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Amelioration of Hypertensive Heart Failure by 
Amlodipine May Occur via Antioxidative Effects

Hiroshi HASEGAWA1), Hiroyuki TAKANO1), Takahide KOHRO2), Kazutaka UEDA1), 

Yuriko NIITSUMA1), Hiroyuki ABURATANI2), and Issei KOMURO1)

Although recent clinical studies have suggested that long-acting calcium channel blockers (CCBs) have

beneficial effects on heart failure, the precise mechanism is unknown. In this study, Dahl salt-sensitive rats

fed a high salt diet were treated with the long-acting CCB amlodipine, the low–molecular-weight membrane

permeable superoxide dismutase mimetic 4-hydroxy-2,2,6,6-tetramethyl piperidinoxyl (Tempol), or saline

from 11 weeks after birth. The cardiac geometry and function, and gene expression profiles were determined

at 17 weeks. Dahl salt-sensitive rats fed a high salt diet followed by saline as a non-treatment control (HS

group) showed a marked increase in blood pressure and developed concentric hypertrophy at 11 weeks, fol-

lowed by left ventricular (LV) dilation and congestive heart failure by 17 weeks. The treatment with amlo-

dipine (AMLO group) or Tempol (TEMP group) significantly inhibited the development of LV hypertrophy and

cardiac dysfunction. Analysis using an Affymetrix GeneChip U34 revealed that the expression levels of 195

genes were changed by the treatment with amlodipine. Among these 195 genes, 110 genes were increased

in HS rats and decreased in AMLO rats. And of these 110 genes, 54 genes were also decreased in TEMP

rats. In contrast, 85 genes were decreased in HS rats and increased in AMLO rats. Of these 85 genes, 38

genes were also increased in TEMP rats. Approximately 48% of the genes were changed in similar fashion

in AMLO and TEMP rats, suggesting that amlodipine shows beneficial effects on heart failure mainly via anti-

oxidative mechanisms. (Hypertens Res 2006; 29: 719–729)
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Introduction

Hemodynamic overload, which can take the form of pressure
or volume overload, causes left ventricular (LV) hypertrophy
as an adaptive mechanism. However, sustained cardiac
hypertrophy induces a reduction of contractile ability and/or a
decrease in the number of viable myocytes, resulting in con-
gestive heart failure (CHF) (1–4). It is very important to elu-
cidate the molecular mechanism of the progression from
cardiac hypertrophy to heart failure (5).

Calcium channel blockers (CCBs) are widely used to treat
patients with hypertension (6), but treatment with short-acting
CCBs has been reported to increase the risk of cardiovascular
death, at least partly due to activation of the sympathetic ner-
vous system (7–9). However, CCBs with an intrinsically long
duration of activity have been shown to significantly reduce
vascular resistance properties without significant effects on
myocardial contractility (10). In the ACTION (A Coronary
disease Trial Investigating Outcome with Nifedipine GITS
[gastro-intestinal therapeutic system]) trial, the addition of
long-acting nifedipine to conventional treatment of stable
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angina patients reduced the development of heart failure by
29% (11, 12).

Amlodipine, a third generation dihydropyridine CCB, has
much higher affinity for lipid constituents of the cellular
membrane than do other CCBs (13). There are increasing
basic and clinical data indicating that amlodipine and other
CCBs, in addition to having hemodynamic properties, exert
non–calcium channel-related pleiotropic actions, such as the
release of nitric oxide (14), inhibition of adhesion molecules
(15) and inhibition of matrix metalloproteinase-1 (16). More-
over, amlodipine inhibits cytokine-induced endothelial cell
toxicity and has a potent membrane antioxidant activity inde-
pendent of its calcium channel modulation (17). To determine
whether amlodipine prevents the progression from hypertro-
phy to heart failure, we used a Dahl rat hypertensive heart
failure model (18–22), and to gain insight into the underlying
mechanisms of the effects of amlodipine, we performed DNA
chip analysis (23, 24).

