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Meiotic recombination shapes precision of
pedigree- and marker-based estimates of inbreeding

U Knief, B Kempenaers and W Forstmeier

The proportion of an individual’s genome that is identical by descent (GWIBD) can be estimated from pedigrees (inbreeding
coefficient ‘Pedigree F’) or molecular markers (‘Marker F’), but both estimators come with error. Assuming unrelated pedigree
founders, Pedigree F is the expected proportion of GWIBD given a specific inbreeding constellation. Meiotic recombination
introduces variation around that expectation (Mendelian noise) and related pedigree founders systematically bias Pedigree F
downward. Marker F is an estimate of the actual proportion of GWIBD but it suffers from the sampling error of markers plus the
error that occurs when a marker is homozygous without reflecting common ancestry (identical by state). We here show via
simulation of a zebra finch and a human linkage map that three aspects of meiotic recombination (independent assortment of
chromosomes, number of crossovers and their distribution along chromosomes) contribute to variation in GWIBD and thus the
precision of Pedigree and Marker F. In zebra finches, where the genome contains large blocks that are rarely broken up by
recombination, the Mendelian noise was large (nearly twofold larger s.d. values compared with humans) and Pedigree F thus less
precise than in humans, where crossovers are distributed more uniformly along chromosomes. Effects of meiotic recombination
on Marker F were reversed, such that the same number of molecular markers yielded more precise estimates of GWIBD in zebra
finches than in humans. As a consequence, in species inheriting large blocks that rarely recombine, even small numbers of
microsatellite markers will often be more informative about inbreeding and fitness than large pedigrees.
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INTRODUCTION

Offspring of genetically related individuals are inbred, meaning that
they harbor genomic segments homozygous because of common
ancestry (Wright, 1922; identical by decent (IBD); Malećot, 1948).
Studies on inbreeding often aim at quantifying the amount of variance
in fitness explained by inbreeding or the inbreeding load within a
population (Szulkin et al., 2010). To do this, the proportion of an
individual’s genome that is IBD (genome-wide IBD (GWIBD)) needs
to be quantified as precisely as possible, because it is the best predictor
of the homozygous mutation load of an individual (all recessive
deleterious mutations that become IBD contribute to inbreeding
depression; Figure 1; Keller et al., 2011).
GWIBD is generally not known precisely for an individual, but is

estimated using either pedigree information (Pedigree F) or molecular
markers (Marker F). On the one hand, Pedigree F is the expected
proportion of GWIBD of a diploid individual and is traditionally
quantified using Wright’s path method as F= 2− (2*k+2) for an
individual whose parents are kth generation linear descendants from
a common ancestor (Wright, 1922). It can also be extended to
incorporate complex inbreeding loops (Malećot, 1948). On the other
hand, Marker F reflects the actual proportion of GWIBD of an
individual. A multitude of methods exist for calculating Marker F but
until now no consensus has been reached on which of these methods
yields the most precise estimate of GWIBD (a first evaluation of the
different metrics was performed in Kardos et al., 2015). Given a large

number of genotyped molecular markers (that is, ⩾ 10 000 single-
nucleotide polymorphisms (SNPs)), both averages of single marker
estimates and estimates based on several closely linked markers
perform equally well in predicting GWIBD (Kardos et al., 2015).
According to Griffiths et al. (2005), meiotic recombination is

defined as ‘any meiotic process that generates a haploid product with
new combinations of the alleles carried by the haploid genotypes that
united to form the dihybrid meiocyte’. Thus, three different cellular
processes contribute to meiotic recombination: The independent
assortment of chromosomes, the number and also the distribution
of crossovers. All three processes influence the variation in GWIBD, as
we will explain in the following.
Genomes do not get transmitted as independent base pairs but

