocyte, as well as
the presence of electrical heterogeneity in the form of either
transmural or trans-septal dispersion of ventricular repolarization in
an intact heart.17 An increase in duration of the QT interval may
reflect an increase in the duration of the action potential in specific
regions of the ventricle. Such increases reflect either an increase in
inward current or a decrease in outward current.18 Most drugs that
cause an increased QT interval duration prolong cardiomyocyte action
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potentials by blocking potassium channels.19 The potassium channels
responsible for both the rapid (IKr) and the slow (IKs) activating
components of the delayed rectifier potassium currents, in particular,
modulate cardiac repolarization and have been implicated in both long
QT syndrome and other forms of arrhythmia.20

In hypertension, the QT interval is viewed as a non-specific marker
of cardiac pathology. The underlying cause of the prolongation of
cardiac repolarization in hypertension remains controversial and
reflects a large number of cardiac physiologic and pathophysiologic
conditions. The dependence of the duration of the repolarization on
the activity of potassium channels and potassium currents suggests
that potassium currents should figure prominently in the relationship
between the QT interval and hypertension. Interestingly, there is very
little data regarding the relationship between QT and hypertension;
however, the data suggest that a relationship between KATP channel
polymorphisms and left ventricular size exists among hypertensive
individuals.21

THE MECHANISMS UNDERLYING THE EFFECT OF

HYPERTENSION ON THE QT INTERVAL

Left ventricular hypertrophy
Electrical remodeling in the setting of essential hypertension, as well as
the consequent development of LVH, likely contributes to the
pathophysiology of cardiac arrhythmias.22 From a clinical perspective,
it may translate into a propensity for individuals to suffer sudden
cardiac death.23,24 Increased left ventricular mass (LVM) is associated
with changes in cardiac repolarization.25–27 Several measures of cardiac
repolarization, including QT duration, QT duration corrected for
heart rate (QTc), QT variability and QT dispersion (the interlead
differences in the duration of the QT interval) are associated with
hypertensive heart disease, suggesting that increased LVM may
modulate any QT parameter. Two decades ago, QT dispersion was
enthusiastically studied as if it were an electrophysiological holy grail
that explained the impacts of either diseases or drugs on the heart.28

Previous investigations describing QT abnormalities in the hyperten-
sive population focused primarily on QT dispersion, whereas others
focused on QT duration. As the two phenomena are linked by their
relationship with both LVH and BP in the majority of
studies,8,25–27,29–36 they will be discussed together in this review.
Piccirillo and colleagues37 described their findings of QT abnorm-

alities in hypertensive subjects with LVH and speculated that greater
ventricular mass results in decreased repolarization synchronization in
myocardial cells. This may explain not only the QT interval
prolongation observed in previous studies but also the increased QT
dispersion noted in said studies;8,25–27,32,38–40 however, clear evidence
confirming this interesting hypothesis is lacking. Another explanation
for the relationship between QT changes and LVH is that cardiomyo-
cyte hypertrophy is often associated with changes in either the
expression or the activity of ion channels (primarily potassium and
calcium channels). These changes may affect the action potential
durations41 and include specific alternations such as decreased
potassium currents, dysregulation of intracellular calcium and gap
junction dysfunction.42–44 Other factors may contribute to QT
prolongation in the setting of LVH, including fibrosis, myocardial
ischemia and diabetes mellitus.45,46

Although LVH is an important factor in numerous cardiac diseases,
several studies have noted the presence of QT prolongation in
hypertensive patients, both with LVH and without LVH,37,39 although
this issue remains controversial.40 Uncomplicated hypertensive
patients may have increased cardiac mass;47 therefore, the link between
LVM and the QT interval may exist prior to the development of LVH.

Experimental models have confirmed the presence of QT prolongation
in the setting of hypertension, particularly in spontaneously hyperten-
sive rats and models of both essential hypertension and LVH.3,48,49 It
remains unclear when hypertension-induced increases in LVM and
QT prolongation begin to manifest, and the extent to which other
factors such as cardiac fibrosis, diabetes mellitus or ischemic heart
disease accelerate the changes in the QT interval in the setting of LVH.

