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Ethylene resistance in flowering ornamental plants –

improvements and future perspectives
Andreas Olsen, Henrik Lütken, Josefine Nymark Hegelund and Renate Müller

Various strategies of plant breeding have been attempted in order to improve the ethylene resistance of flowering ornamental plants.
These approaches span from conventional techniques such as simple cross-pollination to new breeding techniques which modify the
plants genetically such as precise genome-editing. The main strategies target the ethylene pathway directly; others focus on changing
the ethylene pathway indirectly via pathways that are known to be antagonistic to the ethylene pathway, e.g. increasing cytokinin
levels. Many of the known elements of the ethylene pathway have been addressed experimentally with the aim of modulating the
overall response of the plant to ethylene. Elements of the ethylene pathway that appear particularly promising in this respect include
ethylene receptors as ETR1, and transcription factors such as EIN3. Both direct and indirect approaches seem to be successful,
nevertheless, although genetic transformation using recombinant DNA has the ability to save much time in the breeding process, they
are not readily used by breeders yet. This is primarily due to legislative issues, economic issues, difficulties of implementing this
technology in some ornamental plants, as well as how these techniques are publically perceived, particularly in Europe. Recently,
newer and more precise genome-editing techniques have become available and they are already being implemented in some crops.
New breeding techniques may help change the current situation and pave the way toward a legal and public acceptance if products of
these technologies are indistinguishable from plants obtained by conventional techniques.
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INTRODUCTION
The production of potted ornamental plants and cut flowers is a
growing industry with annual turnover in the tens of billions of
dollars,1 with the European Union being the single largest producer
and consumer.2 Due to the competitive nature of the ornamental
plant industry, research and development of new products and
improvement of quality in existing products have become essential.
The quality of flowering ornamentals, often judged by the longevity
of their flowers, is an extremely important parameter in assessing
quality.3 During the postharvest period, plants will likely experience
stress as a result of poor lighting, temperature, and suboptimal
humidity or watering.4,5 This stress often leads to visual symptoms
such as wilting, color change, and abscission of various plant parts
including flowers, petals, and buds. In climacteric plants, stress trig-
gers the production of the phytohormone ethylene, which quickly
deteriorates plants visually. Ethylene of exogenous origin can also
affect the plants in closed spaces6 and plants that have been
exposed to ethylene will often no longer be sellable.

In recent years, the biological significance of ethylene in orna-
mental production, its signaling pathway within the plant, and
methods to alleviate its consequence to the aesthetic value of
ornamental plants have been extensively reviewed.7–13 However,
many reviews only consider a limited number of plant species, or
focus on a particular perspective for solving the problem in only one
or two of the levels of the ethylene pathway. In order to acquire an
overview of the problems associated with ethylene-induced quality
losses in ornamental plant production, recent research and
advances in the field of ethylene biology and breeding techniques
must be considered. The present review aims to compare results
from past approaches in order to discuss future breeding strategies.

It will also point out avenues not yet explored in the area of orna-
mental plant breeding which may be essential for reducing ethy-
lene responses that remains a decisive factor for high-quality
production of many ornamental plants.

REGULATION OF THE ETHYLENE PATHWAY
The ethylene biosynthesis and signaling pathway can be presented
in a linear model (Figure 1). Ethylene is essential for many processes
in the plant and thus, there is a constant, low ethylene production
(Figure 1a).14 Under certain conditions, however, ethylene biosyn-
thesis and sensitivity increase in specific tissues and this triggers the
ethylene signaling pathway (Figure 1b).15 This initially starts as an
increase in expression of some of the enzymes responsible for
ethylene biosynthesis16–18 which leads to higher ethylene produc-
tion19 that may amplify itself in an autocatalytic fashion in some
cases.20