rather in segments of DNA, leading to linkage between adjacent
segments and this increases the amount of variation around the
expected GWIBD (Mendelian noise; Fisher, 1949). For any given
inbreeding constellation, the more segments in a genome segregate
independently, the lower the variation in GWIBD between individuals
of the same inbreeding constellation will be (law of large numbers;
Rasmuson, 1993; Visscher, 2009). Consequently, because chromo-
somes get inherited as independent units in meiosis, the Mendelian
noise for a given inbreeding constellation will be smaller in species
with more chromosomes (Hill and Weir, 2011). Moreover, genomic
segments on a given chromosome will be broken up by crossovers
during meiosis which increases the number of independently
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segregating units in a genome. Thus, the longer the genetic map of a
genome, which directly corresponds with the expected number of
crossovers in each meiosis, the smaller the Mendelian sampling noise
(Hill and Weir, 2011; Wang, 2016). To our knowledge, all analytical
analyses and most of the simulations so far have assumed a uniform
distribution of crossovers along chromosomes (see, for example,
Franklin, 1977; Stam, 1980; Hill and Weir, 2011; Kardos et al., 2015;
Wang, 2016; but see Suarez et al., 1979 and Libiger and Schork, 2007 for
Monte Carlo simulations on relatedness). Although this assumption
holds more or less for the human genome (Matise et al., 2007), linkage
maps from other species have shown that the distribution of recombi-
nation along chromosomes can be highly biased toward the telomeres
(Gore et al., 2009; Backström et al., 2010). We and others predicted that
this results in a more block-like inheritance pattern of genomic
segments on a given chromosome which in turn increases the
Mendelian noise (Risch and Lange, 1979; Guo, 1995; Forstmeier
et al., 2012). Here we use a Monte Carlo gene-dropping simulation
that incorporates all three cellular processes of meiotic recombination to
show their combined effects on the amount of Mendelian noise.
The precision of Pedigree F in predicting GWIBD not only depends

on the amount of Mendelian noise but also on the relatedness between
pedigree founders. Throughout this paper we will mostly focus on an

idealized scenario, where all inbreeding is fully defined and captured
by the pedigree information and we will only briefly highlight the
effects of related or inbred pedigree founders on Pedigree F. A more
in-depth treatment of this issue can be found elsewhere and is outside
the scope of the current study (see, for example, Powell et al., 2010;
Thompson, 2013; Knief et al., 2015; Speed and Balding, 2015).
Usually, only parts of a genome are covered by molecular markers

and these parts are used as a proxy for GWIBD (Marker F; Powell
et al., 2010). This will introduce variation into our estimates of
GWIBD which we call the marker sampling noise. Unlike the
Mendelian sampling noise that is an inherent result of the meiotic
process, the marker sampling noise is only a consequence of the
limited number of markers used; hence, the precision of GWIBD
estimates increases when more molecular markers are sampled (Miller
et al., 2014; Kardos et al., 2015; Wang, 2016). Meiotic recombination
also influences Marker F (Wang, 2016): given a fixed number of
markers, the precision of Marker F decreases with the amount of
meiotic recombination (whereas precision of Pedigree F increases),
because each marker contains less information about GWIBD in
genomes with more independently segregating segments (that is,
longer genetic maps; Wang, 2016).
Microsatellite markers are and will continue to be first choice for

parentage analyses in wild and captive animal populations because
they are cheap and easy to genotype even in small labs for large
numbers of individuals. The vast majority of heterozygosity–fitness
studies are thus conducted on these data and we need a framework to
interpret their results (Taylor, 2015). In these studies homozygosity at
multiple unlinked microsatellites is usually combined into a measure
of GWIBD, for example, as the percentage of markers being
homozygous. Yet, microsatellite homozygosity does not translate
directly into IBD for two reasons. (1) Two homologous DNA
segments may have been inherited from a shared ancestor (IBD),
but the microsatellite marker located in this segment may have
changed because of mutation since the common ancestor. Then, the
marker will not be identical by state (IBS) even though the segment is
IBD. However, if we define IBD with regard to common ancestors that
lived rather recently, such cases will be exceedingly rare, because
microsatellite mutation rates are too low to produce substantial error
(Goldstein and Schlötterer, 1999). Hence, for simplicity, in the
following we ignore this first possibility assuming no mutations.
(2) Because a microsatellite marker can adopt only a finite number of
states (alleles), two long-separated haplotypes (not IBD) may carry the
same allele (IBS) by chance alone. Genotyping errors, which often
result in the dropout of one allele at a heterozygous marker
(Pompanon et al., 2005), lead to the same effect. Depending on
how well marker homozygosity reflects IBD, this may introduce error
into the GWIBD estimate (Thompson, 1976; Miller et al., 2014) that
we call the IBD–IBS discrepancy. We here specifically refer to a limited
number of microsatellites for GWIBD estimation because both the
marker sampling noise and the IBD–IBS discrepancy cease when large
numbers (⩾10 000) of SNPs are employed for GWIBD estimation
(Miller et al., 2014; Kardos et al., 2015; Wang, 2016).
In the present study we use a Monte Carlo gene-dropping

