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Antihypertensive, antidyslipidemic and endothelial
modulating activities of Orchis mascula

Nauman Aziz1,2, Malik Hassan Mehmood1,2, Hasan Salman Siddiqi1,2, Saf-ur-Rehman Mandukhail1,3,
Fatima Sadiq1, Wajiha Maan1 and Anwarul Hassan Gilani1

The objective of this study was to investigate the possible mode(s) of action for the medicinal use of Orchis mascula (OM)

(family Orchidaceae) in hypertension and dyslipidemia. In spontaneously hypertensive rats (SHRs), OM significantly (Po0.05)

reduced systolic blood pressure to 174.2±9.63 vs. 203.4±7.13mmHg (mean±s.e.m.; n¼7–10) and improved endothelial

dysfunction by increasing acetylcholine-induced relaxation. In normotensive anesthetized rats, the crude extract of OM (Om.Cr)

at 10 and 30mgkg�1 caused a dose-dependent attenuation of mean arterial pressure. OM also decreased serum triglycerides to

29.28±6.99 vs. 93.84±5.7mg per 100ml (Po0.001), low-density lipoprotein-cholesterol to 5.99±1.27 vs. 21.9±3.5mg

per 100ml (Po0.05) and atherogenic index to 0.096±0.017 vs. 0.36±0.08mg per 100ml (Po0.05). OM significantly

reduced lipid levels in tyloxapol and high fat diet-induced hyperlipidemia. In a second model, OM also reduced gain in body

weight with a reduction in daily diet consumption. In isolated rabbit aorta, Om.Cr caused concentration-dependent relaxation of

both phenylephrine and high K+ (80mM)-induced contractions and a rightward shift of the calcium concentration–response

curves similar to the effect seen with verapamil. In conclusion, OM shows antihypertensive and endothelial-modulating effects

mediated through multiple pathways that include direct vasodilation by calcium channel blockade and reduction of plasma

lipids by inhibition of biosynthesis, absorption and secretion. This study rationalizes the medicinal use of OM in hypertension

and dyslipidemia. However, further studies are required to identify the active constituents of this plant.
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INTRODUCTION

Orchis mascula (OM) Linn. (syn. Orchis latifolia Linn., Dactylorhiza
gagariana Soo), locally known as Saalab misri, belongs to the family
Orchidaceae. It is found in most parts of Europe and North Africa, as
well as in Western and Northern Asia. Iran and Afghanistan are the
major commercial sources of the plant. Its roots are used for medicinal
purposes. In folk medicine of Pakistan and India, it is prescribed
individually or along with other herbs for nervous and muscular,
as well as sexual dysfunction and cardiovascular diseases (CVDs).
It is also effective in alleviating diarrhea, dysentery and chronic
inflammation.1

The most important constituent of OM is mucilage, comprising
48% of the plant by mass. OM also contains 1% sugar, 2.7% starch,
5% nitrogenous substance and, when fresh, a trace of volatile oil. It
yields 2% ash, consisting chiefly of phosphates and chlorides of
potassium and calcium. Recently, we reported the antihypertensive,
antioxidant, antidyslipidemic and endothelial-modulating activities of
a polyherbal formulation (POL–10) that contained OM as one of the
ingredients.2 However, there are no reports in the literature regarding
the biological activity of this plant alone. Therefore, the aim of this

study was to investigate the cardiovascular effects of OM in different
animal models to rationalize its medicinal use in hypertension and
dyslipidemia.

METHODS

Plant material and extraction
Orchis mascula roots were purchased from a local herbal store in Karachi,