Recently, it was shown that different ACS homologs of Dianthus
caryophyllus18 and Dianthus superbus21 were expressed in asso-
ciation with either the basal or the climacteric phase. In Petunia22

and Paeonia suffruticosa,23 the same was observed for certain ACS
and ACO homologs. It therefore seems that these enzymes, central
for ethylene biosynthesis (Figure 1), may hold the key for the ability
of the plant to transition from basal to climacteric ethylene produc-
tion (Figure 1).24 Furthermore in Arabidopsis, ACS activity was
demonstrated to be affected by the formation of hetero- and
homo-dimers,24,25 and phosphorylation by the mitogen-activated
protein kinase (MAPK) MPK6, which itself is expressed in response
to stress.26 Recently, a similar role for MPK6 was demonstrated in
Rosa hybrida.27
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The function of ethylene receptors too, is subject to modification
from various proteins such as RESPONSIVE TO ANTAGONIST1
(RAN1),28,29 REVERSION TO ETHYLENE SENSITIVITY1 (RTE1),30–32

and their own histidine autokinase activity.33 Receptors often act
simultaneously, and in physical association with each other,34,35 but
as with the ethylene biosynthesis enzymes, different receptor
homologs are expressed depending on the developmental stage
of the flower, as has been documented in D. caryophyllus36, R.
hybrida,37 Oncidium,38 Delphinium,39 and Pelargonium hortonum.40

The function of EIN2 can be inhibited not only by CTR1 but also
ETHYLENE RESISTANT/ETHYLENE RECEPTOR1 (ETR1)41 and EIN2
TARGETING PROTEIN1 (ETP1) and ETP2. ETP1 and ETP2 were
down-regulated in the presence of ethylene,42,43 but activated
CTR1 in the absence of ethylene.44 Unlike most of the other genes
of the ethylene pathway, EIN2 has no homologs and no functional
overlap with other genes.45–47 There is some indication that EIN2
expression is influenced by auxin and abscisic acid (ABA),48 which
means that EIN2 could be a point of crosstalk for several different
pathways. Interestingly, increase in EIN2 protein levels has been
shown to be concomitant with expression of the transcription fac-
tor ORESARA1 (ORE1) in Arabidopsis, associated with age-induced
programmed cell death. ORE1 is suppressed by miRNA164, which
declines with cell age.49 In R. hybrida flowers exposed to ethylene,
different miRNAs including miRNA164, exhibited a change in
expression level in petals,50 indicating a possible new level for
expression control of ethylene genes.

EIN3/EIL homologs also change in the transition of the plant
tissue to the climacteric phase. In D. caryophyllus, DcEIL3 increased51

and DcEIL1 decreased52 in expression as flower development
occurred. Tanase et al.53 on the other hand documented that
DcEIL3 expression did not change with age in petals, but DcEIL4

was expressed less in older flowers. In P. suffruticosa, PsEIL1 accu-
mulated from the flower opening stage to senescence, while PsEIL2
and PsEIL3 decreased after flower opening.54 PsEIL2 and PsEIL3
mRNA levels increased in response to exogenous ethylene, while
PsEIL1 was unaffected by this treatment and plants treated with 1-
methylcyclopropene (1-MCP) and exposed to ethylene, exhibited a
decrease in PsEIL3 expression.54 In Oncidium gardneri, OgEIL1 and
OgEIL2 were constitutively expressed in flower buds, but when the
buds were exposed to ethylene, OgEIL1 clearly peaked in express-
ion relative to OgEIL2.55 Collectively, these genes present numerous
targets for modifying ethylene regulation molecularly.