Changes in the duration of the QT interval secondary to alterations
of the autonomic nervous system in the setting of hypertension
Prolongation of the QT interval has been linked to both alterations
in sympathetic drive50 and imbalances of the autonomic nervous
system.33,51 Systemic catecholamines may alter ventricular
repolarization52 and prolong the duration of the QT interval, and
also increase QT dispersion, even among healthy subjects.52,53 The
regulation of the QT interval by the autonomic nervous system has
been demonstrated by several studies. Despite their comparable BPs,
hypertensive patients with anxiety exhibit significantly longer QT
intervals and broader QT dispersion than their counterparts without
anxiety.33 This finding is supported by evidence that the magnitude of
beat-to-beat QT variability is related to cardiac sympathetic activation
in hypertensive patients.47

Marfella and colleagues54 determined that both the prolongation of
cardiac repolarization and morning sympathetic overactivity coexist in
hypertensive patients at the time of each patient’s maximum morning
BP. Interestingly, subjects with essential hypertension and increased
LVM exhibited increased QT durations primarily during the awake
period, including the time period during which morning catechola-
mine levels and BP were each elevated, but not later in the day or at
night. The reason for these findings is complex because not all
individuals with hypertension exhibit increased catecholamine
synthesis and release, nor are they as sensitive to the effects of
catecholamines on the heart.55,56

Changes in QT interval duration secondary to acute alterations
in BP
In experimental hypertension, elevated BP correlates with QT
prolongation independent of associated LVM.3 This finding suggests
that ventricular loading may affect ventricular repolarization. Indeed,
decades ago, a mechano-electrical feedback mechanism57,58 was
implicated in action potential duration disturbances.59 The experi-
mental data were confusing, however. Although, there appears to be
agreement that mechano-electrical feedback modulates action poten-
tial duration in muscle preparations, this phenomenon may not apply
to the entirety of the heart.58 Moreover, Dean and Lab57 demonstrated
that BP reduction with nitroprusside is associated with increased
action potential durations, a finding that opposes the contention that
BP elevation prolongs the durations of action potentials. However, it
has been suggested that the dynamicity of the duration of the QT
interval is influenced by circadian BP patterns.60 It is widely known
that circadian rhythms are involved in BP regulation.61 Moreover,
Marfella and colleagues54 demonstrated that QT duration increases in
conjunction with morning BP peaks in hypertensive individuals.
Following chronic antihypertensive drug therapy, subsequent
decreases in BP may be more strongly associated with reductions in
the QT interval, as well as small decreases in LV mass.62 Given the
controversy surrounding the experimental data,58 the mechanism
underlying changes in the duration of the QT interval secondary to
alterations in BP remain to be elucidated.
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THE EFFECT OF ANTIHYPERTENSIVE AGENTS IN THE

MODULATION OF THE DURATION OF THE QT INTERVAL

The ability of certain pharmacologic agents to alter the QT interval is
well accepted.6,19,63,64 Specific agents, primarily antiarrhythmic drugs,
are able to reduce the duration of the QT interval via different
pharmacological mechanisms.65,66 The potential for antihypertensive
drugs to alter the QT interval must be considered within the context of
the effect of BP reduction on LV mass, as well as the effects of specific
drugs on the autonomic nervous system, which in turn affects the
duration of the QT interval and exerts additional effects on the heart.
As suggested above, if LVH produces changes in the duration of the
QT interval, one may expect that a reduction in LVM that coincides
with a sustained BP decrease will be important in decreasing the
duration of the QT interval. Indeed, the LIFE study demonstrated that
antihypertensive therapy reduced the QT interval and suggested that
this occurred exclusively in patients who experienced a concomitant
reduction in their echocardiographic LVH.32 LVH regression second-
ary to antihypertensive drug therapy has also been associated with a
reduced QTc dispersion and QTc variability, which some investigators
have linked to the development of cardiac arrhythmias.67 Antihyper-
tensive drugs are not equivalent in their modulation of the QT interval
despite similar antihypertensive (that is, BP reducing) and antihyper-
trophic (that is, cardiac mass reducing) medications.
These discordances between drugs and their ability to reduce BP

and affect changes in the QTc interval have been reported clinically in
hypertensive populations,31,67–70 and have been documented in animal
models of hypertension.3 Another consideration is that the time
course for changes in the QT interval is different than those regarding
changes either in LV mass or in BP. Chronic treatment with the
angiotensin-converting enzyme inhibitor (ACEi) enalapril elicited a
significant reduction in BP following 8 weeks of treatment; a reduction
in LVM was evident following 1 year of treatment, and a reduction in
the duration of the QT interval was evident following 3 years of
treatment.30 These findings suggest that hypertrophy may prolong the
duration of an action potential; however, its regression may not
immediately result in AP normalization.71