simulation to address the following questions. (1) How does the
distribution of recombination along chromosomes affect the variance
in GWIBD? (2) How does the amount of Mendelian sampling noise
(when using Pedigree F) compare with the amount of marker
sampling noise and IBD–IBS discrepancy when using a limited
number of molecular markers? (3) How many molecular markers
are needed to approximate GWIBD better than using pedigree
information (Forstmeier et al., 2012)? We incorporate the linkage
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Figure 1 Conceptualization of the causality in inbreeding and
heterozygosity–fitness correlations/regressions. Arrowheads represent the
causal direction (see also Szulkin et al., 2010). We are generally interested
in estimating GWIBD because it is most directly related to the homozygous
mutational load and inbreeding depression. The heterogeneous distribution
of recessive deleterious mutations, the environment and other genetic factors
like epistatic interactions are introducing noise into that relation. Mating
patterns as represented by pedigrees are one way to quantify GWIBD
(Pedigree F), but Mendelian segregation is adding noise to this estimate of
GWIBD. Background inbreeding resulting from relatedness between pedigree
founders introduces both random noise and bias into the relationship
between GWIBD and Pedigree F. If Background F is absent and the relation
between fitness and GWIBD is linear, both Pedigree F and GWIBD are error-
free predictors in fitness–inbreeding regressions and consequently the
regression slopes are unbiased. Berkson (1950) explains this in terms of a
‘controlled’ experiment, in which case both an underlying variable measured
accurately (GWIBD) and its expected value (Pedigree F) give unbiased linear
regression slopes (see also Muff et al., 2015). Frequently, molecular markers
are used as predictors of GWIBD. Here, the direction of causality is reversed,
because GWIBD causes Marker IBD that in turn affects Marker IBS. Both
dependencies are affected by noise components that will introduce random
error in the predictors (Marker IBD or Marker IBS) used in heterozygosity–
fitness regressions. Consequently, the regression slopes will be biased
downward. Colors and dashed lines represent the different estimates
depicted in Figure 4 and Supplementary Figures S6 and S7.
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maps of two genomes that we expect to show high (zebra finch,
Taeniopygia guttata) and low (human) amounts of Mendelian noise.
Our expectation is based on the fact that although the zebra finch
genome consists of 39 autosomes compared with only 22 in humans,
about half of its autosomal genome is made up of only 6 chromo-
somes (Tgu1, Tgu1A, Tgu2, Tgu3, Tgu4 and Tgu5) and shows
extremely low recombination rates in the centers of these chromo-
somes (Backström et al., 2010), whereas in humans recombination is
distributed quite uniformly on the megabase scale along chromosomes
(Matise et al., 2007). We follow the genomes of 159 diploid pedigree
founders, who we assume to be unrelated, through an empirical
7-generation pedigree of 3404 individuals. We define IBD in reference
to the pedigree founders and we indicate the number of generations of
the pedigree as a subscript (for example, F7, IBD7, GWIBD7 refer to
values from a pedigree that is seven generations deep). First,
we estimate the Mendelian sampling noise that corresponds to
Pedigree F7, ignoring inbreeding stemming from relatedness between
pedigree founders. Then, we show the effects of related founders on
precision of Pedigree F by shortening our pedigree.
To quantify the amount of marker sampling noise we estimated

GWIBD7 from subsets of the simulated genomes (Marker IBD7).
We used empirical data from 11 microsatellites genotyped in the
seventh generation of our pedigree to estimate the IBD–IBS discre-
pancy and introduced this noise component into our simulations
(Marker IBS7). This allows us to compare the precision of (1) F from
pedigrees of varying lengths, (2) multilocus homozygosity of ‘ideal
markers’ (Knief et al., 2015), for example, derived from SNP panels
(Marker IBD7) and (3) multilocus homozygosity of typical micro-
satellite markers (Marker IBS7) in predicting GWIBD7.