REDUCING ETHYLENE-PROMOTED SENESCENCE
Approaches addressing the problem of ethylene-induced sen-
escence can be broadly divided into two main groups: interven-
tions directly addressing the ethylene pathway and those indirectly
targeting it as described below. Because the ethylene pathway is
fundamentally integrated into plant metabolism, changing a see-
mingly unrelated pathway of the plant can result in some effect on
the ethylene pathway. Techniques to combat senescence such as
changes in the gas composition of the atmosphere or temperature
of storage places for plants have also been examined and gave
mixed results.56–58 These techniques, although successful to a
point, lead to unsustainable production of ornamental plants
because they extend the time needed for production and cost in
terms of consumption of electricity, water, personnel, and special-
ized equipment. Silver thiosulfate (STS) and 1-MCP have been
proven to be powerful inhibitors of ethylene responses and STS is
commonly used in ornamental plant production. However, silver is
harmful to humans and the environment and thus its use should be
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Figure 1. Simplified ethylene pathway. (a) Basal production of ethylene in the flowers during development before senescence. (b) The ethylene
pathway upon triggering. The stimulus is translated to elevated ethylene synthesis producing higher levels of ethylene which inactivates the
receptors initiating the signaling cascade which changes gene expression and finally induces physiological processes in the flower which may
include the initiation of an autocatalytic loop.14 (c) Simplified molecular events of the ethylene pathway. Methionine is enzymatically converted
to S-adenosyl-L-methionine (SAM) by SAM synthase (SAS). SAM is partially converted back to methionine via several steps, but it also produces 1-
aminocyclopropane-1-carboxylic acid (ACC) by ACC synthase (ACS). ACC is transformed to ethylene by ACC oxidase (ACO). Ethylene binds to
receptors and stops their signal to CONSTITUTIVE TRIPLE RESPONSE1 (CTR1), which then stops its suppressing signal to ETHYLENE INSENSITIVE2
(EIN2). The released EIN2 is then cleaved and part of it is transported into the nucleus where activation of the ETHYLENE INSENSITIVE3/ETHYLENE
INSENSITIVE3-LIKE (EIN3/EIL) transcription factor family occurs. This initiates a transcription cascade by activation of ETHYLENE RESPONSE
FACTORs (ERFs) which eventually leads to differential gene expression and a physiological response.15
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avoided. Plant breeding on the other hand strives to improve the
intrinsic quality of ornamental plants and thereby produce sustain-
able products.59

TARGETING THE ETHYLENE PATHWAY DIRECTLY

Cross-pollination coupled with ethylene screening
The simple strategy of choosing individuals in a population that
display superior flower ethylene tolerance and crossing these indi-
viduals with each other, will result in progeny with a lower ethylene
sensitivity than the original population, if the trait is heritable.60

Success in such breeding has been reported in Begonia61 and D.
caryophyllus.62 It has long been known that there are vast differ-
ences among cultivars of D. caryophyllus in their ethylene biosyn-
thetic ability and affinities of receptors to ethylene.63 By using only
simple pollination, Onozaki and coworkers62 achieved a significant
improvement in the longevity of D. caryophyllus flowers from 1992
to 2004. Their original material had flower longevity of 5.7 days,64,65

but through repeated crossing, the sixth generation had increased
its mean of flower life to 15.9 days.62 An investigation into the cause
of this increase, revealed that the ethylene biosynthesis enzyme
genes DcACS1, DcACS2, and DcACO1 were all expressed in extre-
mely low levels in cultivars with a good longevity and ethylene
production was as low.66,67

This approach involves screening for ethylene insensitivity and
will only be applicable if a population exhibits significant differ-
ences in response between individuals. The number of ornamental
flower cultures showing such diversity is, however, very large.
Differences in longevity of flowers have been noted for Paeonia,68

Delospermum, Campanula, Sedum, Cephalaria, Lobelia, Armeria,
Primula, Penstemon,69 Lisianthus, Trachelium, Zinnia,70 Potentilla,
Lysimachia, Veronica, Chelone,71 and Rosa11,72,73 which also exhib-
ited varying ethylene production levels.73–76 Similar observations
has been made for Pelargonium,77 where heritability has also
been documented,78 as it has been for Impatiens walleriana,79

Antirrhinum majus,80–82 Dianthus barbatus,83 and Petunia.84 In many
ornamental plant genera, cultivar-specific variation in ethylene
sensitivity has been demonstrated including Phalaenopsis85,86 and
Kalanchoë.87

Hybridization
Many of the abovementioned genera are typically represented by
hybrids in ornamental plant production. Hybridization is achieved
by interspecific cross-pollination and it thus produces extre-
mely heterogeneous progeny, which may be good for producing
cultivars with higher ethylene tolerance. A well-documented
example of this is found in Australian waxflower breeding where
Chamelaucium species were hybridized with Verticordia plumosa,
forming more ethylene-insensitive plants.88 Hybrids of Lepto-
spermum species89 and Grevillea90 similarly have been reported to
have longer longevity than the parental species, which may be
correlated with higher ethylene tolerance as both genera are cli-
macteric. This aspect, however, has not yet been investigated.