Pakistan, and were authenticated by Mr M. Afzal Rizvi, a botanist at the

Hamdard University (Karachi). The sample was deposited in the herbarium of

the Natural Products Research Division in the Department of Biological and

Biomedical Sciences (Aga Khan University, Karachi, Pakistan) with voucher

number OM-RT-03-06-70. The roots were ground into fine powder. For the

chronic study, OM powder was mixed with diet ad libitum. However, for

phytochemical and in vitro studies, OM powder was soaked in 70% aqueous

methanol for 3 days with occasional shaking. It was filtered through a muslin

cloth and then through a Whatman qualitative grade 1 filter paper.3 This

procedure was repeated three times and the combined filtrate was evaporated

using a rotary evaporator at 35–40 1C under reduced pressure of �760mmHg

to obtain a thick, dark brown, crude extract of OM (Om.Cr), with a yield of

B15.9% (w/w).
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Drugs and standards
Acetylcholine chloride, cholesterol, cholic acid, phenylephrine (PE), phentola-

mine hydrochloride, norepinephrine, verapamil hydrochloride, potassium

chloride and tyloxapol reagent grade were purchased from Sigma Aldrich

Chemical Company (St Louis, MO, USA), whereas calcium chloride, glucose,

magnesium chloride, magnesium sulfate, potassium dihydrogen phosphate,

sodium bicarbonate, sodium chloride and sodium dihydrogen phosphate and

methanol used for extraction were purchased from E. Merck KGaA (Darmstadt,

Germany). Randox diagnostic kits for serum analyses were purchased from

Randox Laboratories (Antrim, UK). Butter fat was purchased from United

Bakers (Karachi, Pakistan). All chemicals used were of the highest purity grade.

Physiological salt solutions were prepared fresh in distilled water on the day of

each experiment, whereas stock solutions of all the drugs and extract were

prepared in distilled water or saline and the dilutions were prepared fresh on

the day of each experiment.

Animals
Spontaneously hypertensive rats (strain: SHR/NCrlBR; hypertensive, non-

stroke) and their normotensive controls, Wistar Koyoto (WKY) rats, were

imported from the Animal Resource Centre (Australia), at the age of 4 weeks

and experiments were started at 20–24 weeks of age. Other animals, such as

Sprague–Dawley (SD) rats (170–200 g) and rabbits (1.5–2 kg) of either sex,

were sourced locally and housed at the animal house of Aga Khan University.

Animals were kept in plastic cages (47�34�18 cm3) with sawdust (changed

every 48h) and were maintained at 23–25 1C with free access to food and water.

Rabbits (1–1.2 kg) were starved for 24h before the experiment and killed by

cervical dislocation. All experiments complied with the rulings of the Institute

of Laboratory Animal Resources, Commission on Life Sciences, National

Research Council4 and were approved by the Ethics Committee of the Aga

Khan University (Karachi, Pakistan).

Phytochemical screening
The crude extract was screened for the presence of saponins, flavonoids,

tannins, phenols, coumarins, sterols, terpenes, alkaloids and anthraquinones

using methods described previously by Tona et al.5

Preparation of diets
The following four types of diet were prepared:

a. Normal diet: The normal diet was prepared as described previously by

Harkness and Wagner6 at the animal house of the Aga Khan University,

Karachi. The standard diet consisted of flour (5 kg), chokar (5 kg), molasses

(150 g), salt (75 g), nutrivet-L (33 g), potassium metabisulfite (15 g), oil

(500 g), fishmeal (2.25 kg) and powdered milk (2 kg), comprising a total

mass of B13kg of food material.

b. Normal diet with OM: OM powder was mixed with the normal diet in

3% w/w.

c. Atherogenic diet: Cholesterol (2% w/w), cholic acid (0.5% w/w) and butter

fat (5% w/w) were added to the normal diet, as described by Ichihashi

et al.7 with slight modifications.

d. Atherogenic diet with OM: OM (3% w/w) was mixed in diet C.

All measures were taken to ensure the uniform mixing of additives and OM

powder in dry ingredients of the diet before kneading.

Pharmacological parameters
Assessment of antihypertensive activity. For the assessment of antihypertensive

activity, SHRs were used in the protocol reported by Rodrigo et al.8 with slight

modifications. Male SHRs aged 20–24 weeks were randomly divided into 2

groups (n¼7 each). For 8 weeks, group 1 was fed diet A (normal diet) and

group 2 was fed diet B (normal diet plus OM). WKY rats served as

normotensive controls and were fed diet A for the same period. Systolic blood

pressure (BP) levels of SHRs were estimated daily using a tail-cuff plethysmo-

graph (Model 92, IITC, Woodland Hills, CA, USA) coupled to a PowerLab 4/25

data acquisition system before and during the 8 weeks of treatment. After

acclimatization with the BP measurement procedure, 3–8 readings of systolic

BP of each conscious animal (with 5–10min intervals) were recorded, and

mean values were calculated after values with large variations were discarded.