Methods

Animals

Five-week-old male Dahl salt-sensitive rats (DS) were
obtained from SLC (Shizuoka, Japan). All rats were housed in
climate-controlled metabolic cages with a 12:12-h light-dark

cycle. Twenty-four rats were fed a diet containing 0.3% NaCl
until the age of 6 weeks, then fed a diet containing 8% NaCl
(MF; Oriental Yeast, Tokyo, Japan) from 6 weeks of age until
the end of the experiment. Seven of these 24 rats were then
given amlodipine (10 mg/kg/day) by gavage once a day from
11 weeks to 17 weeks (AMLO group), 7 were given the low–
molecular-weight membrane permeable superoxide dismu-
tase (SOD) mimetic, 4-hydroxy-2,2,6,6-tetramethyl piperi-
dinoxyl (Tempol; 10 mg/kg/day), by gavage once a day from
11 weeks to 17 weeks (TEMP group) and 10 rats were treated
with saline as a non-treatment control (HS group). In addi-
tion, 10 rats were fed a diet containing 0.3% NaCl throughout
this experiment as a normal blood pressure control (LS
group). The blood pressure (BP) and body weight (BW) of all
animals were measured every week. The peak systolic pres-
sure was recorded by a photoelectric pulse device (Softron
BP-98A; Softron Co., Tokyo, Japan) placed on the tail of
unanesthetized rats as described previously (25). At 17 weeks
of age, all DS rats with or without CHF were sacrificed,
before their natural death, when signs of CHF such as rapid
and labored respiration and LV diffuse hypokinesis on
echocardiography were observed.

Throughout the studies, all animals were treated humanely
in accordance with the guidelines on animal experimentation
of our institute and the Position of the American Heart Asso-
ciation on Research Animal Use. All protocols were approved

Fig. 1. The change of blood pressure, body weight and mortality. A: The time course of body weight in LS, HS, AMLO and
TEMP rats. Data are expressed as the mean±SEM (n=10, 10, 7, 7, respectively). B: The time course of systolic blood pressure
(SBP) in LS, HS and AMLO rats. Data are expressed as the mean±SEM (n=10, 10, 7, 7, respectively). C: The time course of
survival rate in LS, HS and AMLO rats (n=10, 10, 7, 7, respectively).
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by the Institutional Animal Care and Use Committee of Chiba
University Graduate School of Medicine.

Echocardiography

The LV dimension, contraction, LV wall thickness, and LV
fractional shortening (FS) were determined by echocardio-
graphy after anesthesia with an intramuscular injection of
pentobarbital sodium (15 mg/kg BW). Transthoracic echocar-
diography was performed at the ages of 6, 11, and 17 weeks
in all rats using an HP Sonos 5500 (Hewlett-Packard Co.,
Andover, USA) with a 10-MHz imaging linear scan probe
transducer as described previously (25, 26).

Histological Analysis

The heart was weighed, then fixed by perfusion with 3.8%
formaldehyde, embedded in paraffin, sectioned into 4 μm
slices, and stained with hematoxylin-eosin (H-E) or van Gie-
son stain (25). To determine the degree of collagen fiber accu-
mulation, we selected 10 fields at random and calculated the
ratio of the fibrotic area by van Gieson staining to the total
myocardial area by using NIH IMAGE software (NIH
Research Service Branch, Bethesda, USA) (25). Apoptosis

was detected by in situ terminal deoxynucleotidyl transfer-
mediated end labeling of fragmented nuclei (TUNEL assay)
using an in situ apoptosis detection kit (CardioTACS™; TRE-
VIGEN Inc., Gaithersburg, USA) according to the supplier’s
instructions. The oxidation of the myocardium was deter-
mined by immunostaining using anti–4-hydroxy-2-nonenal
antibody (anti-4-HNE; ALEXIS Biochemicals, USA) reacted
with avidin-conjugated peroxidase (VECTASTAIN ABC kit,
VECTOR, Burlingame, USA), and visualized with 3,3′-
diaminobenzidine (Peroxidase substrate kit DAB, VECTOR).
For semiquantification, the area and the intensity of 4-HNE
staining were scored as reported previously (27). A part of the
LV was frozen at −80°C for mRNA analysis.

