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Angiotensin II induces human astrocyte senescence
through reactive oxygen species production

Gang Liu1,2, Naohisa Hosomi3,4, Hirofumi Hitomi1, Nicolas Pelisch4, Hua Fu4, Hisashi Masugata5,
Koji Murao6, Masaki Ueno7, Masayasu Matsumoto3 and Akira Nishiyama1

Angiotensin II (Ang II)-induced astrocyte senescence may be involved in cerebral ischemic injury and age-associated

neurodegenerative disease. This study was conducted to determine the roles of reactive oxygen species production in

Ang II-induced cellular senescence in cultured human astrocytes. Human astrocytes were stimulated with Ang II either with

or without an angiotensin type 1 receptor blocker, CV11974, or an antioxidant, tempol. Application of Ang II to human

astrocytes resulted in a concentration-dependent increase in staining for dihydroethidium. Ang II (100 nM for 30min) increased

the translocation of two cytosolic components of NADPH oxidase, p47phox and p67phox, to the cell membrane and formation

of the complex of p47phox, p67phox and p22phox. Ang II concentration-dependently induced an increase in b-galactosidase
staining. Pretreatment with CV11974 (100nM) or tempol (3mM) abolished Ang II-induced astrocyte b-galactosidase staining.

Moreover, Ang II significantly upregulated p16 mRNA expression, which was inhibited by pretreatment with CV11974 or tempol.

These findings indicate that superoxide production contributes to Ang II-induced astrocyte senescence.
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INTRODUCTION

It has been suggested that all components of the renin–angiotensin
system exist in individual tissues, thus enabling the local synthesis,
release and action of angiotensin II (Ang II).1,2 The brain is a
heterogeneous mixture of several cell types, including neurons and
glial cells. Various components of renin–angiotensin system are
expressed in glial and neural cells, suggesting a role for these cells in
the central effects of Ang II.3 In particular, astrocytes are the major
source of angiotensinogen in the central nervous system.4 Brain renin–
angiotensin system contributes to the regulation of blood pressure and
water volume homeostasis through its effects on sympathetic outflow
as well as vasopressin synthesis and release.5 Aged astrocytes contain
elevated levels of glial fibrillary acidic and S100b protein,6 which are
involved in the neuropathology of cerebral ischemia and Alzheimer’s
disease.7 Recently, experimental and clinical studies have reported that
cerebral ischemic injury and cognitive function can be ameliorated by
inhibition of renin–angiotensin system.8–10 Additionally, brain Ang II
is upregulated both in cerebral ischemia and Alzheimer’s disease and
can be regulated with systemic angiotensin type 1 (AT1) recep-
tor blocker (ARB) treatment.9,11,12 Thus, Ang II-induced astrocyte

senescence may be involved in the pathology of cerebral ischemic
injury and age-associated neurodegenerative disease.

Superoxide and other reactive oxygen species (ROS) are recognized
as important intracellular second messengers in a number of Ang
II-mediated cellular processes. Cell senescence was originally described
as the finite replicative lifespan of human somatic cells maintained in
culture. Senescent cells enter irreversible growth arrest, exhibit a flattened
and enlarged morphology and express senescence-related genes, such as
p53/p21 and p16. These phenotypic changes have been implicated in
aging and age-associated diseases.13,14 Recent reports have demonstrated
that ROS mediate the activation of pathways that contribute to the
pathogenesis of atherosclerosis (p53/p21 and p16 pathways) and initiate
cellular senescence in vascular smooth muscle cells that are exposed to
Ang II.15,16 In the brain, aged astrocytes exhibit a series of metabolic and
morphological changes to become reactive astrocytes. These changes can
be observed under a variety of conditions, including cerebral ischemia
and Alzheimer’s disease.17 Furthermore, ROS has roles in the pathogen-
esis of aging and aging-associated neurodegenerative diseases, such
as Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral
sclerosis.18–20 Thus, astrocyte senescence and ROS production may
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have important roles in cerebral ischemia and in the development of age-
associated neurodegenerative diseases.

In this study, we hypothesized that Ang II has a direct effect on ROS
generation through AT1 receptor-dependent activation of NADPH
oxidase and that this interaction could contribute to Ang II-induced
human astrocyte senescence. To test this hypothesis, we examined the
effects of Ang II, ARB and an antioxidant on superoxide generation
and cell senescence in cultured human astrocytes.

METHODS

Reagents
Ang II, tempol and anti-b actin antibody were purchased from Sigma Chemical

(St Louis, MO, USA). Dihydroethidium was obtained from Molecular Probes

(Eugene, OR, USA). Anti-p47phox, -p67phox and -p22phox antibodies were

purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). CV11974

and ARB, were provided by Takeda Chemical Industries (Osaka, Japan).