The major disadvantage of both intra- and interspecific cross-
pollination is that it cannot be used directly for improving existing
cultivars. Considerable back-crossing to the original plant may be
necessary.91 This problem can be solved to some extent by employ-
ing marker-assisted selection, if reliable markers are found92 and
have been used successfully in ornamentals such as D. caryophyllus
with regards to bacterial wilt resistance.93 Hybridization can be
more demanding as manipulation of the style as well as embryo
rescue or ovule and ovary culture may be necessary in order to yield
any progeny, as exemplified in Kalanchoë species hybridization.94

Conventional mutagenesis
Techniques that increase genetic variability where no natural vari-
ation exists are found in conventional breeding with the use of

mutagenic chemicals or radiation.95 Such breeding strives to
change the cultivar in a certain qualitative aspect and leaves its
agronomical traits unchanged, making it easier for producers to
handle, and saves time that would otherwise be spent on back-
crossing.71,96 However, as it is impossible to control where the
mutation occurs in the genome, many plants will have to be
screened before a plant exhibiting any change in the relevant trait
is found.97 Targeting Induced Local Lesions In Genomes (TILLING)
can be used to save time that would otherwise be needed for
phenotyping the plants and has been used successfully in the field
of ethylene-response improvement. Dahmani-Mardas et al.98 pro-
duced Cucumis melo with a knockout mutation in the CmACO1 gene
which displayed a longer shelf life and better firmness than none-
mutated plants. TILLING is readily applicable to ornamental plants
as is exemplified in Petunia.99

Genetic transformation
Genetic transformation is the transfer of foreign or native genes and
promoters to a target genome by Agrobacterium-mediated trans-
formation, particle bombardment, or infiltration. Agrobacterium
tumefaciens-mediated transformation with recombinant DNA has
been used in various ways to modify ethylene biosynthesis and
signaling. These approaches have improved understanding of
ethylene biosynthesis and signaling; however, their use in commer-
cial breeding is limited and this technique’s products are consid-
ered genetically modified.59,100

Antisense or sense transformations of ACS and ACO genes have
been successfully attempted in various ornamental species
including D. caryophyllus,101–113 Torenia,104 Petunia,22,105 and
Begonia.60,106 All transformed plants exhibited longer shelf life, pre-
sumably due to lower production of ethylene. Klee et al.107 con-
ducted an alternative modification of the biosynthesis pathway
with the removal of ACC by the addition of the enzyme ACC dea-
minase, found in bacteria, to Solanum lycopersicum which signifi-
cantly delayed ripening of the fruit. However, even though plants
with lower ethylene production have a longer flower life, their qual-
ity can still be negatively affected by exogenous ethylene.

Transformations of Petunia with the Atert1-1 mutated gene from
Arabidopsis using CaMV 35S constitutive promoter, resulted in
plants with considerably higher ethylene tolerance but also with
severely hampered growth.108 Succeeding studies used a flower-
specific FBP1 promoter in Kalanchoë,109 Campanula,110,111 and
D. caryophyllus,112,113 which provided a better flower longevity
without other developmental effects, since the promoter ensured
expression solely in flowers. Transformations of mutated genes
other than Atetr1-1 have also been studied in Nemesia strumosa114

and Torenia fournieri. In both cases, ethylene insensitivity was
increased, but not as much as with Atert1-1 (Table 1).8

Other promoters such as FBP3,115 PSAG-12,116 FS19, and FS268 that
are solely associated with flower tissue, also have potential to be
used in this context and other promoters are still being investi-
gated.117 Chemically inducible promotor systems are also within
the reach of today’s technology, and are exemplified by the
DEX-inducible system, demonstrated in Petunia hybrida118

(Table 1), and more famously, the ethanol-inducible system119

which has been successfully used in different crops.120 Inducible
systems seem not to affect the plant adversely,121 but the inducing
chemical still needs to be applied to the plant in due time, which
makes such a system commercially less appealing.