RNA Preparation and DNA Microarray Analysis

Total RNA was isolated from rat heart ventricles using the
lithium/urea method and separated on a 1.0% agarose/formal-
dehyde gel. cDNA of brain natriuretic peptide (BNP) was
labeled by a random priming method with [α-32P]dCTP and
hybridized to membranes as described previously (25). An
RNase protection assay (using 20 μg of total RNA) was per-
formed using a rat cytokine Multi-Probe Template Set (BD
Pharmingen Bioscience, San Jose, USA) according to the

Fig. 2. The results of echocardiography of DS rats at 17 weeks. A: The wall thickness of IVSTd and PWTd of LV of LS, HS,
AMLO and TEMP rats at 17 weeks (n=10, 5, 6, 4, respectively). B: The calculated LV mass of LS, HS, AMLO and TEMP rats at
17 weeks (n=10, 5, 6, 4, respectively). C: The LVDd of LS, HS, AMLO and TEMP rats at 17 weeks (n=10, 5, 6, 4, respectively).
D: The fractional shortening of LS, HS, AMLO and TEMP rats at 17 weeks (n=10, 5, 6, 4, respectively). Data are expressed as
the mean±SEM. *p<0.05 vs. LS rats. #p<0.05 vs. HS rats.
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manufacturer’s instructions (25). Hybridized bands were
quantified with a FUJIX Bio-Imaging Analyzer BAS 2000
(Fuji Film Co., Tokyo, Japan). Polyadenylate [poly(A)+]
RNA was purified from the total RNA with a QuickPrep
mRNA purification kit (Pharmacia Biotech, Piscataway,
USA). The experimental procedures for the gene chip analy-
sis were performed according to the Affymetrix GeneChip
Expression Analysis Technical Manual (Affymetrix, Santa
Clara, USA) (28–30). The Affymetrix GeneChip U34A set
was derived from selected genes and ESTs from the 18
November 1998 release of Genbank. Each 8800 gene is rep-
resented on the arrays by perfectly matched 25-mer (PM) oli-
gonucleotides and mismatched (MM) 25-mer control probes
that are identical except for one base. The expression levels
were calculated by background-subtracting the hybridization
signal of MM from its PM partner and averaging the differ-
ence for the probe pair set for individual genes. The RNA lev-
els of each gene were scanned and scored for which the
computer algorithm (Affymetrix) returned a “present” call.
All calculations were performed by Affymetrix software (31).
The data were analyzed by the program FileMaker Pro 4.0 for
Macintosh. Among the 8,800 clones included in the gene chip
analysis, we selected those genes having an intensity of >100.
Among these genes, we picked out ratio values >1.7 or
<−1.7 as indicating genes with changed expression.

Statistical Analysis

All data are expressed as the mean±SEM of 3–4 independent
experiments. Mean differences among the 4 groups were
tested by one-way ANOVA followed by Scheffe’s modified
F-test for multiple comparisons. Comparisons of follow-up
body weight, blood pressure, pulse rate and echocardio-
graphic data were tested using repeated measure ANOVA fol-
lowed by Scheffe’s modified F-test. Values of p<0.05 were
considered statistically significant.

Results

Development of Cardiac Hypertrophy and Heart
Failure in Dahl Salt-Sensitive Rats

A loss of body weight was observed in HS rats, but the treat-
ment with amlodipine significantly attenuated it (Fig. 1A).
The initial systolic BP (SBP) at 6 weeks of age was
108.5±11.4 mmHg (mean±SEM, n=34). SBP was gradually
increased, reached a level of over 200 mmHg by 11 weeks,
and remained over 200 mmHg thereafter in HS rats. The SBP
was not decreased in AMLO or TEMP rats and there was no
significant difference in SBP among HS, AMLO and TEMP
rats (Fig. 1B). At the age of 14–16 weeks, all HS rats lost BW
and displayed rapid and labored respiration characteristic of
CHF, and by 17 weeks, 5 of 10 rats had died. On the other
hand, all LS rats were alive without any symptoms and 6 of 7

Fig. 3. The heart-weight-to-body-weight ratio of DS rats at 17 weeks. A: H-E staining of the heart of LS, HS, AMLO and TEMP
rats at 17 weeks (n=10, 5, 6, 4, respectively). The bar indicates 5 mm. B: The heart-weight-to-body-weight ratio of LS, HS,
AMLO and TEMP rats at 17 weeks (n=10, 5, 6, 4, respectively). Data are expressed as the mean±SEM. *p<0.05 vs. LS rats.
#p<0.05 vs. HS rats.
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Fig. 4. The fibrosis and apoptosis of DS rats. A: Representative photographs of von Gieson staining of the heart of LS, HS,
AMLO and TEMP rats at 17 weeks. The bar indicates 100 μm. B: The percentage of fibrotic area in the heart of LS, HS, AMLO
and TEMP rats at 17 weeks (n=10, 5, 6, 4, respectively). C: The percentage of TUNEL-positive cells in the heart of LS, HS,
AMLO and TEMP rats at 17 weeks (n=10, 5, 6, 4, respectively). D: Representative photographs of 4-HNE staining of the heart
of LS, HS, AMLO and TEMP rats at 17 weeks. The bar indicates 100 μm. E: The scoring of the staining of 4-HNE of the heart of
LS, HS, AMLO and TEMP rats at 17 weeks (n=10, 5, 6, 4, respectively). Data are expressed as the mean±SEM. *p<0.05 vs. LS
rats. #p<0.05 vs. HS rats.