Systolic BP was measured at 0, 4 and 8 weeks of treatment. All experimental

variables such as temperature (27 1C), respiratory and body movements, as well

as noise levels were minimized to ensure the best possible quality of data. The

described noninvasive BP measurement is reported to have 96% correlation

with direct BP (which leads to a variation of ±10mmHg)8 and was recorded

using a computer running Chart 5.3 software (ADInstruments, Sydney,

Australia). Heart rate was calculated electronically using the cyclic measure-

ments option of the Chart software. Ten days before the beginning of the

experiment, rats were trained by exposing them daily to measurement

condition for 1–2 h.

Blood pressure was also monitored invasively as described previously.9 Adult

rats (180–200 g) of either sex were used. The animals were anesthetized with an

intraperitoneal (i.p.) injection of sodium thiopental (Pentothal, 70–90mg kg�1

body weight), and arterial BP was recorded through carotid artery cannulation

by a pressure transducer (MLT1199) coupled to a Bridge Amplifier and

PowerLab 4/25 (ADInstruments). Drugs were injected through a cannula

inserted into the jugular vein. After a 20-min period of equilibration equili-

brium, the rats were injected intravenously with 0.1ml saline (0.9% NaCl) or

with the same volume of test substance. Arterial pressure was allowed to return

to the resting level between injections. Control responses of standards, such as

acetylcholine (ACh, 1mgkg�1) and norepinephrine (1mgkg�1), were obtained

before the extracts were tested. Changes in mean arterial pressure (MAP) were

recognized as the difference between the steady-state value before and the

lowest reading after injection. MAP was calculated as the sum of the diastolic

pressure (DP) and one-third of the pulse pressure (PP), where PP¼SP�DP

(SP¼systolic pressure).

Measurement of vascular reactivity in isolated rat aorta. At the end of the

treatment, SHR and WKY rats were fasted for 16h and anesthetized with

diethyl ether by inhalation. Blood was collected through cardiac puncture and

serum was analyzed for lipid profile and glucose level. Thoracic aortae were

isolated and studied for endothelial reactivity.

The procedure described by Furchgott and Zawadski10 was followed

with some modifications. The descending thoracic aortae were transferred

immediately into Kreb’s bicarbonate buffer (composition in mM: NaCl: 118.4,

KCl: 4.7, CaCl2: 2.5, KH2PO4: 1.2, MgSO4: 1.2, NaHCO3: 25 and glucose: 11),

cleaned of periadventitial tissue and cut transversally into ring segments

(3mm in length). Each ring was placed in a tissue bath filled with Kreb’s

buffer (37 1C), bubbled with carbogen (95% O2 and 5% CO2) and attached to a

force transducer (model FORT100) coupled to a Transbridge (model TBM4M,

World Precision Instruments, Hertfordshire, UK) and a PowerLab data

acquisition system (model ML845, ADInstruments) and a computer running

the Chart software (version 5.3) for measuring isometric tension. Rings were

allowed to equilibrate for 60–90min at a resting tension of 2 g with changes of

buffer every 15min. When the isometric tension had stabilized, inhibitory

concentration–response curves (CRCs) of ACh (1�10�9–10�5 M) were con-

structed against contractions induced with a submaximal dose of PE

(1�10�6
M).

Assessment of vasodilator and inhibition of calcium channels and calcium release

activity in rabbit aortae. Direct vasodilator activity and its possible mode of

action were studied using isolated rabbit aortae as described by Gilani et al.9 For

the in vitro study, we preferred to use rabbits that are commonly used in our

laboratory for different purposes, thus using multiple tissues from the same

animals to maximize ethical and economical utilization. Rabbits were killed by

cervical dislocation. The descending thoracic aortae were removed, cut into 2–

3mm wide rings and set up in a 5ml tissue bath as described previously. After

an equilibrium period of 1 h, the tissues were stabilized with a fixed dose of PE

(1mM). The tissues were considered stable only when similar responses were

obtained from repeated doses of PE, which usually took 60–90min. Vasocon-

stricting effects of the extract were first determined on the resting baseline of

the tissue. The extract was later tested for its ability to relax the contractions

induced with PE (1mM) and high K+ (80mM). To confirm the calcium channel

blocking (CCB) activity, Ca2+ CRCs were constructed in a Ca2+-free medium.