MATERIALS AND METHODS

Empirical linkage and physical maps
For the zebra finch, we used the sex-averaged linkage map described in
Backström et al. (2010) based on 1395 SNPs and covering 33 chromosomes
(data accessible from Schielzeth et al., 2011, 2012). We excluded the sex
chromosome and 10 microchromosomes covered by o10 markers
(see Supplementary Information for details). The zebra finch genome consists
of 39 autosomes (Pigozzi and Solari, 1998), and we thus added 17 ‘artificial’
chromosomes to our linkage map assuming a uniform distribution of
recombination (see Supplementary Information for details; Supplementary
Figure S1).
For humans, we used the sex-averaged Rutgers Map v.2 (Matise et al., 2007)

covering 24 168 markers and all 22 autosomes and the X chromosome
(Supplementary Figure S2). We removed the sex chromosome from all further
analyses. The physical lengths of chromosomes were taken from the hg19/
GRCh37 assembly (Collins et al., 2004).

Gene-dropping simulations
Our gene-dropping simulations extend those described in Libiger and Schork
(2007). We first specified a genome by the number and size (both genetically
and physically) of chromosomes. Then we split each chromosome in
predefined physical segments (we used 100 kb segments) and calculated the
recombination probability between segments using a smoothed linkage map
(see Supplementary Information ‘Linkage map smoothing’) and the Kosambi
map function (Kosambi, 1943). Finally, we followed each segment through a
specified genealogy by using these recombination probabilities and assuming
that founders of the pedigree were unrelated.

(1) For each founder we simulated a diploid chromosome set (two unique
haplotypes without inbreeding for each chromosome). In the zebra finch,
each diploid chromosome set consisted of two times 11 509 100 kb
segments (each segment defined by a single number at a given position)
partitioned across 39 autosomes. In humans, each chromosome set

consisted of two times 28 801 of these 100 kb segments partitioned across
22 autosomes.

(2) The simulation proceeded by creating offspring of the pedigree founders.
We tried to simulate meiosis as realistically as possible and implemented
the following steps. (a) Before meiosis I the homologous chromosomes
(2N2C= 2 homologous chromosomes, 2 chromatids) in both the mother
and the father duplicate to form two sister chromatids (2N4C) that are
identical. (b) In meiosis I (which leads to 1N2C), crossovers between
chromatids of the homologous chromosomes occur with probabilities as
defined by the linkage map. Crossovers may occur between both
chromatids of the homologous chromosomes but not between the two
sister chromatids of a single chromosome (remember also that the two
sister chromatids are identical). Thus, also unrecombined chromatids may
get inherited. (c) One of the four chromatids (that is, 1N1C) in both the
mother and the father was chosen randomly to create the offspring that is
then 2N2C again.

(3) Within each offspring the total length of all autozygous stretches was
determined as homozygosity for a founder haplotype (GWIBD). The
founder haplotypes were the uniquely defined 100 kb segments (repre-
sented by a single number, see above) that we tracked through the pedigree
(see below). For each offspring we counted how many of these segments
were IBD, meaning that the same founder haplotype was at the same
position on the offspring’s two chromatids. The end of an autozygous
stretch was placed at a randomly chosen base pair between the flanking
autozygous and non-autozygous segment in order to lessen the block-like
inheritance.