Fig. 5. The gene expression of DS rats. A: Representative photograph of the expression of BNP using Northern blot analysis. B:
The expression of IL-1β of LS, HS, AMLO and TEMP rats at 17 weeks determined by RNase protection assay. Data are
expressed as the mean±SEM. *p<0.05 vs. LS rats. #p<0.05 vs. HS rats.
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Table 1. The List of Genes Increased in HS and Decreased in AMLO and TEMP Rats Heart

HS/LS AMLO/HS TEMP/HS Accession No.

Cell division
Rat mRNA for cdc25B, complete cds 2.9 −4.6 −1.8 D16237
Cyclin D1 1.8 −2.3 −2.1 D14014

Cell signaling
Arachidonate 12-lipoxygenase 217.9 −231.6 −226.8 L06040
Pancreatitis-associated protein 51.3 −17.7 −3.3 M98049
Cell adhesion molecule, neural (CD56) 18.3 −12.4 −5.4 AI137246
Neuron specific protein PEP-19 (Purkinje cell protein 4) 14.8 −14.3 −13.9 M24852
Lysyl oxidase 13.3 −8.9 −6.4 S66184
Arg/Abl-interacting protein ArgBP2 10.6 −2.9 −2.0 AI058393
Rattus norvegicus mRNA Best5 protein 10.2 −3.6 −4.6 Y07704
Fibronectin (cell-, heparin-, and fibrin-binding domains) gene 8.1 −2.1 −1.7 L00191
Carbonic anhydrase II gene 8.1 −7.7 −6.8 U60578
Sialoprotein (osteopontin) 7.0 −3.7 −2.0 M14656
Rattus norvegicus mRNA Best5 protein 6.6 −2.9 −3.8 Y07704
Rattus norvegicus protein kinase C-binding protein Enigma mRNA 5.3 −4.7 −2.9 U48247
Isk protein 5.0 −6.0 −2.7 D10709
Prostaglandin F2α receptor 5.0 −3.3 −1.7 S74898
GATA-binding protein 4 5.0 −2.7 −2.1 L22761
Calcium channel, voltage-dependent, T type, α1G subunit 4.0 −4.1 −2.0 AF027984
Transforming growth factor-β stimulated clone 22 3.9 −3.4 −1.8 L25785
Follistatin-related protein precursor 3.7 −2.4 −1.8 AA849769
Taurine/β-alanine transporter 3.6 −2.7 −2.0 M96601
S100 Ca-binding protein A4 3.6 −3.2 −2.1 X06916

NG,NG-Dimethylarginine dimethylaminohydrolase 3.6 −3.1 −2.4 AA894273
Lipocortin V 3.3 −2.4 −2.2 AF051895
Vesicle-associated membrane protein 5 3.0 −2.5 −1.7 AF054826
Solute carrier family 4, member 1, anion exchange protein 1 (kidney band 3) 2.8 −2.7 −2.8 AA866414
Cadherin 2, type 1, N-cadherin (neuronal) 2.7 −2.1 −1.7 AF097593
Muscle Y-box protein YB2 2.7 −2.9 −2.2 D28557
Cerebellar Ca-binding protein, spot 35 protein 2.5 −2.6 −2.2 M31178
Rhesus blood group 2.3 −2.4 −1.8 AB015191
Galectin-5 2.3 −3.3 −2.2 L21711
Immediate-early serum-responsive JE gene 2.2 −1.7 −1.8 X17053
Enolase 1, α 2.1 −1.9 −1.7 X02610
Prolyl endopeptidase 2.1 −5.5 −2.4 AB012759
Glutathione-S-transferase, mu type 2 (Yb2) 2.0 −1.7 −2.1 J02810
Cyclic protein-2=cathepsin L proenzyme 2.0 −2.5 −2.8 S85184
ASM15 2.0 −2.3 −1.8 X59864
Glycogenin 2.0 −1.9 −1.7 U96130
Rat VL30 element mRNA 1.9 −2.2 −1.7 M91234
Adenylyl cyclase–associated protein 2 1.8 −2.0 −1.8 AI145367
Ezrin 1.8 −1.8 −1.7 X67788