In a comparative study involving amlodipine and irbesartan, both
drugs decreased BP, but only irbesartan decreased the duration of the
QT interval.31 Interestingly, a positive correlation between decreased
BP and decreased QT duration was noted in this study. Similar results
were described by Fogari et al.68 in hypertensive patients with type 2
diabetes mellitus, without LVH on echocardiography. Despite similar
BP-lowering effects, the direct renin inhibitor aliskiren, but not the

calcium channel blocker (CCB) amlodipine, decreased the duration of
the QT interval in these patients. Therefore, pharmacotherapies with
similar effects on hypertension will not exert identical effects on
cardiac repolarization. When considering the effects of antihyperten-
sive treatment, we must consider not only their effects on BP and LVH
but also their effects on the rest of the body. Beta-blockers (BB), ACEi
and angiotensin receptor blockers (ARB) may affect the sympathetic
system, and may therefore potentiate the positive effects of BP control
and LVM reduction. Diuretics may affect electrolyte balance,72 which
impacts the QT interval. Dihydropyridine CCB may potentially
activate the sympathetic nervous system;73 therefore, the positive
effects exerted by this medication on BP may be masked by its
additional pharmacological effects.

ACE inhibitors and ARBs
The majority of studies have provided evidence that drugs inhibiting
the renin-angiotensin-aldosterone system, particularly ACEis and
ARBs, exert beneficial effects on the duration of the QT interval
(Table 1). These drugs reduce the QT interval.30–32,69,70 Experimental
studies have also demonstrated that ACEis reduce the QT
interval.1,3,48,74 The effects of either an ACEi or an ARB on the QT
interval are exerted via mechanisms that regulate also the QT interval.
The effects of ACEis and ARBs on cardiac hypertrophy and cardiac
fibrosis may have proven to be important effects.75–78 ACEis and
ARBs may affect the electrophysiological mechanisms altered by
angiotensin.79 The inhibitory effect exerted by angiotensin II on the
rapidly activating components of delayed rectifier potassium current
(IKr) has been described previously and may result in prolonged action
potential duration.80

One of the principal mechanisms that contributes to cardiac
electrical disturbances is the dysregulation of intracellular calcium
cycling.81 The intracellular calcium within the sarcoplasmic reticulum
is released via ryanodine receptors (RyR2) during systole and is
restored during diastole via the sarco/endoplasmic reticulum Ca2+

ATPase (SERCA2a) pump.82 In heart failure, that is, at a high
angiotensin II state, both SERCA2a and RyR2 are suppressed.83,84

The decrease in SERCA2a activity, which is triggered by angiotensin II,
may lead to increased diastolic calcium and arrhythmogenesis. Indeed,
this effect has been described previously in the setting of various
pathological conditions, including hypertensive cardiomyopathy, in
which the administration of either ACEIs or ARBs normalizes the
abnormal intracellular calcium handling and increases SERCA2a

Table 1 The effect of inhibitors or antagonists of the renin angiotensin system on QT interval in clinical studies

Authors Drug

Patient

type

Sample

size Type study Follow up

Effect on

QT

Effect on

QTc

Effect on

QTc disp. References

Gonzalez-Juanatey

et al.
Enalapril HTN and

LVH

24 Observ. 7 years Reduction Reduction — 30

Lim et al. Irbesartan HTN 106 Randomized, multicenter, double-blind 6 months Reduction Reduction Reduction 31

Oikarinen et al. Losartan HTN and

LVH

317 Multicenter, double-blind, double-dummy, randomized,

prospective, active-controlled parallel group study

1 year Reduction Reduction Reduction 32

Fogari et al. Aliskiren HTN and

DM

170 Prospective, randomized, open label, blinded-end point,

parallel group study

12 and

24 weeks

Reduction Reduction Reduction 68

Malmqvist et al. Irbesartan HTN and

LVH

115 Randomized, double-blind, crossover, single-center,

placebo-controlled study

48 weeks Reduction Reduction Reduction 69

Porthan et al. Losartan HTN 183

men

Randomized, double-blind, crossover, single-center,

placebo-controlled study

4 weeks Reduction Reduction Reduction 70

Abbreviations: DM, diabetes mellitus; HTN, hypertension; LVH, left ventricular hypertrophy; Observ., observational study; QTc, corrected QT.
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expression.85,86 Whether these ACEis or ARBs antagonize the effect of
angiotensin on SERCA2a remains unclear.
Aldosterone has been linked to cardiac hypertrophy with prolonga-