Pedigrees used
We ran our gene-dropping simulations on three pedigrees. (1) 10 000 times
on a very simple designed pedigree comprising full-sibs and their offspring
(full-sib mating), first-cousins and their offspring (first-cousin mating) and
second-cousins and their offspring (second-cousin mating; Supplementary
Figure S3). We use this artificial pedigree only to quantify the amount of
Mendelian noise in GWIBD in full-sib, first-cousin and second-cousin mating.
(2) 1000 times on an empirical pedigree from our captive population of zebra
finches held at the Max Planck Institute for Ornithology in Seewiesen,
Germany, comprising n= 159 founders and n= 3404 individuals in total
(Supplementary Figure S4). The pedigree spans seven generations: in the first
three generations the aim was to produce outbred individuals, the fourth
generation contains offspring of full-sib matings and in the last three
generations selection lines were produced (six lines in total) that increased
the overall level of inbreeding. (3) 1000 times on a pedigree that contains the
same birds and generations as the empirical Seewiesen pedigree but in which
parents were resampled from the empirical parents within each generation
(random mating). In this pedigree mean inbreeding levels and the variation in
inbreeding were markedly reduced (Table 1). We calculated the expected
inbreeding coefficient under random mating as

F tð Þ ¼ 1=ð2´NÞ þ ½1� 1=ð2´NÞ� ´ Fðt � 1Þ
where F(t) is the inbreeding coefficient in generation t and N is the number of
parents giving rise to generation t with their average inbreeding coefficient
F(t− 1) (Falconer and Mackay, 1996). Given that the fifth generation of our
pedigree had been bred from the previous three generations (otherwise
generations were non-overlapping), we used the weighted mean inbreeding
coefficient of those three generations in the formula as F(t− 1). Our analysis
of precision and bias of Pedigree F, Marker IBD and Marker IBS in both
Seewiesen pedigrees is focused on the last (seventh) generation
(n= 681 individuals), because it contains the most precise information about
coancestry. We use the random mating pedigree to show that our results are
qualitatively transferable between pedigrees, but will change quantitatively when
considering pedigrees with more or less variance in inbreeding (that is, different
levels of identity disequilibrium; Miller and Coltman, 2014). If not stated
otherwise, we present the results on the empirical pedigree because the higher
levels of inbreeding render the effects of interest more clearly visible. We also
provide the downloadable simulation script that can be applied to any pedigree.
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Running the simulation once on the 3404-individual pedigree with a zebra
finch linkage map took ∼ 45 min to complete on a single computer core (Intel
Core i7-2600, 3.4 GHz and 16 Gb RAM) that adds up to a runtime of
∼ 31.3 days for 1000 simulation runs.

Estimating the IBD–IBS discrepancy of microsatellites
We used a simplified approach to quantify how often two long-separated
haplotypes that are not IBD carry the same allele by chance alone (IBD–IBS
discrepancy) using empirical data from 11 microsatellite markers genotyped in
the seventh generation of our zebra finch pedigree. A detailed description of
how we calculated the IBD–IBS discrepancy is presented in the Supplementary
Information. This estimate is specific to our captive population of zebra finches
and should be adopted with caution for other populations. The aim of
our example is to show how the precision and bias in predicting GWIBD
(or fitness) declines when using typical microsatellite markers instead of
‘ideal markers’ (as can be derived from SNP panels; Knief et al., 2015).
Essentially, we estimated how often our microsatellite markers would be IBS by
chance alone (because of a limited number of allelic states) in the absence of
any inbreeding, which renders marker IBS a less reliable predictor of
marker IBD.

Comparing molecular estimates of inbreeding with pedigree-based
estimates
To compare the precision of pedigree-based with molecular marker-based
estimates of inbreeding, we ran our gene-dropping simulations 1000 times on
the two 7-generation Seewiesen pedigrees (empirical and random mating)
for both the zebra finch and the human genome and recorded GWIBD7 and an
estimate of inbreeding based on n= 5, 10, 20, 40, 80 and 160 randomly chosen
100 kb segments in the genome (Marker IBD7). Basically, we randomly
sampled n 100 kb segments (founder haplotypes represented by a single
number, see above) in each individual and counted how many of these
segments were IBD (denoted as m), meaning that the same founder haplotype
was at the same position on the individual’s two chromatids. Marker IBD7 was
then calculated as