Cell structure
Fast myosin alkali light chain 9.5 −8.0 −2.1 L00088
Rattus norvegicus α-globin (GloA) gene, complete cds 4.9 −7.5 −2.5 AI178971
Ribosomal protein L3 2.7 −2.1 −1.7 X62166
Transthyretin (prealbumin, amyloidosis type I) 2.4 −2.3 −2.2 AA945169

Metabolism
Aminolevulinate synthase 2, δ 6.7 −9.5 −3.7 D86297
Phosphofructokinase C 4.9 −3.2 −2.0 L25387
Ornithine decarboxylase antizyme inhibitor 2.8 −1.7 −1.8 AI043631
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AMLO rats and 4 of 7 TEMP rats were alive at 17 weeks (Fig.
1C).

Echocardiography

We assessed cardiac geometry and function by echocardio-
graphy. In accordance with the increase of SBP, LV wall
thickness was increased in HS rats at 17 weeks compared to
LS rats (Fig. 2A). The diastolic interventricular septum wall
thickness (IVSTd) was significantly thinner in AMLO and
TEMP rats than in HS rats (Fig. 2A). The calculated LV mass
was increased in HS rats, and treatment with either amlo-
dipine or Tempol reduced it (Fig. 2B). In parallel with the
progression of the symptoms of heart failure, LV was dilated
(Fig. 2C) and the contraction was impaired (Fig. 2D) in HS
rats compared with LS rats. The treatment with either amlo-
dipine or Tempol significantly attenuated the development of
LV hypertrophy and dilatation, and improved contraction
(Fig. 2A–D).

Histopathology of the Heart

HS rats developed remarkable cardiac hypertrophy compared
with LS rats (the weights of the hearts of 17-week-old ani-
mals were as follows: LS, 1.25±0.02 mg; HS, 1.84±0.09 mg;
AMLO, 1.56±0.12 mg; TEMP, 1.48±0.09 mg; HS vs.
AMLO, p<0.05; HS vs. TEMP, p<0.05). The heart-weight-
to-body-weight (H/B) ratios of the 17-week-old animals were
as follows: LS, 2.82±0.14; HS, 5.82±0.20 (p<0.05) (Fig. 3).
The increase in the H/B ratio was attenuated significantly in
the AMLO group and TEMP group compared with the HS
group (AMLO, 3.78±0.16, p<0.05 vs. HS; TEMP,
4.42±0.40, p<0.05 vs. HS) (Fig. 3). Marked cardiomyocyte
hypertrophy and interstitial fibrosis were observed in the LV
tissue of 17-week-old HS rats compared to LS rats (Fig. 4A).
Quantitative analysis of myocardial fibrosis using van Gieson
staining of the heart tissue revealed that the treatment with
either amlodipine or Tempol significantly reduced the fibrotic
area compared to that in HS rats (LS, 1.1±1.3%; HS,

8.9±3.9%; AMLO, 5.2±2.7%; TEMP, 5.3±1.5%; HS vs.
AMLO, p<0.05; HS vs. TEMP, p<0.05) (Fig. 4B). Apopto-
sis has been reported to be involved in the pathophysiology of
the development of heart failure in DS rats (32). The number
of apoptotic cells was increased in HS rats compared to LS
rats, but the treatment with either amlodipine or Tempol sig-
nificantly reduced the number of apoptotic cells detected by
the TUNEL method (Fig. 4C). Since the staining score of 4-
HNE (a by-product of lipid peroxidation and an indicator of
oxidative stress) of the myocardium was increased in HS
hearts compared to LS hearts, it was improved in AMLO and
TEMP hearts (Fig. 4D, E).

