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Signal transduction of the (pro)renin receptor as a
novel therapeutic target for preventing end-organ
damage
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The (pro)renin receptor ((P)RR) not only represents a novel component of the renin–angiotensin system but is also a promising

novel drug target because of its crucial involvement in the pathogenesis of renal and cardiac end-organ damage. This review

discusses the signal transduction of the (P)RR with its adapter protein promyelocytic zinc-finger protein, the impact of this

receptor, especially on cardiovascular disease, and its putative interaction with renin inhibitors such as aliskiren. Furthermore,

the increasing complexity regarding the cellular function of the (P)RR is addressed, which arises by the intimate link with proton

pumps and the phosphatase PRL-1, as well as by the presence of different subcellular localizations and of a soluble isoform of

the (P)RR. Finally, the rationale and strategy for the development of small-molecule antagonists of the (P)RR, called renin/

prorenin receptor blockers, are presented.
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INTRODUCTION

Renin and prorenin are classically thought of as (pro)enzymes,
but recent evidence suggests that they also can act as hormones
because of their ability to bind cellular targets.1 A human (pro)renin
receptor ((P)RR)—also termed renin/prorenin receptor (RER)—
which can specifically bind prorenin and renin, has been cloned,
consisting of 350 amino acids with a single transmembrane domain.2

Interestingly, this receptor—which is expressed in organs such as the
brain, heart, kidney, liver and pancreas2,3—was reported to exert a
dual function:2,3

(1) Binding of renin to this receptor increases the catalytic activity of
renin by about four- to fivefold. Furthermore, prorenin, which
does not exhibit significant ability to generate angiotensin I
(ang I) in solution, gains enzyme activity comparable to that of
renin by binding to the (P)RR, that is, the receptor is able to
unmask the catalytic activity of prorenin.

(2) The (P)RR is also able to induce a signal-transduction cascade
upon ligand binding. Binding of renin and also prorenin causes a
phosphorylation of the receptor and a modest activation of the
MAP (mitogen-activated protein) kinases (MAPKs), ERK1 and
ERK2, whereas intracellular calcium or cAMP levels are not
altered.

SIGNAL TRANSDUCTION OF THE (P)RR

As no direct protein interaction partner was described in the initial
characterization of (P)RR2 and because protein–protein interactions
are crucial in understanding the mechanisms of a signal transduction
cascade, our group analyzed protein–protein and downstream
protein–DNA interactions of the (P)RR. Initially, we found an
intracellular and ubiquitous expression pattern of the human
(P)RR.4 Consistent with the latter and with housekeeping gene
properties, we observed several transcriptional start sites within the
TATA box-less human (P)RR promoter and a high promoter activity
in different cell types.4

By yeast two-hybrid screening and co-immunoprecipitation,
we identified promyelocytic zinc-finger (PLZF) protein as a direct
protein interaction partner of the C-terminal domain of the (P)RR.
PLZF is a zinc-finger transcription factor that is disrupted in patients
with translocation t(11;17)(q23;q21)-associated acute promyelocytic
leukemia.5

Co-immunoprecipitation experiments also indicated homodimer-
ization of the (P)RR.4 On activation of the (P)RR by renin, PLZF is
translocated into the nucleus and represses transcription of the (P)RR
itself, thereby creating a very short negative feedback loop, but
activates transcription of the p85a subunit of the phosphatidylino-
sitol-3 kinase (PI3K-p85a) (Figure 1). Short-interfering RNA (siRNA)
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against the (P)RR abolished these effects. A PLZF cis-element in the
(P)RR promoter was identified by site-directed mutagenesis and
electromobility shift assay. In addition, renin stimulation caused a
sixfold recruitment of PLZF to this promoter region, as shown by
chromatin-immunoprecipitation.4 Moreover, renin stimulation of
rat H9c2 cardiomyoblasts induced an increase in cell number and
a decrease in apoptosis. These effects were partly abolished by
PI3K inhibition and completely abrogated by siRNA against PLZF.4

Consistently, PI3K-p85a and PLZF are known to be involved in
stimulation of protein synthesis and cardiac hypertrophy.6,7 Finally,
experiments in PLZF knockout mice confirmed the role of PLZF as an
upstream regulator of (P)RR and PI3K-p85a.4