Subsequently, the effect of increasing dose of the extract was determined on the

Ca2+ CRCs. A shift in the Ca2+ curves to the right would have confirmed CCB
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activity. To determine whether the extract was also inhibiting the Ca2+ release

from intracellular stores or blocking the calcium influx across the cell

membrane (through the voltage-dependent or receptor-operated channels),

the effect of increasing extract dose was observed on PE (1mM) peaks in Ca2+-

normal and in Ca2+-free Kreb’s solution, with Ca2+ omitted and EDTA

(ethylenediaminetetraacetic acid) (0.1mM) added to ensure total elimination

of extracellular Ca2+ without harmful effects on Ca2+ inside the cell.11

Effect on tyloxapol-induced hyperlipidemia. The tyloxapol-induced hyperlipi-

demic model12 was followed with slight modifications. Male SD rats weighing

160–180 g were randomly divided into three groups (n¼6 each). Groups 1 and

2 were fed diet A (normal diet) and group 3 was fed diet B (normal diet with

OM). After 10 days of the treatment, all animals were fasted for 7 h and group 1

received saline (10ml kg�1; i.p.) whereas groups 2 and 3 were administered

tyloxapol (500mg kg�1; i.p.). On the following day, all animals were anesthe-

tized by diethyl ether (by inhalation), and the blood was collected for analysis of

serum total cholesterol (TC) and triglycerides (TGs).

Effect on high fat diet-induced hypercholesterolemia. The effect of OM on high

fat diet-induced hypercholesterolemia was studied using the method described

by Berroughui et al.13 with slight modifications introduced after pilot studies.

Adult SD rats (12–14 weeks old, weighing 140–160 g) were randomly divided

into three groups (7–10 in each). Group 1 was fed diet A (served as normal

control), group 2 was fed diet C (atherogenic control) and group 3 was fed diet

D (treated). Animals in all groups had free access to water and food. Diet

consumption was monitored daily, and the gain in body weight was monitored

weekly. At the end of 6 weeks of treatment, animals were fasted for 16 h before

blood collection, and samples were analyzed for serum lipids and glucose levels.

Free radical scavenging activity. The method reported by Blois14 was followed

with a slight modification. A 0.1mM solution of 1,1-diphenyl-2-picryl-hydrazil

(DPPH) radical in methanol was prepared, and 1ml of this solution was added

to 3ml of the extract solution in methanol at different concentrations.

Absorbance was measured after 30min at 517 nm using a Beckman DU-70

Spectrophotometer (Beckman Instruments, Fullerton, CA, USA). A decrease

in the absorbance of DPPH solution indicates an increase in DPPH radical

scavenging activity. The percentage of the radical scavenging activity of DPHH

was calculated by the equation:

%DPPHradical scavenging¼

1� Control Absorbance� Sample Absorbance

Control Absorbance

� �
�100

The DPPH solution was used as the control. The CRCs were plotted as

concentration of extracts in mgml�1 against the percentage of free radical

scavenging activity for the calculation of EC50 values along with the 95%

confidence interval (95% CI).

Estimation of lipid profiles and glucose levels. Blood was collected in a

vacutainer by cardiac puncture from anesthetized rats that were fasted over-

night. The serum was separated after centrifugation at 3000 r.p.m./Eppendorf

Centrifuge 5418 for 10min. Serum lipids and glucose were assayed enzyma-

tically using commercially available kits. Serum TC, high-density lipoprotein-

cholesterol (HDL-C), TG and glucose levels were determined using methods

described by the manufacturer (Randox Laboratories). Low-density lipopro-

tein-cholesterol (LDL-C) was estimated indirectly using the formula:

LDL¼TC�HDL�TG/5.15 The atherogenic index was calculated using the

formula: atherogenic index¼TC�HDL/HDL.