Cell culture
All experimental procedures were performed according to the guidelines for the

care and use of animals established by Kagawa University School of Medicine.

Primary human brain astrocytes (ACBRI 371) were purchased from the

Applied Cell Biology Research Institute (Kirkland, WA, USA) and were

maintained in CS-C Medium Kits (Cell Systems, Kirkland, WA, USA).

Characteristics of this primary human brain astrocytes were described pre-

viously.21,22 After stimulation, protein or mRNA was extracted as described

previously.9,23 The protein concentration was determined using the Bradford

assay kit (Bio-Rad Laboratories, Hercules, CA, USA).

Astrocytes were stimulated for 1 or 3 day(s) with Ang II at an appropriate

final concentration, beginning on day 1. For the 7-days stimulation experi-

ments, astrocytes were stimulated with Ang II on day 1, and medium was

changed on day 3 with the same Ang II final concentration.

Senescence-associated b-galactosidase staining
Astrocytes were washed with phosphate-buffered solution and fixed in 4%

paraformaldehyde in phosphate-buffered solution for 30 min. This was fol-

lowed by three washes with phosphate-buffered solution. The degree of

senescence in astrocyte cultures was evaluated using the senescence-associated

b-galactosidase (SA b-gal) staining kit (Sigma Chemical) according to the

manufacturer’s instructions. Senescent astrocytes (stained blue) were observed

with a microscope and digitally photographed.

Dihydroethidium staining
The oxidative fluorescence of dihydroethidium was used to evaluate intracel-

lular O2
� levels as described previously.24 Briefly, human astrocytes were plated

in a glass-bottom dish (Matsunami Glass Ind., Kishiwada, Japan) and allowed

to adhere for at least 18 h. At the appropriate time after stimulation,

dihydroethidium (5mM) was added to the medium, and the incubation was

continued for 15 min. Cells were then washed with phosphate-buffered solu-

tion, and images were obtained using a laser scanning confocal microscope

system (Bio-Rad Laboratories). The average of fluorescence intensity values

from 20 to 30 cells, taken from six different examinations, were calculated using

ImageJ from the National Institutes of Health.

Real-time reverse transcriptase PCR
mRNA expression levels of p16 were analyzed by real-time reverse transcriptase

PCR. All data were normalized against the expression of the glyceraldehyde-3-

phosphate dehydrogenase gene. The sense and antisense sequences for p16 were

5¢-GGAAGCTGTCGACTTCATGACA-3¢ and 5¢-GAGCTTTGGTTCTGCCATT

TG-3¢, respectively.

NADPH oxidase complex formation
NADPH oxidase complex formation was assessed by immunoprecipitation/

western blotting as previously described.25 Quiescent astrocytes treated with

Ang II for 30 min were lysed in cold lysis buffer consisting of 20 mM Tris-HCl,

pH 7.4, 140 mM NaCl, 1% Triton-X, 10% glycerol, 1 mM b-glycerophosphate,

1 mM sodium orthovanadate and complete protease inhibitor tablet (Roche,

Mannheim, Germany; 1 tablet per 25 ml buffer). The homogenates were then

subjected to sonication for 10 s on ice (repeated three times), followed by

centrifugation for 30 min at 12 000 g to remove cellular debris. The same amount

of protein (100mg) was incubated with 4mg of polyclonal anti-p22phox

overnight at 4 1C. The resulting immune complexes were precipitated by

incubation with protein-A/G sepharose for a further 2 h at 4 1C. After they

had been washed twice, the pellets were resuspended in 2� Laemmli sample

buffer, boiled for 5 min, and subjected to SDS-polyacrylamide gel electrophoresis

following semidry transfer to polyvinylidene difluoride membranes, the mem-

branes were probed with p47phox, p67phox and p22phox antibodies overnight

at 4 1C, before being incubated for 1 h with a secondary antibody (horseradish

peroxidase-conjugated anti-rabbit IgG, 1:2000). Immunoreactive bands were

visualized using enhanced chemiluminescence (ECL; Amersham Pharmacia

Biotech Inc., Piscataway, NJ, USA) and quantified by densitometry in the linear

range of film exposure using LAS—1000 plus (FUJIFILM Co., Tokyo, Japan).

Statistical analyses
The values are presented as mean±s.d. One-way analysis of variance was used

to determine significant differences among groups. When the overall analysis of

variance P-value was o0.05, Bonferroni’s correction for multiple comparisons

was used to assess individual group differences. Po0.05 was considered

statistically significant.