Recently, we demonstrated that, besides renin, prorenin also
induces the (P)RR-PLZF-PI3K-p85a pathway8 (Figure 1). Further-
more, prorenin exerts proproliferative and antiapoptotic effects to a
similar extent as renin, which are fully mediated by (P)RR and PLZF,
as shown by siRNA experiments. Remarkably, the novel renin inhi-
bitor (RI) aliskiren does not interfere with the intrinsic activity, that is,
the noncatalytic effects, of both renin and prorenin.8

These data demonstrate the existence of a novel signal transduction
pathway involving the ligands renin or prorenin the (P)RR and the
transcription factor PLZF, which is involved in cellular proliferation
and apoptosis (Figure 1).

Besides the recruitment of PLZF, other groups observed the activa-
tion of MAPKs downstream of the (P)RR.2,9 This MAPK activation
after stimulation of the (P)RR with renin occurs relatively late, with a
maximum described after 30 min,2 compared with ang II stimulation
experiments that peak at about 5 min.10 In addition, Akt kinase, which
itself is located downstream of PI3K, can activate MAP kinases by
mechanisms involving, for example, protein kinase C and nitric
oxide11,12 (Figure 2). Therefore, we speculate that PLZF acts upstream
of MAP kinases (Figure 2), which is supported by a recent publication
that reports that expression of PLZF can enhance the activity of ERK
kinase.13 Nevertheless, further experiments involving, for example,

tandem affinity purification, chromatin-immunoprecipitation
and siRNA are necessary to address the putative link between PLZF
and MAPK. Very recently, it was demonstrated that both renin
and prorenin can induce MAPKs in renal MDCK cells in the presence
of ang AT1 receptor (AT1R) and ang AT2 receptor blockade.14

Nevertheless, these effects were only marginally affected by siRNA
against the (P)RR, implicating other receptors in the regulation of
MAPKs by (pro)renin.

Consistent with our in vitro results, the downregulation of (P)RR
mRNA by high levels of renin was also observed by other groups in
certain animal models. In healthy normotensive rats, treatment with a
vasopeptidase inhibitor decreased blood pressure (BP), increased renal
renin mRNA and decreased (P)RR mRNA to about 80%.15 Further-
more, administration of an angiotensin-converting enzyme (ACE)
inhibitor, in addition to a low-salt diet, increased renin mRNA and
protein but decreased renal (P)RR mRNA, as expected from our
in vitro results.16 Consistently, inhibition of prorenin binding to the
(P)RR by the use of the handle region peptide, which itself is discussed
below, increased retinal (P)RR mRNA.17

In contrast, in the Goldblatt two kidney-one clip model, BP
reduction increased plasma prorenin, plasma renin and renal renin
mRNA expression, and also caused a parallel increase in (P)RR mRNA
expression in the clipped kidney.15

In this regulatory context, it is of interest to note that diabetic rats
exhibit an approximately twofold increase in renal (P)RR expression
on mRNA and protein levels compared with normal rats.18 Interest-
ingly, valsartan prevented this increase by interfering with the AT1R
and the downstream NADPH oxidase.18

BIOMEDICAL RELEVANCE OF THE (P)RR

Developmental biology
It has already been shown in 2005 that a monogenic defect in the gene
encoding the (P)RR can be the cause for X-linked mental retardation
associated with epilepsy in humans.9 Consistent with this observation,
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Figure 1 Signal transduction of the (P)RR based on protein–protein and protein–DNA interactions.
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the gene encoding (P)RR has a crucial role in zebrafish brain
development.19 In addition, the (P)RR seems essential for early
murine embryonic development, as embryonic stem cells with a
mutation in the (P)RR gene are incompatible with the development
of chimeric mice when injected into blastocysts.20 Therefore, the
generation of (P)RR knockout mice has not been possible so far.