Great care needs to be exercised when choosing a promoter, as a
study by Cobb et al.122 demonstrated that Petunia transformed with
Atetr1-1 did not have delay in senescence under the flower-specific
APETALA3 (AP3) promoter, as this promoter only drives expression
in buds and young flowers, but not in mature flowers (Table 1).

Overexpressing PhEIN2 in Petunia using the CaMV 35S promoter
has also been attempted. This produced plants with significant
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delays in petal senescence in response to exogenous ethylene or
pollination, as well as inhibited root development and a shorter life
span.126 When this silencing transformation was combined with the
Atetr1-1 mutation, ethylene was inhibited even more,127 dem-
onstrating the possibility of increasing insensitivity by stacking
transformations of several components simultaneously.

Petunia plants transformed with a sense PhEIN3 exhibited de-
layed petal senescence, but no increase of flower longevity,8,127

which may possibly be due to the redundancy found among
EIN3/EIL members. S. lycopersicum was transformed with a con-
struct silencing EIN3 BINDING F-BOX1 (EBF1) and EBF2, which
rapidly target EIN3/EILs for degradation that significantly increased
the rate of senescence in S. lycopersicum.45 This presents an oppor-
tunity for future research, potentially by overexpression of EBFs.

ERFs are a sizable and diverse group of genes, many of which are
up-regulated in response to ethylene, but have largely been over-
looked by researchers so far. Chang et al.128 observed that by silen-
cing the ERF Petunia transcription factor homeodomain-leucine
zipper protein (PhHDZip), PhACS and PhACO were decreased in
expression in transformed flowers and led to an increase of flower
longevity by 20%.

Genome-editing technologies
During the last decades, several innovative biotechnologies have
been developed which appear to have potential in breeding toward
ethylene tolerance.100,129,130 These technologies are based on engi-
neered nucleases that cleave DNA in a sequence-specific manner,
thus enabling targeted genome-editing. Modifying or inactivating
specific gene function is possible due to sequence-specific DNA
binding domains or RNA sequences. The oldest of these techniques
is zinc finger nucleases (ZNFs), which relies on an engineered endo-
nucleases that are able to attach to a specific target sequence and
induce a double-strand break. This is perceived by the cell, which
repairs the break by mechanisms which may cause sequence
alterations or introduce small templates.131,132 A newer alternative
to ZNFs is transcription activator-like effector nucleases (TALENs),
which functions in much the same manner as ZNFs. Recently, how-
ever, the clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated protein9 (CRISPR/Cas9) system has
been developed. The CRISPR/Cas9 system functions via a mech-
anism similar to RNA interference, which can recognize and
cleave foreign DNA.100 Both TALEN and CRISP/Cas9 have been
demonstrated to be functional for targeted mutagenesis in
S. lycopersicum,133,134 however, no modifications of the ethylene
pathway have yet been conducted. It is important to mention that
all these methods rely on a technology in order to deliver the
construct to the genome of the plant, and are therefore still
limited to plants where a genetic transformation, regeneration or

virus-based delivery system is reliable. In order to bypass negative
effects on growth of plants due to defective ethylene signaling,
the genes that should be targeted are those which have homologs
that are clearly associated with the climacteric phase. Using this
approach, the pathway should function normally under growth
and development. Therefore, certain homologs of ACS, ACO, ethyl-
ene receptors, and EIN3/EIL may present good targets for knockouts.

TARGETING THE ETHYLENE PATHWAY INDIRECTLY

Hormonal interaction
Application of cytokinins such as kinetin and zeatin to petals of
D. caryophyllus delayed the conversion of ACC to ethylene.135

Cytokinin oxidase/dehydrogenase, responsible for cytokinin degra-
dation, was up-regulated during senescence in D. caryophyllus136

and Petunia,137 and when it was inhibited in D. caryophyllus petals,
the senescence phase was prevented.138 This knowledge has been
applied by transformations with isopentenyl transferase, important
for the synthesis of many cytokinins, under the control of sen-
escence-associated promoter PSAG12. Transformed Petunia plants
exhibited elevated levels of cytokinins in flowers and significant
delay in senescence and ethylene production as well as higher
tolerance for exogenous ethylene.139 Similarly in Rosa, ethylene
sensitivity decreased in leaves, but flowers were not studied.140