Safety assessment
Orchis mascula was evaluated for acute toxicity. Balb-C mice were divided into

four groups of six and were administered increasing doses of the OM crude

extract (1, 2 and 3 g kg�1) in a 10ml kg�1 volume. A negative control group of

mice was administered saline (10ml kg�1, per oral (p.o.)). The mice were kept

under observation for mortality and behavioral changes for 48h and allowed

food and water ad libitum during this time.

Statistical analysis
All data were expressed as means±s.e.m., and the median EC50 values were

calculated as the geometric mean with 95% CIs. CRCs were analyzed by

nonlinear regression. One-way analysis of variance (one-way ANOVA) followed

by Tukey’s post-test was used to determine significant differences in various

biological parameters with and without treatment. Two-way ANOVA followed

by Bonferroni’s post-test correction was used for multiple comparisons of

CRCs with control. P-values o0.05 (Po0.05) were considered statistically

significant. All the graphing, calculations and statistical analyses were

performed using GraphPad Prism software version 4.00 for Windows,

(GraphPad Software, San Diego, CA, USA, http://www.graphpad.com).

RESULTS

Phytochemical screening
Qualitative phytochemical screening of the crude extract of ground
powder of OM (Om.Cr) showed the presence of alkaloids, saponins,
tannins, phenolics, terpenes, sterols and flavonoids.

Effects on BP and lipid profile in SHRs
The treatment of SHRs with OM for 8 weeks significantly reduced
elevated systolic BP (Po0.05), along with serum TGs, LDL-C and
atherogenic index compared with untreated controls. No effects were
observed on TC, HDL-C and glucose (Table 1). Treatment also

Table 1 Effects of Orchis mascula (OM) on blood pressure, serum lipids and glucose in SHR

Parameters WKY SHR SHR+Orchis mascula

Systolic BP (mm Hg) 140.7±3.4 203.4±7.13ww 174.2±9.63*

Heart rate (b.p.m.) 322.1±11.7 331.3±6.02 333.3±8.28

Total cholesterol (mg per 100 ml) 110.9±7.8 90.3±7.7 69.51±11.62

HDL-C (mg per 100 ml) 93.9±6.6 68.3±7.1w 63.51±10.75

LDL-C (mg per 100 ml) 17±3.6 21.9±3.5 5.99±1.27*

Triglycerides (mg per 100 ml) 80.42±4.0 93.84±5.7w 29.28±6.99**

Atherogenic index 0.183±0.04 0.36±0.08ww 0.096±0.017*

Glucose (mg per 100 ml) 116±8.9 89.6±12.0 97.78±23.74

Abbreviations: ANOVA, analysis of variance; BP, blood pressure; b.p.m., beats per minute; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; SHR,
spontaneously hypertensive rat; WKY, Wistar Koyoto.
One-way ANOVA followed by Tukey’s post-test. WKY rats served as normotensive controls.
Values shown are mean±s.e.m. of 7–10 determinations
*Po0.05; **Po0.001 compared with SHR control.
wPo0.05; wwPo0.01 compared with normotensive WKY control.
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improved the endothelial-dependent relaxation of PE-induced con-
tractions in isolated aortae compared with those of untreated controls.
The comparative concentration curves of ACh in the aortae of
different groups are presented in Figure 1.

Effects on BP in normotensive anesthetized rats
The crude extract of OM (Om.Cr) caused a dose-dependent (10 and
30mg kg�1) decrease in the BP of normotensive anesthetized rats. The
doses of 10 and 30mgkg�1 induced a respective decrease of 14.5±3.5
and 32±3% (mean±s.e.m.) in BP. Figure 2 (top) shows the tracing
from a typical experiment, whereas the combined data obtained from
different animals under the same experimental conditions have been
plotted in Figure 2 (bottom).