tion of the QT interval, as well as electrical instability. This has been
explained by the downregulation of the potassium channels respon-
sible for the repolarization currents (Ito, IK1, Ikur), as well as the
downregulation of L-type Ca2+ channels, which suggest that aldoster-
one exerts direct proarrhythmic effects.87,88 Aldosterone antagonists,
eplerenone in animals87 and spironolactone in humans,89 have been
found to modulate the duration of the QT interval. Another
contributing and potentially crucial mechanism of reducing the QT
interval following ACEi and ARB therapy is the modulation of
autonomic nervous system function by decreasing sympathetic drive.
Angiotensin II modulates the autonomic nervous system via various
mechanisms, including the release of catecholamines, the stimulation
of both the systemic and the peripheral sympathetic nervous system,
and the modulation of centrally regulated vagal tone.31,90,91 Conse-
quently, drugs reducing the influence of either angiotensin or
aldosterone may exert significant benefits by reducing sympathetic
drive and will likely also exert beneficial effects regarding QT interval
regulation.

Beta-blockers
Both sympathetic drive and catecholamines alter the electrical activity
of the ventricles via the modulation of repolarization,53,92 and play a
crucial role in the development of hypertension in specific patients
with hypertension. Beta-adrenergic stimulation prolongs the QT
interval in some cases as a result of the induction of myocardial
ischemia.5 Beta-blockade may also decrease the duration of the QT
interval and normalize ventricular repolarization in a dose-dependent
manner, without having any effect on either LVM or BP.29,93,94

Although the effects of beta-blockade on the QT interval in the
setting of long QT syndrome appears to be minimal,95 previous
studies have suggested that the potential of this drug class to reduce
the QT interval may also benefit hypertensive patients (Table 2).
Particularly, clinical studies involving carvedilol,96 atenolol69 and
nadolol,97 as well as bisoprolol,70 demonstrated effects in patients
with prolonged QT intervals. Carvedilol and its analogues, in
particular, may have additional antiarrhythmic properties.98,99 Its
modulation of cardiac electrogenesis appears to be complex, and
may be related to a combination of beta-blocking effects and the
modulation of a variety of ion channels (including the direct
inhibition of ryanodine receptors) and currents. Additionally, this
hypothesis appears to be supported by its antioxidant, antiischemic
and antihypertrophic effects.100 Controversially, some experimental
studies in the past demonstrated QT prolongation following the
administrations of BBs.101,102 The ability of BBs to shorten the
duration of the QT interval, which has made possible their use in

the treatment of long QT syndrome,103 strengthens the case that BBs
reduce the duration of the QT interval. The QT-modulating actions of
BB may be an additional benefit that complements their antihyper-
tensive effects.

Calcium channel blockers
Dihydropyridine CCBs do not appear to exert a beneficial effect on
QT interval duration (Table 3). Historically, the CCB bepridil is
known to carry risks of both QT prolongation104 and the potentially
fatal arrhythmia torsade de pointes.105 This may be the result of its
concomitant actions on potassium channels.36,105 There is some
clinical evidence that dihydropyridine CCBs may prolong the QT
interval in subjects with normal sinus node function;106 experimental
data support this finding.3 When comparing various antihypertensive
treatments in a hypertensive population, CCBs often fail to reduce
cardiac repolarization abnormalities despite their ability to reduce both
BP and LVH31,68,70,107 and may actually trigger QT prolongation and
subsequent arrhythmias in hypertensive subjects.108