Effects of Amlodipine Treatment on Gene
Expression

The mRNA levels of brain natriuretic peptide (BNP) and
interleukin (IL)-1β were significantly higher in HS rats com-
pared to LS rats, as reported previously (33), indicating that
this model of hypertensive heart failure was reliable. The
treatment with either amlodipine or Tempol significantly
reduced the expression levels of BNP (Fig. 5A) and IL-1β
(Fig. 5B) genes. Other myocardial gene expression profiling
results were obtained from the gene chip analysis of RNA
samples from the hearts of each group. Upregulations of the
natriuretic peptide factor precursor A (ANF), BNP, c-fos, β-
myosin heavy chain (β-MHC) and Egr-1 genes (data not
shown), all of which are known to be upregulated in CHF,
were detected by the gene chip, suggesting the reliability of
the RNA expression analysis. Since both amlodipine and
Tempol significantly inhibited the transition of LV hypertro-
phy to heart failure, we compared the gene expression profile
of each heart treated with either amlodipine or Tempol using
a gene chip. Amlodipine treatment changed the expression of
195 genes, and some of these genes may be involved in the
beneficial effects of amlodipine on heart failure. Among these
195 genes, 110 genes were increased in HS rats and decreased
in AMLO rats. And of these 110 genes, 54 genes were also
decreased in TEMP rats (Table 1). Eighty-five genes were

Table 1. (Continued)

HS/LS AMLO/HS TEMP/HS Accession No.

Unclassified
ESTs

ESTs, highly similar to G0S2 MOUSE PUTATIVE LYMPHOCYTE G0/G1
SWITCH PROTEIN 2 22.2 −2.4 −5.2 AA893235

ESTs 16.9 −16.4 −2.4 AA894092
ESTs, weakly similar to T14355 protein-tyrosine-phosphatase [R. norvegicus] 5.4 −6.7 −2.1 AA800303
ESTs, highly similar to 60S RIBOSOMAL PROTEIN L3 [R. norvegicus] 3.8 −2.7 −1.8 AA892367
ESTs 2.5 −3.4 −2.9 AA944361
ESTs 1.9 −2.4 −2.8 H31625

HS/LS, the fold change the gene expression of HS to LS rat; AMLO/HS, the fold change the gene expression of AMLO to HS rat;
TEMP/HS, the fold change the gene expression of TEMP to HS.
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decreased in HS rats and increased in AMLO rats. Of these 85
genes, 38 genes were also increased in TEMP rats (Table 2).
The genes that changed in a similar fashion in both AMLO

and TEMP rats may have been involved in the antioxidative
mechanisms of amlodipine on hypertensive heart failure.
Fibrosis-related genes (arachidonate 12-lipoxygenase, trans-

Table 2. The List of Genes Decreased in HS and Increased in AMLO and TEMP Rats Heart

HS/LS AMLO/HS TEMP/HS Accession No.

Cell signaling
Aquaporin 7 −42.9 31.7 12.4 AB000507
D site albumin promoter binding protein −28.4 4.6 17.8 J03179
Mitogen activated protein kinase kinase 2 −12.5 12.2 4.8 L14936
ATPase, Na+K+ transporting, α2 polypeptide −7.2 5.0 4.1 AI177026
Retinoid X receptor γ −6.2 4.7 2.4 AF016387
A-raf −5.7 3.1 2.0 X06942
Putative G protein–coupled receptor (SENR) gene −5.5 6.5 4.2 AB012210
Protein tyrosine phosphatase, non-receptor type 16 −4.9 2.6 2.2 U02553
MHC class II gene −4.3 3.8 3.5 D45240
Ras-related rab1B protein −4.1 3.5 3.6 X13905
Pyruvate dehydrogenase kinase, isoenzyme 4 −4.1 4.4 2.8 AF034577
ORF mRNA −4.0 5.3 4.5 L41685
Guanidinoacetate methyltransferase −3.9 3.2 1.8 X08056
Dynorphin gene −3.5 4.4 5.0 M32783
Glycerol-3-phosphate acyltransferase −3.3 4.2 1.9 U36773
Cytochrome b5 −3.1 2.1 3.3 AA945054
CD74 antigen −2.7 2.7 2.4 X13044
α-2-Macroglobulin gene exon 1 −2.6 2.6 2.8 X13983
Rat mRNA for pulmonary surfactant-associated protein SP-B −2.5 2.5 1.8 AI170380
Vitronectin −2.5 2.2 1.7 U44845
Short chain acyl-coenzyme A dehydrogenase −2.4 1.9 1.7 J05030
Secretin receptor −2.2 2.0 1.7 X59132
Short isoform growth hormone receptor −2.1 2.4 2.0 S49003
Small heterodimer partner homologue −1.9 1.7 2.0 D86745
Olfactory neuron-specific (clone 50.06, promoter) −1.9 1.8 1.9 S64924
Ptk-3L=radiation-induced gene −1.9 1.9 2.3 S77585
Rat mRNA for MHC class II antigen RT1.B-1 β-chain −1.7 1.8 2.3 X56596