Effect on isolated rabbit aortae
Isolated rabbit aortic ring preparations were used for the study of
direct vasodilator activity and the possible mode of action(s) of OM.
The crude extract of OM (Om.Cr) caused concentration-dependent
(0.03–10.0mgml�1) inhibition of both PE (EC50, 95% CI; 2.6mg per
100ml, 1.86–3.76; n¼5) and high K+-induced contractions
(1.08mgml�1, 0.92–1.28; n¼5). The comparative curves are shown
in Figure 3. On the endothelium of intact and denuded aortic rings of
selected vascular preparation, no significant difference in the inhibi-
tory effect of Om.Cr was found (data not shown). Om.Cr caused a
concentration-dependent nonparallel rightward shift with the sup-
pression of maximum response (31.87±3.1 and 57.75±6.9%,
Po0.001 vs. control) at 0.3 and 1.0mgml�1, respectively, in calcium
CRC (similar to those of verapamil) (24.5±0.8 and 61.5±3.2%,
Po0.001 vs. control) at 0.03 and 0.1mM, respectively, as shown in
Figure 4. Om.Cr also caused a concentration-dependent (0.3 and
1.0mgml�1) rightward shift in the Ca2+ CRCs in a manner similar
to that of verapamil, confirming the CCB activity (Figure 4). Further-
more, on the baseline, Om.Cr caused slight contractions at
0.3–3.0mgml�1. The contractile effect of Om.Cr was partially blocked
in phentolamine (1mM) pretreated aortic rings, as shown in Figure 3.
In Ca2+-free medium, PE (1mM) caused a sharp contraction because of

Figure 1 Concentration–response curves showing the comparative

vasorelaxant effects of acetylcholine (ACh) on phenylephrine (PE; 1mM)

induced vasoconstriction in aortae isolated from SHRs (hypertensive

control), SHRs treated with 3% OM for two months (SHR+OM) and Wistar

Koyoto rats (WKY, normotensive control). The symbols represent the

means±s.e.m. of 5–10 preparations. (**Po0.01, ***Po0.001; compared

with untreated SHRs; two-way ANOVA followed by Bonferroni’s post-test

correction).

Figure 2 Typical tracing showing the blood pressure-lowering effect of the

crude extract of Orchis mascula (Om.Cr) (top) and bar chart representing the

hypotensive effect of Om.Cr on mean arterial pressure (MAP) in anesthetized

normotensive rats (bottom). The data represent the mean±s.e.m. of 3

animals.

Figure 3 Effect of the crude extract of Orchis mascula (Om.Cr) on vascular

contractions. The upper panel shows the effect of Om.Cr on basal tension

without and with phentolamine (1mM), in which the responses to each

concentration were expressed as a percentage of the PE-induced
contraction. The lower panel shows the vasodilator effect against

phenylephrine (PE; 1mM) and high K+ (80mM) induced contractions in

isolated rabbit aortic preparations. Values shown are means±s.e.m. of 4–6

measurements.
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the release of Ca2+ from intracellular stores. Om.Cr also caused a
reduction in these contractions in a concentration-dependent manner
(0.3–3mg per 100ml), similar to that of Verapamil (data not shown).

Effects on tyloxapol-induced hyperlipidemia
Administration of Tyloxapol (Triton WR-1339) caused an increase in
serum TC, 526.6±44.04 vs. 82.22±3.131mg per 100ml (Po0.001;
n¼8–10), and TGs, 6276±541.6 vs. 67.83±4.14mg per 100ml
(Po0.001; n¼8–10), compared with normal controls. Pretreatment
of the rats with OM protected partially against tyloxapol-induced
hypercholesterolemia, 277.6±84.7mg per 100ml (Po0.05; n¼8), and
hypertriglyceridemia, 2823±1139mg per 100ml (Po0.01; n¼8).

Effects on high fat diet-induced hyperlipidemia
An atherogenic diet significantly increased TC, LDL and the athero-
genic index compared with controls. Supplementation of OM with an
atherogenic diet prevented the increase in mean serum TC, LDL-C
and the atherogenic index. The treatment did not exert any effect on
HDL-C, TG and glucose levels. The decrease in body weight was
accompanied by a slight reduction in daily diet consumption. The data
are summarized in Table 2.