CCBs mediate their antihypertensive effects via vasodilatation by
blocking the L-type calcium channels found in smooth muscle cells.
However, their overall beneficial efficacy may be significantly
decreased by counter-regulatory cardiac and renal activation because
of baroreflex mechanisms.109 Therapy with dihydropyridine CCBs
increases norepinephrine plasma concentrations, although differences
in intensity have been described when comparing particular agents
and formulations.73,109–112 De Champlain et al.110 observed a transient
increase in norepinephrine levels with a slow-release nifedipine
preparation, and a sustained increase in norepinephrine levels follow-
ing chronic treatment with amlodipine, suggesting the existence of
differences in sympathetic activation between the two preparations.
Similarly, Leenen et al.112 noted that extended release felodipine
significantly increased supine and standing plasma noradrenaline,
which was not observed with either sustained release nifedipine or
the ACEi enalapril. The interaction between CCBs and the sympathetic
and parasympathetic nervous systems is also important. Karas et al.113

reported increased sympathetic activity during the day and decreased
parasympathetic activity during the night following therapy with
amlodipine; an effect that correlated with increased plasma norepi-
nephrine levels. In contrast, the ARB telmisartan increased parasym-
pathetic activity without affecting the norepinephrine levels during
both the night and the day, whereas ramipril increased parasympa-
thetic activity only during the day.114 Only CCBs that elicit a
concomitant blockade of the N-type calcium channels located at
sympathetic nerve endings, which enables them to directly inhibit
sympathetic neurotransmitter release and suppress sympathetic activ-
ity, may avoid reflex activation.114,115 Interestingly, only these CCBs
may successfully decrease cardiac repolarization.116

Table 2 Effects of beta-blockers on QT duration evaluated in clinical studies

Authors Drug

Patient

type

Sample

size Type study Follow-up Effect on QT

Effect on

QTc

Effect on QTc

disp. References

Galetta

et al.
Nebivolol HTN and

LVH

25 Observ. 4 weeks Reduction Reduction Reduction 29

Malmqvist

et al.
Atenolol HTN and

LVH

115 Randomized, double-blind, crossover, single-center,

placebo-controlled study

48 weeks Prolongation Reduction Non-signif. 69

Porthan

et al.
Bisoprolol HTN 183

men

Randomized, double-blind, crossover, single-center,

placebo-controlled study

4 weeks Reduction Reduction Reduction 70

Abbreviations: HTN, hypertension; LVH, left ventricular hypertrophy; Non-signif., no significant effect; Observ., observational study; QTc, corrected QT.
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An alternative explanation for unfavorable effects of CCBs on
repolarization is their possible effects on potassium channels, as
dihydropyridines not only suppress Ca2+ entry but also exert
inhibitory effects on potassium channels.117,118 By contrast, the
nondihydropyridine CCB verapamil shortened the duration of the
QT interval, whereas diltiazem did not change the duration of the QT
interval in the setting of angina pectoris,104 and appeared to prolong
the interval in a small sample of hypertensive patients119 (Table 3).
Verapamil significantly shortened the QT interval at low heart rates in
patients with structural normal hearts within 2 months after oral
verapamil was prescribed for paroxysmal atrioventricular nodal re-
entrant tachycardia.120 Verapamil reduces both the action potential
duration and the transmural dispersion of repolarization via direct
action on the heart,121,122 as well as via central nervous system action,
which mediates decreases in BP.123 There is no evidence regarding the
pro-arrhythmogenic potential of dihydropyridine CCBs. Any pro-
arrhythmogenic risk is likely to be marginal, as the blockade of L-type
calcium current (ICa, L) may subsequently reduce intracellular calcium
release and early after-depolarization, and suppress ventricular
arrhythmogenesis.124,125 The antiarrhythmic effects of both verapamil
and diltiazem are well known.

Diuretics
The effect of diuretics on the QT interval is complex. Some types of
diuretics exert direct effects on the heart, as demonstrated by their

actions in isolated cardiomyocytes,126 and these effects may be
observed in the setting of LVH.127 Diuretics, particularly loop diuretics
and thiazide diuretics, produce electrolytic disturbances such as
hypokalemia and hypomagnesemia.72 These electrolyte disturbances
may result in QT interval prolongation. The potassium-sparing
diuretic amiloride reduced both the duration of the QTc and
dispersion, and increased serum potassium concentrations in patients
with NYHA II-III.128 Similarly, when added to an ACEi or an ARB,
both spironolactone and amiloride shortened the QTc interval
concomitantly to reduction of cardiac fibrosis and increased serum
potassium levels in stroke survivors.129 When comparing diuretics
with other antihypertensive agents, they either exert no effect70 or
occasionally prolong repolarization130,131 (Table 4). Indapamide131–133

and furosemide130 have each been associated with both QT prolonga-
tion and the subsequent development of torsade de pointes or Brugada
syndrome or syncope. The net effect of diuretics on the duration of
the QT interval is the net effect of their favorable actions on BP32 and
their effects on electrolyte homeostasis.