Cardiovascular diseases
Cardiac, renal and ophthalmological end-organ damage due to
hypertension and/or diabetes is currently one of the major medical
challenges.21,22 They contribute to approximately 60–80% of all heart
failure23,24 and to 70% of renal failure25,26 cases. In addition, about
30% of blindness in Western countries is caused by these diseases.27–29

Current therapeutic strategies, such as ACE inhibitors, ang AT1R
blockers, b-adrenergic receptor antagonists or antidiabetic agents
only ameliorate but do not fully prevent or abolish cardiovascular
end-organ damages.30–32

The relevance of the (P)RR to these conditions is underlined by the
impressive observations of Ichihara’s group, which show that a decoy
peptide corresponding to the handle region of prorenin named handle
region peptide, which competitively inhibits prorenin binding to its
receptor, attenuated the development and progression of hyperten-
sion-induced cardiac fibrosis,33,34 and also completely inhibited the
development of diabetic nephropathy in different rat models including
AT1R knockout mice.32,35 Consistently, it was shown that (P)RR
activation can induce transforming growth factor-b1 in mesangial
cells.36 Furthermore, transgenic overexpression of the (P)RR in
smooth muscle cells causes a BP elevation and an increase in heart
rate,37 whereas an ubiquitous transgenic overexpression accounts for
glomerulosclerosis and proteinuria.38 Other groups were unable to
confirm the effects of the decoy peptide in vitro or in vivo;39–41

however, questions on handle region peptide degradation and
bioavailability have not been addressed in greater detail in these
publications. Another recently proposed hypothesis to explain the
discrepancies with respect to the beneficial effects of the prorenin-
derived decoys implicates the renin level, as the decoys were only
effective in low-renin and not in high-renin animal models.42–44 In
this context, it is important to note that the decoys competitively
inhibit not only the binding of prorenin but, unexpectedly, also of
renin to the (P)RR.45

In favor of Ichihara’s handle region peptide, an independent group
recently demonstrated that the decoy peptide reduced left ventricular
mass index, proteinuria and creatinine in salt-overloaded sponta-
neously hypertensive rats.46 Furthermore, the (P)RR blocking decoy
peptide was shown to abolish the renin effect on the action potential
frequency in neuronal cells in vitro.47 Finally, ischemia-initiated retinal
neovascularization,48 as well as diabetes-induced retinal inflamma-
tion,49 can be reduced significantly by prorenin-derived decoys.

Regarding the (P)RR ligand prorenin, a plethora of publications
have addressed its effect on the development of end-organ damage in
transgenic animal models. Liver-targeted overexpression of rat pro-
renin caused severe renal damage (for example, glomerulosclerosis)
and myocardial hypertrophy in the absence of hypertension and
without an alteration in plasma renin activity compared with non-
transgenic rats.50 In contrast, an inducible, transgenic, hepatic pro-
renin overexpression using indole-3-carbinol was associated with
hypertension, moderate renal vasculopathy and moderate cardiac
hypertrophy, but not with cardiac fibrosis and glomerulosclerosis,51,52

whereas a similar transgenic experiment observed glomerular
damage.53 A recent, sophisticated approach used transgenic mice
expressing site-mutated prorenin eliminating its enzymatic activity.54

These animals did not exhibit cardiac fibrosis or renal glomerular
sclerosis. Consistently, a further transgenic model with a high-plasma
wild-type prorenin level showed only modest renal lesions and
myocardial fibrosis at 6 months.55 In double-transgenic mice over-
expressing prorenin and angiotensinogen, end-organ damage was not
analyzed in greater detail, but major abnormalities in heart or kidney
using routine histological staining were not reported.56

Despite these controversies and complexities of animal models,
plasma prorenin levels are predictors of the consecutive development
of diabetic nephropathy and retinopathy in the human species.57,58

Pharmacology—RIs
The (P)RR has gained increasing interest in the pharmaceutical
industry because of the development of RIs with oral activity, such
as Ro 66–1132 (Hoffmann-La Roche, Basel, Switzerland) or Aliskiren
(CGP 60536B, SPP-100; Novartis, Basel, Switzerland).59–61 As
expected, RIs reduce plasma renin activity (that is, enzyme activity
with respect to ang I generation) and by this action, plasma levels of
ang I and ang II as well. Nevertheless, the total amount of plasma
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Figure 2 Signal transduction of the (P)RR—putative link between PLZF and MAPK.
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renin is dramatically increased on RI treatment (up to 34-fold62)
because the negative feedback of ang II on renin is interrupted.59,63,64