In vitro antioxidant activity
The crude extract of OM (Om.Cr). was devoid of antioxidant activity up
to the maximum concentration (150mgml�1) tested by the DPPH assay.

Safety assessment
In acute toxicity studies on mice, OM crude extract (Om.Cr) up to
3 g kg�1, p.o. did not produce mortality in 48h or any behavioral
changes during the observation period. During chronic treatment for
6–8 weeks, OM did not cause any death or behavioral changes in
normotensive and SHR rats.

DISCUSSION

In this study, chronic treatment of SHRs with OM significantly
reduced systolic BP compared with untreated hypertensive controls.
This may explain its medicinal use in hypertension. SHR is the most
widely used animal model for human essential hypertension because
of its similarities in genetic predisposition to high BP without specific
etiology, increased total peripheral resistance without volume expan-
sion, impairment of endothelial function and similar responses to
drug treatment.16 The hypotensive effects of Om.Cr in normotensive
anesthetized rats imply direct effects on the cardiovascular system, as
BP is the product of cardiac output and peripheral vascular resis-
tance17 and it effected a change in either or both of these parameters.
The goal of any antihypertensive therapy is targeted to bring a
reduction in either or both of these parameters, preferably peripheral
vascular resistance.

Figure 4 Effect of increasing the dose of Orchis mascula crude extract

(Om.Cr) (top) and Verapamil (bottom) on Ca2+ concentration-response curves

constructed in Ca2+-free and K+-rich (80mM) medium in isolated rabbit

aorta. Values shown are means±s.e.m. of 4–6 experiments. ***Po0.001;

compared with control maximum, two-way ANOVA followed by Bonferroni’s

post-test correction).

Table 2 Effect of Orchis mascula (OM) on serum lipids, glucose, body weight and diet consumption in atherogenic diet

Parameters Normal diet Atherogenic diet Atherogenic+Orchis mascula

Total cholesterol (mg per 100 ml) 82.2±3.13 356.1±18.04ww 268.6±15.28**

HDL-C (mg per 100 ml) 38.5±1.73 27.8±3 32.51±2.24

LDL-C (mg per 100 ml) 30.1±2.34 314.52±16.6ww 183.4±38.99**

Triglycerides (mg per 100 ml) 59.7±4.2 68.61±8.44 80.18±8.94

Atherogenic index 1.15±0.09 12.5±1.12ww 7.49±0.91**

Glucose (mg per 100 ml) 95.6±7.2 147±19 92.85±11.46

% change in body weight 33.33±1.6 56.8±1.97w 34.23±7.34*

Diet consumption g per day per kg 168.5±11.8 146.1±15.1 129.2±8.6

Abbreviations: ANOVA, analysis of variance; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol.
Values shown are mean±s.e.m. of 7–10 determinations.
wPo0.05; wwPo0.01 compared with normal controls.
*Po0.05; **Po0.01 compared with atherogenic control. One-way ANOVA followed by Tukey’s post-test.
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Vascular resistance is regulated by the endothelium through the
synthesis and secretion of various vasoactive substances. In SHR,
vascular endothelial dysfunction is caused by various factors, such as
hypertension,18 hypertriglyceridemia19 and the excess production of
oxidants and/or deficiency of antioxidant systems.20 Treatment of SHR
with OM completely reversed endothelial dysfunction (indicated
by increased vasorelaxation induced by ACh) comparable with
WKY normotensive controls, and this effect was associated with a
reduction in serum TGs, LDL-C and the atherogenic index. All of
these are independent risk factors in the development of endothelial
dysfunction.
Blood pressure is the product of cardiac output and peripheral