Cell structure
Myosin, heavy polypeptide 9, non-muscle −3.0 3.9 2.9 U31463

Metabolism
Carboxylesterase 1 −5.6 7.0 5.0 L46791
Rattus norvegicus serine protease gene, complete cds −2.1 2.0 2.0 L38482

Unclassified
ESTs

ESTs, weakly similar to T17307 hypothetical protein DKFZp566O084.1 −16.8 13.3 6.6 AI639268
ESTs, highly similar to JN0873 immunophilin p59-mouse −12.5 12.6 7.3 AI136977
ESTs, highly similar to NUIM_HUMAN NADH-UBIQUINONE OXI-

DOREDUCTASE 23 kD SUBUNIT PRECURSOR
−4.8 3.8 2.8 AA799479

ESTs, moderately similar to 60S RIBOSOMAL PROTEIN L3 −3.6 3.0 2.1 AA891037
ESTs −3.4 3.5 2.3 AI009098
ESTs, weakly similar to T13607 hypothetical protein EG:87B1.3-fruit fly −2.8 2.1 1.7 AI639504
ESTs, highly similar to ROA2 MOUSE HETEROGENEOUS NUCLEAR 

RIBONUCLEOPROTEINS A2/B1
−2.6 2.5 1.7 AA799511

ESTs −2.1 1.8 1.9 AA800298

HS/LS, the fold change the gene expression of HS to LS rat; AMLO/HS, the fold change the gene expression of AMLO to HS rat;
TEMP/HS, the fold change the gene expression of TEMP to HS.
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forming growth factor-β and fibronectin) and proinflamma-
tory/proapoptotic genes (pancreatitis-associated protein, lysyl
oxidase, sialoprotein, prostaglandin F2α receptor, galectin-5,
enolase 1) were included among the 54 genes that were
increased in HS rats but decreased in AMLO and TEMP rat.
Several Ca-handling protein genes, such as voltage-depen-
dent protein, T type protein, α1G subunit protein, S100 Ca-
binding protein A4, cerebellar Ca-binding protein, and spot
35 protein genes were also included. By contrast, several
genes, i.e., aquaporin 9, CD74, vitronectin, mitogen-activated
protein kinase kinase (MAPKK) and A-raf, were upregulated
by the treatment with either amlodipine or Tempol.

Discussion

In the present study, we demonstrated the beneficial effects of
the long-term CCB amlodipine on hypertensive heart failure.
Treatment with amlodipine significantly reduced the heart
weight, LV wall thickness and LV diameter, and improved
LV systolic function. Increases in expression levels of the
BNP and IL-1β gene were inhibited by the treatment with
amlodipine. Moreover, we investigated the changes in the
expression levels of a large number of genes in the hearts of
LS, HS, AMLO and TEMP rats at the heart failure stage.

In this study, we used Tempol as an antioxidative drug.
Tempol is a low–molecular-weight super oxide dismutase
mimetic that is both metal-independent and cell membrane
permeable. Several investigators have suggested that Tempol
reduces O2-induced damage during inflammation, radiation,
and ischemic/reperfusion injury. Although Tempol improved
the cardiac function and hypertrophy in our study, the mortal-
ity and the BW loss were not improved. This chemical com-
pound may cause some systemic adverse effects. Since the
inhibitory effect of Tempol on the hypertrophied heart is con-
troversial, the mechanisms of the induction of the hypertro-
phy such as hypoxia (34), isoproterenol (35) or aldosterone
(36) may be related to the difference.

Many factors, such as the renin-angiotensin system (37),
calcineurin (26, 38), the endothelin-system (33, 39), and IL-
1β (33), have been reported to be involved in the transition
from compensated cardiac hypertrophy to decompensated
heart failure in DS rats. They also include abnormalities in
calcium handling, apoptosis of cardiac myocytes, increases in
cytokine expression and extracellular matrix, and activation
of neurohumoral factors. The DS rat develops systemic
hypertension, depending on the amount of sodium supplied in
the diet, and cardiac hypertrophy with interstitial fibrosis.
Prolonged hypertension induces reduced myocardial contrac-
tion and relaxation velocities (19, 20), indicating that this
model fully recapitulates the phenotype of human LV hyper-
trophy and hypertensive heart failure.