RESULTS

Effect of Ang II on astrocyte senescence
Senescence characteristics in astrocyte cultures were evaluated using
SA b-gal staining. Figure 1a shows the time course of Ang II-induced
increases in SA b-gal-positive cells (n¼12 for each). After treatment
with Ang II (100 nM) for 3 or 7 days, the number of SA b-gal-positive
cells was significantly higher than in the control group (Po0.01).
Figure 1b shows the concentration-dependent effects of Ang II (3 days
treatment) on the number of SA b-gal-positive cells (n¼12 for each).
Treatment with either 10 or 100 nM Ang II significantly increased the
number of SA b-gal-positive cells.

Effect of Ang II on O2
� production

To determine whether Ang II stimulates ROS production in human
astrocytes, intracellular O2

� level was evaluated with dihydroethidium
staining. Figure 2a shows the time course of Ang II-induced increases
in dihydroethidium staining (n¼6 for each). Ang II-induced (100 nM)
increases in dihydroethidium staining peaked at 30 min. Figure 2b
shows the concentration-dependent effects of Ang II (30 min) on
dihydroethidium staining (n¼6 for each). Moreover, pretreatment
with CV11974 (100 nM) for 3 h significantly attenuated the Ang
II-induced (1000 nM) increases in dihydroethidium staining. Repre-
sentative results of dihydroethidium staining are shown in Figure 2b.

Effect of Ang II on NADPH oxidase complex formation
Activation of NADPH oxidase requires translocation of its cytosolic
components, p47phox and p67phox, to the cell membrane and forma-
tion of a complex between p47phox, p67phox and p22phox. Therefore,
we examined the effects of Ang II on the complex formation of p47phox,
p67phox and p22phox in astrocytes by immunoprecipitation/western
blotting analysis. As shown in Figure 3, Ang II induced complex
formation of NADPH oxidase in a concentration-dependent manner.
Additionally, pretreatment with CV11974 (100 nM) significantly attenu-
ated Ang II-induced (1000 nM) complex formation (n¼4 for each). As a
control for the immunoprecipitations, the amounts of p47phox,
p67phox and p22phox precipitated in each group were determined
through direct immunoblotting; the levels of these components in each
group were essentially constant (data not shown).

Angiotensin II induces human astrocyte senescence
G Liu et al

480

Hypertension Research



Effects of CV11974 and tempol on Ang II-induced astrocyte
senescence
To investigate the role of AT1 receptor and O2

� production in Ang II-
induced astrocyte senescence, the effects of CV11974 (an AT1 receptor
blocker) and tempol (a superoxide dismutase mimetic) on the number
of SA b-gal-positive cells were examined (n¼6 for each). Before
incubation with Ang II (100 nM), astrocytes were pretreated with
either CV11974 (100 nM) for 3 h or tempol (3 mM) for 30 min. As
shown in Figure 4b, CV11974 significantly inhibited the Ang II-
induced increase in the number of SA b-gal-positive cells (Po0.01).
In addition, the Ang II-induced increase in SA b-gal-positive cells was
attenuated after preincubation with tempol (Po0.01). Representative
results of the b-galactosidase staining are shown in Figure 4. These
results suggest that Ang II induces astrocyte senescence through an
O2

� production-dependent pathway that involves the AT1 receptor.

Effect of Ang II on p16 mRNA expression
To further investigate the mechanism of Ang II-induced astrocyte
senescence, the expression of p16 mRNA was examined. As shown in
Figure 5, after 3-days treatment with Ang II (100 nM), p16 mRNA
expression was significantly higher than in the control group (n¼6 for
each, Po0.05). Moreover, CV11974 (100 nM) and tempol (3 mM)
significantly blocked Ang II-induced increases in p16 mRNA

expression. This suggests that p16 may be involved in Ang II-induced
astrocyte senescence.

DISCUSSION

This study shows that Ang II directly induced superoxide production
in human astrocytes and that this mechanism contributed to Ang II-
induced astrocyte senescence. In addition, these effects of Ang II were
inhibited by pretreatment with the ARB CV11974. This suggests that
the AT1 receptor may have a role in mediating these effects of Ang II.

A signaling mechanism for Ang II that involves superoxide and
other ROS has been identified in peripheral tissues. Ang II stimulates
ROS generation and activates molecules associated with redox regula-
tion in the vasculature,26 heart27 and kidney.2 In addition, superoxide
mediates the actions of Ang II in the central nervous system, including
in its regulation of blood pressure, heart rate and drinking behavior.28

Moreover, NADPH oxidase inhibition attenuates the neuronal chron-
otropic actions of Ang II.29 To the best of our knowledge, this study is
the first to demonstrate that Ang II stimulates AT1-dependent
dihydroethidium fluorescence in human astrocytes. Furthermore,
the Ang II-induced production of superoxide was abolished by
pretreatment with ARB.