The 34-fold increase might be overestimated because of an assay
artefact: by binding to prorenin, aliskiren causes a conformational
change in this molecule, which is then detected as (immuno-re)active
renin, that is, aliskiren allows the false detection of prorenin as
renin.65–67 Nevertheless, renin inhibition can cause a greater increase
in plasma renin compared with AT1R blockade at dosages with
comparable antihypertensive effects.68 It has been reported that the
plasma renin concentration under 300 mg aliskiren is almost doubled
compared with 320 mg valsartan.43 In this context, studies by Laragh
should be mentioned, which demonstrated that the reactive increase
in renin secretion can even limit the effectiveness of aliskiren in sub-
populations of patients with highly reactive renin levels, that is, the
therapeutic aliskiren concentration is relatively too low to compensate
for the increase in renin.69,70 In these studies reanalyzed of Laragh’s
group, BP did not decrease in most low-renin patients and even
increased in 5% of patients taking aliskiren. In contrast, a very recent
reexamination of three aliskiren trials questions the methodology used
by Laragh and observed—using a different stratification cutoff—that
no patient with a medium-to-high plasma renin activity at baseline had
an increase in both plasma renin activity and BP.71 This implies that no
treatment failure is present in this sub-population that is related to a
‘disturbed stoichiometry’ between increased renin and aliskiren. Never-
theless, even this study detected ‘a few’ patients—but not those with an
increment in plasma renin activity—in whom BP increased.

Unfortunately, to our knowledge, studies directly comparing the
relative effects of ACE inhibitor, ang AT1R blockers and aliskiren on
plasma prorenin and renin levels in parallel—as well as the associated
antihypertensive response rates—are missing. Regarding the origin of
plasma renin, it is important to note that in healthy subjects and in
those with essential hypertension, the prorenin plasma concentration
is about ninefold higher than the renin concentration.72,73 Further-
more, at extrarenal sites—which are not subjected to the classical
negative feedback loop on renin release mediated by renal AT1Rs—
only prorenin is synthesized.74 These extrarenal sites contribute to
30–40% of the total plasma prorenin.44

In conclusion, it is likely that RIs will indirectly affect the activity of
(P)RR in vivo. As discussed above8 and also shown by other
groups,67,75 aliskiren does not inhibit the ability of renin and prorenin
to induce a signal-transduction cascade at the (P)RR in vitro.

Preliminary data of our group involving 12 individuals indicate that
a 3-week aliskiren therapy—compared with the pretreatment state—
can decrease (in 2 of 12 cases) and also increase (in 2 of 12 cases), or
does not alter (in 8 of 12 cases), the (P)RR mRNA expression in blood
cells of humans in vivo. On the basis of our in vitro results4 and our
expression analysis of PLZF knockout mice,4 especially the increase is
unexpected. Therefore, factors such as cell type, species, in vitro–
in vivo transferability, signal transduction kinetics, environment, age,
gender and/or genetic variabilities might affect the regulation of the
(P)RR. Consistent with the latter (that is, genetic subgroups), several
single nucleotide polymorphisms have been recently described in the
human (P)RR gene.76 Among these, the promoter polymorphism
�782A4G was weakly associated with ambulatory BP. The intronic
single nucleotide polymorphism 169C4T was associated with a 24 h
systolic BP difference of 6.4 mmHg in men which even exceeds the
effect of the well-known ACE I/D polymorphism.

Oncology
(P)RR mRNA can be detected in human glioblastomas and in
glioblastoma cell lines in which RIs reduce the cell number. This
reduction is probably caused by a modulation of (P)RR function,
as this effect is independent of AT1R and AT2R activity.77 The
direct protein–protein interaction of the (P)RR with the onco-
genic protein phosphatase of regenerating liver-1 (PRL-1), which is
discussed below, also illustrates a putative role of this receptor in
oncology.