Centrally acting antihypertensive agents
Consistent with the evidence that sympathetic activity plays an
important role in the regulation of the duration of the QT interval,
central alpha-2 agonists would be expected to reduce the QT interval.
However, only limited evidence supporting this exists in the literature.
Clonidine attenuates QT prolongation in some experimental models

Table 3 Effects of calcium channel blockers on QT duration evaluated in clinical studies

Authors Drug

Patient

type

Sample

size Type study Follow-up Effect on QT

Effect on

QTc

Effect on QTc

disp. References

Lim et al. Amlodipine HTN 106 Randomized, multinational, multicenter, double-blind 6 months Non-signif. Non-signif. Non-signif. 31

Fogari

et al.
Amlodipine HTN and

DM

170 Prospective, randomized, open label, blinded-end

point, parallel group study

12 and

24 weeks

Non-signif. Non-signif. Non-signif. 68

Porthan

et al.
Amlodipine HTN 183

men

Randomized, double-blind, crossover, single-center,

placebo-controlled study

4 weeks Non-signif. Non-signif. Non-signif. 70

van Wijk

et al.
Isradipine

i.v.
HTN 25 Observ. 30min Prolongation Prolongation — 106

Lind et al. Diltiazem HTN 24 Observ. 6 months Prolongation — — 119

Abbreviations: HTN, hypertension; LVH, left ventricular hypertrophy; Non-signif., no significant effect; Observ., observational study; QTc, corrected QT.

Table 4 Effects of diuretics on QT duration evaluated in clinical studies

Authors Drug Patient type

Sample

size Type study Follow-up Effect on QT Effect on QTc

Effect on

QTc disp. References

Porthan

et al.
Hydrochlorothiazide HTN 92 Randomized, double-blind,

crossover, single-center,

placebo-controlled

4 weeks Non-signif. Non-signif. Non-signif. 70

de Gregorio

et al.
Furosemide and

citalopram

HTN and major

depression and

hypokalemia

1 Case study — prolongation

(+ Torsade
de Pointes)

prolongation — 130

Letsas et al. Indapamide and

prednisolone

HTN and SLE 1 Case study — — Prolongation

(+Torsade de
Pointes)

— 131

Mok et al. Indapamide HTN and

hypokalemia and

hyponatremia

1 Case study — — prolongation (+ type

1 Brugada ECG

pattern)

— 132

Wang et al. Indapamide HTN and LQTS and

mild hypokalemia

1 Case study — prolongation

(+ syncope)

prolongation — 133

Abbreviations: HTN, hypertension; , LQTS, long QT syndrome; LVH, left ventricular hypertrophy; Non-signif., no significant effect; Observ., observational study; QTc, corrected QT; SLE, systemic
lupus erythematosus.
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of rat134 and rabbit,135 and its effects on QT variability have been
suggested in humans.136 The relationship between these effects and BP
remains questionable. Even less information is available regarding
QT modulation by imidazoline receptor agonists (moxonidine,
rilmenidine).

Direct vasodilators
Direct vasodilators may also have an influence on QT interval
measurements,34 but a link to their BP-lowering effects is missing.
Nicorandil, in particular, shortens ventricular repolarization if pro-
longed experimentally137 and modulates QT interval changes in
humans.35,138 However, nicorandil acts directly on ATP-sensitive K+

channels; this action is predictable and is likely not associated with BP
changes.

CONCLUSION

The observation that a prolonged QT interval (corrected for heart
rate) increases the risk of both coronary events and cardiovascular
death in hypertensive patients, even after adjusting for the effects of
other cardiovascular risk factors,15 should serve as an incentive for
clinicians to focus their attention on the QT interval in the assessment
of hypertension. The mechanism underlying QT interval prolongation
is multifactorial and includes cardiomyocyte hypertrophy, increased
LVM, with consequent changes in left ventricular transmural disper-
sion of the repolarization, as well as changes in autonomic nervous
system tone in patients with hypertension, and less likely a mechano-
electrical feedback. Although BP reduction is the primary goal of
antihypertensive drug therapy, and the type of antihypertensive drug
treatment varies in different individuals, the data regarding the
disparate effects of antihypertensive drugs warrant consideration when
planning long-term pharmacotherapy for hypertension.
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