Treatment with short-acting CCBs may worsen heart fail-
ure and increase the risk of death in patients with advanced
LV dysfunction. Amlodipine can regulate membrane fluidity
and cholesterol deposition, stimulate NO production to recruit

its biologic actions, and regulate matrix deposition. Recogni-
tion of the ancillary actions of amlodipine is important for
understanding the agent’s mechanisms of action and the
pathologic mechanisms underlying cardiovascular disease.
The antioxidant properties of amlodipine are attributed to its
chemical structure and direct physicochemical interactions
with the membrane lipid bilayer, as evidenced by changes in
membrane thermodynamic properties (40). Oxidative stress is
widely known to play important roles in the pathophysiology
of hypertensive heart failure. In the present study, treatment
with amlodipine improved the degree of cardiac hypertrophy,
dilatation, contraction and mortality. The improvement of
cardiac fibrosis and a decrease in apoptosis may be involved
in the mechanism of the beneficial effects of amlodipine.
Although it is difficult to analyze the pathophysiological
mechanism by which amlodipine inhibits the progression of
heart failure, our finding that the drug altered the expression
levels of various genes may provide a clue.

An antioxidative mechanism may be involved in the bene-
ficial effects of amlodipine in heart failure. Amlodipine has
been reported to inhibit oxidative stress in the hypertensive
hypertrophied heart (41). By the treatment with amlodipine,
195 genes were changed and these genes may be involved in
the beneficial effects of amlodipine on heart failure. Among
these 195 genes, 110 genes were increased in HS rats and
decreased in AMLO rats. In 110 genes, 54 genes were also
decreased in TEMP rats. These genes that were changed in a
similar fashion in AMLO and TEMP rats may be involved in
the antioxidative mechanisms of amlodipine on hypertensive
heart failure. Many of these genes have been classified as cell
signaling–related genes. Since fibrosis-related genes such as
arachidonate 12-lipoxygenase (42), transforming growth fac-
tor-β and fibronectin are known to be involved in the patho-
physiology of cardiac fibrosis, they were changed similarly
by the treatment with either amlodipine or Tempol. Proin-
flammatory and/or proapoptotic genes such as pancreatitis-
associated protein, lysyl oxidase, sialoprotein, prostaglandin
F2α receptor, galectin-5 and enolase 1 are also included in
this group. Pancreatitis-associated protein is reported to be
related to play a role in inflammatory pancreatitis (43). Lysyl
oxidase is an enzyme involved in extracellular matrix matura-
tion (44). Prostaglandin F2α is reported to have the ability to
oxidize arachidonate. Galectin is a β-galactoside–binding
protein that is related to the initiation of apoptosis. Enolase 1
is reported to be involved in the aging of neural cells (45). The
role of these proteins in the failing heart is unknown, and fur-
ther investigations will be needed. Since Ca-handling proteins
have not previously been reported to be involved in the mech-
anism of CCB on the heart, several Ca-handling protein
genes, such as the voltage-dependent, T type, α1G subunit,
S100 Ca-binding protein A4, cerebellar Ca-binding protein,
and spot 35 protein genes, are also included in this group. Fur-
ther study is needed to clarify the effect of these genes.

In contrary, in 195 genes, 85 genes were decreased in HS
rats and increased in AMLO rats. In 85 genes, 38 genes were
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also increased in TEMP rats. These genes may be involved in
the protective effects on heart failure. Some of these genes
such as aquaporin 9, which is mostly changed, were not
known as cardiovascular-related genes. Since macrophage
migration inhibitory factor (MIF) is reported to delay the pro-
gression of apoptosis (46), CD74, which is known as an MIF-
binding protein (47), may have important roles in the protec-
tive mechanism of amlodipine. Since the activation of coagu-
lation is involved in the pathophysiology of heart failure,
vitronectin, which is a co-factor along with plasminogen acti-
vator inhibitor 1 (48) for the inhibition of thrombin, is upreg-
ulated. Other changed genes may also have important roles in
the beneficial mechanisms of amlodipine on the heart. A
novel mechanism of amlodipine on the development of heart
failure may become obvious by use of our result.

In conclusion, the present study demonstrated that the long-
term CCB amlodipine has beneficial effects on a hypertensive
heart failure model. A genome-wide study using a gene chip
provided various clues that should be useful for determining
the beneficial antioxidative mechanisms of amlodipine on
hypertensive heart failure.
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