NADPH oxidase is composed of membrane-associated components
(gp91phox and p22phox) and cytosolic regulatory subunits (p40phox,
p47phox, p67phox and Rac).30 Activation of NADPH oxidase requires
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translocation of the cytosolic components to the cell membrane. Our
study shows that Ang II directly induces both the translocation of
p47phox and p67phox to the astrocyte membrane and the binding of
p22phox to them. Moreover, the time courses of Ang II-induced super-
oxide production and membranous translocation of p47phox and
p67phox were similar. Pretreatment with ARB abolished not only
superoxide production but also the translocation of p47phox and
p67phox to the membrane. Thus, these data are consistent with the
concept that membranous translocation of p47phox and p67phox is
involved, at least in part, in the overall elevation in superoxide production
in human astrocytes. This study also indicated the potential contribution
of the AT1 receptor to these effects of Ang II in human astrocytes.

The tumor suppressor proteins p53 and pRb regulate two path-
ways that contribute to the establishment and maintenance of cellular
senescence.14 Both proteins are transcriptional regulators, and they are
crucially involved in signaling pathways that are responsible for cell
cycle regulation, DNA repair and cell death.31 Recent studies have
indicated that Ang II induces cell senescence through a p53/p21-
dependent pathway in vascular smooth muscle cells and endothelial
cells.15,32 Moreover, Min et al.16 have also reported that p16 is involved
in Ang II-induced vascular smooth muscle cell senescence. p16 is a

positive regulator of pRb that is induced by a variety of stress stimuli,
including Ang II.16,33 Furthermore, ROS mediate the activation of
p53/p21 and p16 pathways as well as cellular senescence induced by
Ang II.15,16 In this study, we found that Ang II upregulated p16 mRNA
expression but not p53 or p21 expression (data not shown). Pretreat-
ment with ARB or tempol attenuated Ang II-induced upregulation of
p16. This suggests that p16 might be involved in Ang II-induced
human astrocyte senescence.

It will be important to explain how astrocyte senescence, which
we observed under Ang II stimulation, is involved in pathological
conditions. Several reports have evaluated the functional changes that
occur in senescent astrocytes. Similar to activated astrocytes, senescent
astrocytes lose their neuroprotective function and show increased
expression of glial fibrillary acidic protein and S100b.34 However, to
our knowledge, no study has evaluated SA b-gal expression in
astrocytes in vivo. As neurodegenerative diseases progress slowly,
Ang II-induced astrocyte senescence may not be the only mechanism
underlying neurodegenerative disease. In our experimental cerebral
ischemia rat model, rat brain Ang II content increases following
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reperfusion, but at around 50 fmol g�1 tissue, it is still approximately
1/2000 of the in vitro level (100 nM¼100 pmol ml�1) used in this
study.9,12 Even in plasma, Ang II content (around 150 pM¼
150 fmol ml�1) in those rats is also around 1/600 of the in vitro
condition used in this study.12 Therefore, we believe it is not easy to be
similar Ang II stimulation conditions under in vivo cerebral ischemia
to in vitro Ang II stimulation made in this study. Additionally,
there may also exist systemic counter-action mechanisms against
Ang II-stimulated astrocyte senescence. Our results suggest that
systemic superoxide dismutase or NADPH oxidase inhibitors can
assist these counter-action mechanisms against Ang II-stimulated
astrocyte senescence.

Ischemic or hemorrhagic strokes can have a number of neuro-
logical consequences, including cognitive impairment and the eventual
development of dementia.35 In addition to its effect on cerebral
ischemia, treatment with ARB may improve cognitive function and
dementia. The Study on Cognition and Prognosis in the Elderly has
reported that antihypertensive therapy with the ARB candesartan
prevents the decline of cognitive function and reduces the incidence
of dementia in elderly nondemented patients.8 Recent reports
have also demonstrated that valsartan improves Alzheimer’s disease
through mechanisms that affect b-amyloid protein neuropathology,
but are independent of blood pressure-lowering activity.36 Thus, Ang
II-induced astrocyte senescence may be involved in cerebral ischemic
injury and age-associated neurodegenerative diseases.

In summary, this study demonstrates that Ang II directly induces
astrocyte senescence through a superoxide production-dependent
mechanism. Ang II-induced superoxide production may result, at least
in part, from membranous translocation of p47phox and p67phox. Our
data also indicate a role for the AT1 receptor in the Ang II-mediated
production of superoxide anions and astrocyte senescence. These find-
ings provide novel insights into the mechanisms responsible for Ang II-
induced ROS production during the progression of cerebral ischemic
injury and age-associated neurodegenerative diseases.
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