vascular resistance. An increase in either or both of these results in
hypertension. The ability of Om.Cr to relax the contractions induced
by PE and high K+ in isolated rabbit aorta is indicative of the blockade
of Ca2+ influx through both receptor-operated and L-type voltage-
dependent Ca2+ channels, respectively.21 The Ca2+ channel blockade
(CCB) activity of Om.Cr was further confirmed by the rightward shift
of Ca2+ CRCs with the suppression of maximum response (Po0.001
vs. control), caused by Om.Cr, similar to the effects of verapamil, a
standard CCB used clinically.22 The beneficial effects of CCBs are due
to multiple mechanisms, such as a direct relaxant effect on the
cardiovascular system by blocking the entry of Ca2+ into the cells,
an antidyslipidemic effect due to an increase in cholesteryl ester
hydrolysis by increasing intracellular cyclic adenosine monophosphate
and inherent antioxidant properties.23 In Ca2+-free Kreb’s solution, PE
acts through stimulation of a1-adrenergic receptors followed by the
conversion of phosphatidylinositol to inositol-1,4,5-trisphosphate,
which in turn releases Ca2+ from the intracellular stores and brings
about the contraction.24–25 In a normal Ca2+ Kreb’s solution, the PE-
stimulated contractions come about possibly through the influx of
Ca2+ from the L-type voltage-dependent Ca2+ channels and the
receptor-operated nonselective cation channels.26 Om.Cr appears to
inhibit both mechanisms. Furthermore, the presence of vasoconstric-
tor constituents may also explain the partial reversal of hypertension.
However, further investigations are required to verify this.
To study the possible mode of action of the lipid-lowering activity

of OM, tyloxapol and the high cholesterol diet-induced hyperlipide-
mia models were used. In tyloxapol-induced hyperlipidemia, OM
caused a significant reduction in both serum TG and TC levels to
levels comparable with controls. Tyloxapol caused an increase in
serum TGs and cholesterol levels because of the increase in hepatic
cholesterol synthesis, particularly by the increase in HMG Co-A
activity27 and by the inhibition of lipoprotein lipase (LPL) responsible
for hydrolysis of plasma lipids.28 This indicates the inhibition of
lipid biosynthesis as a possible mechanism of the lipid-lowering effect
of OM.
A high cholesterol diet induces endothelial dysfunction and athero-

sclerosis29 and increases oxidative stress by increasing the expression of
oxidation-sensitive genes, such as Elk-1 and p-CREB.30 A high
cholesterol diet with cholic acid increases TC, LDL-C and the
atherogenic index and decreases HDL-C by enhancing intestinal
absorption and secretion and decreasing the catabolism of choles-
terol.31 A high-fat diet also causes oxidative stress (enzymatic and
nonenzymatic) in rats, as indicated by increased levels of thiobarbi-
turic acid reactive substances and conjugated dienes, significantly
attenuated activities of superoxide dismutase, catalase, glutathione
peroxidase and glutathione-S-transferase, as well as reduced
glutathione levels in the liver, heart, kidney, intestine and aorta.
Antioxidants effectively prevent this kind of cellular damage.32 The
reduction of serum TC, LDL-C and the atherogenic index indicates

that OM reduces intestinal absorption and secretion and also possesses
in vivo antioxidant activity. However, Om.Cr did not show in vitro
antioxidant activity in the DPPH free radical scavenging assay. The
presence of in vivo antioxidant activity of OM may prevent the
disturbance in Ca2+ homeostasis, which is essential for the synthesis
and release of nitric oxide from endothelial cells.33 Furthermore, the
reduction of body weight gain by OM may be due to the reduction in
daily diet consumption, which may be useful in CVD associated with
obesity. The phytochemical screening indicated the presence of
phenolic acids, terpenes, flavonols and tannins, which are known
antioxidants. Owing to the multifaceted nature of antioxidants, it may
not be possible to rule out the presence of in vitro antioxidant activity
in OM on the basis of a single assay.34 Therefore, other methods such
as reactive oxygen species scavenging assays and electron transfer-
based assays should be attempted. Moreover, antioxidation is not the
sole mechanism of the lipid-lowering activity of OM.

CONCLUSIONS

Antihypertensive and endothelial modulating effects of OM are
mediated through multiple pathways that include a direct vasorelaxant
effect through CCB and the inhibition of both lipid biosynthesis and
intestinal absorption and secretion. This study rationalizes the
medicinal use of OM in hypertension and dyslipidemia. However,
further studies are required to isolate and identify active constituent(s)
of OM responsible for its beneficial medicinal effects.
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