INCREASING COMPLEXITY

The (P)RR does not exhibit a homology to any other known receptor
family.2 Nevertheless, the C-terminal 69–100 amino acids of the (P)RR
are identical to the vacuolar proton-translocating ATPase (V-ATPase
or vacuolar H+-ATPase) membrane sector-associated protein M8-9
(APT6M8-9, also known as ATP6AP2 or ATP6M8-9; GenBank
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identifier number GI:5031590)14,78 (Figure 3). V-ATPases, which are
ATP-dependent proton pumps, are involved in several cellular func-
tions such as neurotransmitter uptake and storage, endocytosis,
receptor recycling and urinary acidification.14,79 The V-ATPase-asso-
ciated part of the (P)RR—in contrast to the (pro)renin binding
domain—is evolutionarily conserved, as it shows a high sequence
homology between vertebrates (for example, mammals, fish) and
invertebrates (for example, Caenorhabditis elegans and Drosophila).80

Consistently, the ligand renin is only expressed in mammalian
and—as recently demonstrated in zebrafish—nonmammalian verte-
brates.81 Angiotensinogen, the substrate of renin, is also expressed
in zebrafish.82

It was shown by different groups that full-length (P)RR is mainly
localized intracellularly in perinuclear compartments, most likely
corresponding to the endoplasmic reticulum.4,83 Interestingly, transi-
ent transfections of different (P)RR expression constructs—each C-
and also N-terminally fused to EGFP—indicated that the V-ATPase
segment of the (P)RR showed a different localization pattern com-
pared with the full-length (P)RR, as it was localized primarily to the
lysosomal compartment.4 The largely intracellular location is also
supported by the observation that (P)RR and CAPER (Homo sapiens
endoplasmic reticulum-localized type I transmembrane adaptor pre-
cursor) are identical transcripts (GenBank accession number
AY038990). CAPER was identified by yeast two-hybrid screening
using the ubiquitous tyrosine phosphatase PRL-1 as bait (personal
communication). The protein–protein interaction of (P)RR and
PRL-1 was confirmed by co-immunoprecipitation (Schefe JH et al.,
unpublished data) (Figure 3). PRL-1 is involved in the regulation of
cellular proliferation, transformation, as well as in tumor formation in
nude mice, and exhibits a cell cycle-dependent subcellular localiza-
tion.84,85 It is present in the endoplasmic reticulum in resting cells but
is localized to centrosomes and to the spindle apparatus in mitotic
cells. The role of PRL-1 with regard to the cellular effects of the renin–
angiotensin system is currently unknown.

The preferential intracellular presence of the (P)RR contrasts with
the cell surface (that is, plasma membrane) localization initially
described by Nguyen et al.,2 but this discrepancy might be explained
by cell-type differences. Consistent with this view, preponderant
(P)RR protein expression was observed at the luminal surface of rat
kidney collecting duct intercalated cells.14

The coupling of (P)RR to MAP kinases and PLZF, as well as the
extracellular nature of the ligands prorenin and renin, indicates that
the signal transduction of this receptor is initiated at the plasma
membrane, where about 10% of the (P)RR protein can be detected.20

However, other scenarios are also feasible. It has been hypothesized by
Michael Bader that a further receptor for a soluble (pro)renin receptor
might exist.80 This soluble form of the (P)RR termed s(P)RR with a
molecular weight of 28 kDa was recently described in the medium of
different cell types, as well as in rat and human plasma.86 Regarding its
biosynthesis, the group of Nguyen confirmed the presence of full-
length (P)RR in the endoplasmic reticulum. After trafficking to the
Golgi apparatus, full-length (P)RR is cleaved in the trans-Golgi by the
action of furin generating s(P)RR and the transmembrane-cytoplas-
mic domain86,87 (Figure 3). The latter likely corresponds to the V-
ATPase segment of the (P)RR and is retrieved in some lysosomes,
whereas noncleaved (that is, furin escaped) full-length (P)RR is
addressed to the plasma membrane.86,87