Exogenous application of hormones and other substances have
also been shown to decrease the expression of genes of the ethyl-
ene pathway including ABA, which inhibited ACS and ACO in
Hibiscus141 and D. caryophyllus.142 Moreover, nitric oxide down-
regulated the activity of RhACO and lowered the production of
ethylene resulting in longer shelf life of R. hybrida flowers143 and
glucose down-regulated PsACS1 in P. suffruticosa flowers.144 Other
sugars have also been shown to increase flower longevity.136,145–148

These studies demonstrate that there is a vast potential in exploring
new ways to achieve products of higher quality.

Senescence-related and non-ethylene pathway genes
Exploration of different genes which is seemingly not connected to
the ethylene pathway has also been pursued. There are three main
strategies in this area. The first is identification of genes that are
highly expressed in young tissue but not during senescence, and
constitutively overexpressing those. The second approach goes the
other way and starts with the identification of genes highly
expressed in senescing tissue, and silencing their expression. The
third tactic is targeting protein synthesis.

The first strategy can be exemplified by the gene FOREVER
YOUNG FLOWER (FYF) from Arabidopsis, which was highly expressed
in young flowers but not in old flowers. Transformation using this
gene under constitutive expression in S. lycopersicum resulted in

Table 1. Transformation of ornamental plants modifying ethylene receptors

Promoter Gene Plant species Agrobacterium tumefaciens strain Plasmid Reference

CaMV 35S Atetr1-1 P. hybrida ABI pMON11063 108

Petunia FBP1 CaMV 35S Atetr1-1 D. caryophyllus AGL0 pBEO210

pBEO220 112

AP3 Atetr1-1 P. hybrida ? ? 116

CaMV 35S Brassica oleracea ers (boers) P. hybrida LBA4404 pBOERS4421 123

CaMV 35S CmETR1/H69A N. strumosa GV2260 pBICm-ETR1/

H69A

113

CaMV 35S CmERS1/H70A Lotus japonicus Mesorhizobium loti, MAFF303099 pGD499 124

Petunia FBP1 Atetr1-1 Kalanchoe blossfeldiana AGL0 pBEO210 109

Petunia FBP1 Atetr1-1 Oncidium, Odontoglossum EHA105 and LBA4404 pBEO210 125

Petunia FBP1 Atetr1-1 Campanula carpatica AGL0 pBEO210 110

CaMV 35S DcETR1nr T. fournieri ? pBIDc-ETR1nr 53

GVG DEX-inducible Atetr1-1 P. hybrida LBA4404 pTA7001 118
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down-regulation of various ACS and ACO homologs. The same
transformation in Eustoma grandiflorum caused a delay in sen-
escence and down-regulation of ERFs.149 Furthermore, when com-
bined with etr1, ein2, or ctr1 mutations, it further enhanced flower
longevity in Arabidopsis.149

Investigating a MADS-domain transcriptional regulator,
AGAMOUS-LIKE-15 (AGL15), Fernandez et al.150 noted its accu-
mulation in young tissue and developing organs. Constitutive
overexpression of AGL15 increased the longevity of petals signifi-
cantly in Arabidopsis151 and caused a repression of GmACO1 in
Glycine max.152 It is now established that AGL15 has similar activ-
ity as AGL18, both serving as repressors of early flowering and in
this way leading to better longevity if still expressed when flower-
ing does occur.153 Another MADS-domain transcriptional regulator
that has been recognized to be associated with young flowers of
Phalaenopsis equestris is PeMADS6. Arabidopsis plants transformed
with a construct overexpressing PeMADS6 exhibited flower lon-
gevity up to four times longer than wild type plants.154

Examples from the second strategy of silencing senescence-
related genes, include ACTIN-RELATED PROTEIN 4 (ARP4), a chro-
matin modification gene, that has been silenced using RNAi in
Arabidopsis,155 which resulted in longer flower life. The gene
MjXB3, coding for a RING zinc finger ankyrin repeat protein, has
been demonstrated to be highly expressed in senescing flowers
of Mirabilis jalapa, P. hybrida, and D. caryophyllus. Using virus-
induced gene silencing for MjXB3 in P. hybrida, Xu et al.156 demon-
strated that flower longevity was extended by two days, corres-
ponding to a 20% increase compared to wild type flowers.