In this context of intracellular (P)RRs, it is important to note that,
besides the ‘classical’ preprorenin mRNA, a second mRNA isoform
encoding a nonsecreted (that is, intracellular) form of active renin
has been cloned in the rat, mouse and human species. This new

isoform contains an alternative first exon that was termed—although
identical—‘exon 1b’88,89 and ‘exon 1A’.90,91 ‘Renin b’ (‘exon 1A renin’
or ‘exon(1A-9)renin’92) is expressed in the brain and in adrenocortical
mitochondria. Remarkably, it is the only renin transcript in the
heart—in contrast to the cardiac uptake of renin and prorenin
proteins91—where it is also upregulated in infarction.93 Exon(1A-
9)renin encodes a truncated, cytosolic prorenin, as it lacks the
prefragment of secretory renin and the first 10 amino acids of
the prosegment.92 Recently, it was shown that this cytosolic renin
isoform can mediate antinecrotic but proapoptotic effects in cardio-
myocytes.92 Nevertheless, a recent knockout model indicates that
intracellular renin cannot functionally compensate for a loss of
secreted renin.94

Despite this pathophysiological relevance, a rendezvous between
this nonsecreted, cytoplasmic renin and (P)RR is unlikely, because
the (pro)renin-binding domain of the latter is localized intra-
vesicularly, that is, not directly in the cytoplasm, or extracellularly80

(Figure 3).

THE DEVELOPMENT OF RERBS

On the basis of its crucial role in the pathophysiology of renal and
cardiac end-organ damage, the (P)RR is a promising novel therapeutic
drug target for cardiovascular disease. Furthermore, cardiovascular
end-organ damage represents an unmet medical need, because current
therapeutic strategies, as mentioned above, only ameliorate but do not
abolish this life-threatening condition. Regarding small-molecule drug
development, high-throughput screening assays represent a classical
first step toward exploring the chemical space for pharmacological
activity.95 Therefore, the (pro)renin-(P)RR-PLZF-RER/PI3K pathway
discussed above was filed as a patent (EP 1 890 152 A1), as it
can be used as a readout for (P)RR activity within a high-throughput
screening assay.

The importance of this pathway in mediating end-organ damage is
also demonstrated by the observation that left ventricular hypertrophy
is absent in PLZF knockout mice subjected to ang II infusion.96

Furthermore, the nuclear translocation of PLZF downstream of an
AT2 receptor activation was associated with an increased protein
synthesis and with growth stimulation of cardiomyocytes.6 Further-
more, PLZF is a candidate gene for obesity and insulin sensitivity,97

and an upstream regulator of the renal epithelial sodium channel.98

Supported by the GO-Bio initiative of the German Federal Ministry
of Education and Research (BMBF), the aim of an interdisciplinary
project team at the Center for Cardiovascular Research (CCR)/
Institute of Pharmacology of the Charité in Berlin is to develop a
novel drug class called RER blockers (RERBs). RERBs will represent
small molecules with oral bioavailability and the ability to inhibit the
RER for the indication of hypertension- and diabetes-related renal and
cardiac end-organ damage. In theory, RERBs should block both the
ang II-dependent (that is, enhancement of (pro)renin’s catalytic
activity) and ang II-independent (that is, intrinsic activity of renin
and prorenin) effects of the (P)RR.

A high-throughput screening assay based on stably transfected cell
lines and a luciferase readout will be performed to screen approxi-
mately 100 000 compounds of a library for inhibitory effects on the
RER in cooperation with a contract research organization. To validate
the putative confirmed compounds generated by this primary screen-
ing, a secondary screening based on nuclear translocation of PLZF
upon (pro)renin stimulation will be used to yield the so-called hits.
The methods for a subsequent hit-to-lead program to filter down
these multiple hits according to pharmacodynamic, pharmacokinetic
and toxicological parameters are currently being established. In addition,

(Pro)renin receptor as novel therapeutic target
H Funke-Kaiser et al

102

Hypertension Research



a medicinal chemistry program to optimize hits with appropriate
pharmacological parameters will be run.

The in vivo proof-of-concept, which tests the effects of lead
compounds with RERB activity in animal models of renal and cardiac
end-organ damage, constitutes the final milestone within our BMBF
GO-Bio project.

Renin/prorenin receptor blockers not only represent future drugs for
human clinical trials but also experimental tools to shed light on the
fascinating and complex world of the (P)RR and its adapter proteins.
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