The third strategy of targeting protein synthesis owes its inspira-
tion to ethylene-insensitive flowers,13 where complete inhibition of
protein synthesis in flowers increases flower longevity.157 The rel-
evance of this to climacteric flowers has been attested by silencing
PBB2 (coding for the beta subunit of the 26S proteasome) using an
inducible system in Petunia.158 Mature cut flowers that were
induced lasted considerably longer than uninduced flowers. Reid
and Jiang13 demonstrated the same concept by silencing one of the
ribosomal subunit genes (RPL2), again using an inducible system.
Once more, the longevity of cut Petunia flowers placed in water with
the inducing agent was much better than those uninduced. This
approach, however, still relies on the application of an inducer, and
is not realistic for use in commercial potted-plant production. For
the cut-flower industry, however, there may be great potential.

Natural transformation
Transformation with the naturally occurring soil bacterium
Agrobacterium rhizogenes has been termed natural transforma-
tion159 due to the fact that no recombinant DNA is used and the
infection is a natural process. Authorities in Denmark have con-
firmed that naturally transformed plants are not covered by the
GMO legislation in Europe.59 Using a wild strain of A. rhizogenes,
Lütken et al.59,160 transformed Kalanchoë plants and observed that
plants which contained rol-genes from A. rhizogenes exhibited sig-
nificantly increased postharvest quality,159 an ability which was
maintained through two generations along with the rol-genes.161

The mechanism behind this response is yet unknown and many
open reading frames of the plasmids in question still remain unin-
vestigated. Changes in longevity of flowers transformed with rol-
genes may be due to altered hormone homeostasis and/or sugar
metabolism and transport.159

DISCUSSION
Strategies targeting the ethylene pathway indirectly seem to be as
effective as those which target it directly. Of the indirect strategies,
ectopic overexpression of genes associated with juvenile tissue,
such as FYF or AGL15, seems to be particularly promising, as is the
prospect of overproduction of hormones that are antagonistic to

ethylene, such as cytokinins and ABA. Strategies that focus on the
ethylene pathway directly have been more numerous and have
targeted nearly all known elements of the ethylene pathway.
Research comprising flower-specific promotor sequences in gen-
etic transformations seems to be especially propitious in providing
the ability to express the transferred gene only in flowers or even
more specifically, only in senescing flowers. Silencing several genes
simultaneously in the flowers of plants as in Petunia,119 may be the
ultimate answer, and is a feature that is well within the grasp of
current technology and methodology. Various combinations of
overexpression of certain genes associated with development
and silencing genes associated with senescence may very well be
a worthwhile strategy as well.

It is remarkable that both conventional techniques such as sim-
ple cross-pollination and genetic transformation using recombin-
ant DNA succeeded in breeding ornamental plants which have
higher tolerance for ethylene and thus higher intrinsic quality.
Agrobacterium-mediated transformation, where reliable, has the
advantage that breeding can be much faster when transferring
specific target genes. Breeding based on genetic transformation
is more precise and can easily cross incompatibility boundaries in
comparison with conventional crossing.91 This is a particularly
important advantage in ornamental plants that have long develop-
ment cycles such as orchids,162 however, in fast growing plants, this
advantage is less substantial.60

Although conventional and genetic transformation are not
mutually exclusive, the fact remains that ornamental plant products
that are genetically modified are conspicuously missing on the
market, especially in Europe, with only a handful of products sold
worldwide.163 The basic reason for this is the status of such product
as genetically modified organisms (GMOs). Europe, the biggest
consumer, producer and breeder of ornamentals has some of the
most comprehensive and strict legislation concerning GMOs.1 At
the moment, the approval of GMO products is conducted on a case-
by-case basis and is both expensive and time-consuming.164

Moreover, the technology and training required for producing
GMOs are themselves expensive, which brings a substantial eco-
nomic burden.60 Producers not operating in Europe also face dif-
ficulties as GMO legislation may be quite different from country to
country.165 However, the emergence of new genome-editing tech-
niques presents new challenges particularly for European legis-
lation in the area of GMOs, which could lead the way to broader
acceptance of new breeding techniques and their products.

Techniques such as ZFN, TALENs, and CRISPR/Cas9 that can be
used to achieve precise mutagenesis and silencing or overexpres-
sing genes are now readily available, and can be used in such a way
that does not introduce foreign elements to the genome of the final
product.127,166 The question of whether the products of these tech-
niques are considered GMOs or not has not yet been settled, and
jurisdictions that consider the methods alone rather than the actual
properties of the final plant product may end up with ineffective
legislation that cannot be enforced, as pointed out in Seeds of
Change.167 Certainly such techniques have the ability to greatly
reduce the time, and thus the bulk of the cost which is associated
with plant breeding. The first commercially available plant derived
from a genome-editing technique, a herbicide-resistant oilseed
rape, has already been announced.168 There are still technical dif-
ficulties associated with the actual transformation step for many
ornamental plants, which can only be overcome by further
research. For this reason, it is must be of the utmost importance
for any plant breeding company to devote some of its resources to
research in such new breeding techniques.

CONCLUSIONS
Strategies targeting the ethylene pathway directly seem to have as
much potential as those targeting indirect components, and very
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diverse species of ornamental plants suggest great potential in
ethylene tolerance breeding. Although conventional breeding
techniques are slower than newer breeding techniques, they
remain the most used in ornamental plant breeding for higher
ethylene tolerance. This is most probably due to the legal status
of genetic modification approaches. However, as newer precise
genome-editing techniques become available, it is very likely that
the products of such techniques will be accepted worldwide. The
reason for this is that such plants would be indistinguishable from
plants derived by the use of conventional breeding techniques. It is
therefore recommendable for ornamental plant breeders to begin
the implementation of such new breeding technologies, as they
have great to potential to lead to superior plant products needed
by the ornamental plant industry.
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162 da Silva JAT, Chin DP, Van PT, Mii M. Transgenic orchids. Sci Hortic 2011; 130:
673–680.

163 Brand MH. Ornamental plant transformation. J Crop Imp 2006; 17: 27–50.
164 Chandler SF, Sanchez C. Genetic modification; the development of transgenic

ornamental plant varieties. Plant Biotech J 2012; 10: 891–903.
165 Lusser M, Davies HV. Comparative regulatory approaches for groups of new plant

breeding techniques. N Biotechnol 2013; 30: 437–446.
166 Dirks R, van Dun K, de Snoo CB, van den Berg M, Lelivelt CL et al. Reverse breeding:

A novel breeding approach based on engineered meiosis. Plant Biotech J 2009; 7:
837–845.

167 Seeds of Change. Nature 2015; 520: 131–132.
168 Cibus. Press Release, BASF and Cibus announce collaboration for herbicide

tolerant crops. 2015. Available at http://www.cibus.com/press_release.php?
date5071007 (accessed 20 April 2015).

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 Unported License. The images or other

third party material in this article are included in the article’s Creative Commons
license, unless indicated otherwise in the credit line; if the material is not included
under the Creative Commons license, users will need to obtain permission from the
license holder to reproduce the material. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/4.0/

Ethylene resistance in ornamentals
A Olsen et al

9

� 2015 Nanjing Agricultural University Horticulture Research (2015)

http://creativecommons.org/licenses/by-nc-nd/4.0/

	Ethylene resistance in flowering ornamental plants – improvements and future perspectives
	Introduction
	Regulation of the ethylene pathway
	Reducing ethylene-promoted senescence
	Targeting the ethylene pathway directly
	Cross-pollination coupled with ethylene screening
	Hybridization
	Conventional mutagenesis
	Genetic transformation
	Genome-editing technologies

	Targeting the ethylene pathway indirectly
	Hormonal interaction
	Senescence-related and non-ethylene pathway genes
	Natural transformation

	Discussion
	Conclusions
	References