Marker IBD7 ¼ m=n

Ignoring de novo mutations of marker alleles, all markers that were IBD
were designated as IBS. We further incorporated the IBD–IBS discrepancy
by calling a marker IBS with the empirically estimated IBD–IBS discrepancy
probability (denoted as α) from our microsatellite data, irrespective of

whether it was IBD or not. Thus,

Marker IBS7 ¼ mþ
X

Binom n�mð Þ; að Þ
h i

=n

Pedigree F was calculated using the pedigreemm package (v0.3-1; Vazquez
et al., 2010) in R (v3.0.2; R Core Team, 2013). To simulate related founders
we shortened our two Seewiesen pedigrees by removing the first three
(Supplementary Figure S5D) or four (Supplementary Figure S5C) genera-
tions and then calculating Pedigree F (Pedigree F4 and Pedigree F3,
respectively). Note that Pedigree F4 refers to the longer pedigree, extending
over four generations (n= 526 founders of which 2.85% (empirical) and
10.27% (random mating) are inbred), and Pedigree F3 to the three-
generation pedigree (n= 153 founders of which 60.13% (empirical) and
42.48% (random-mating) are inbred; Table 1). As a measure of precision in
predicting the dependent variable (Zar, 2010), we took the coefficient of
determination (r2) between both the pedigree-based estimates of inbreeding
(Pedigree F3, Pedigree F4 and Pedigree F7) and GWIBD7, and between the
marker-based estimates (Marker IBD7 and Marker IBS7) and GWIBD7.
We also recorded the slopes of ordinary least square regressions with
GWIBD7 as the dependent variable and Pedigree F3, Pedigree F4, Pedigree
F7, Marker IBD7 and Marker IBS7 as predictors to estimate the bias of the
prediction.

RESULTS

Mendelian noise in GWIBD and a comparison with analytical
results
It has been shown analytically before (Hill and Weir, 2011) that for
any class of individuals with the same inbreeding history and hence
the same Pedigree F, there is considerable variation among individuals
in the proportion of the genome that is inherited IBD (see also
Figure 2). Using 10 000 simulation runs on the designed pedigree, this
variation—caused by Mendelian sampling noise—was markedly larger
in the zebra finch (full-sib mating s.d.= 0.0838, first-cousin mating
s.d.= 0.0461, second-cousin mating s.d.= 0.0231) than in humans
(full-sib mating s.d.= 0.0454, first-cousin mating s.d.= 0.0251,
second-cousin mating s.d.= 0.0115; Figure 2). Although the s.d. of
GWIBD decreased with more distant inbreeding levels, the coefficient
of variation (CV), which can be interpreted as a measure of the
relative s.d., increased in both the zebra finch (full-sib mating
CV= 0.335, first-cousin mating CV= 0.732, second-cousin mating
CV= 1.466) and the human genome (full-sib mating CV= 0.181,

Table 1 Precision of Pedigree F in predicting GWIBD within each generation of the empirical and the random-mating zebra finch pedigree

Generation N individuals Empirical pedigree Random-mating pedigree

Mean

Pedigree

F

s.d. of

Pedigree

F

% Individuals with

Pedigree

F=0

Precision of

Pedigree F

(r2 (95% QR))

Expected

Pedigree

F

Mean

Pedigree

F

s.d. of

Pedigree

F

% Individuals with

Pedigree

F=0

Precision of

Pedigree F

(r2 (95% QR))

1 231 0 0 100% — 0 0 0 100% —

2 309 0 0 100% — 0.0051 0.0049 0.0242 96.12% —

3 526 0.0019 0.0128 97.15% 0.76 (0.55–0.90) 0.0078 0.0081 0.0280 89.73% 0.74 (0.64–0.83)

4 153 0.088 0.110 39.87% 0.83 (0.77–0.88) 0.016 0.011 0.020 57.52% 0.55 (0.34–0.73)

5 710 0.019 0.043 57.89% 0.75 (0.68–0.82) 0.012 0.011 0.022 50.00% 0.58 (0.48–0.67)

6 635 0.068 0.045 1.89% 0.48 (0.40–0.55) 0.014 0.015 0.024 7.87% 0.54 (0.44–0.63)

7 681 0.12 0.067 0% 0.56 (0.49–0.63) 0.018 0.016 0.021 0% 0.46 (0.34–0.57)

All 3245 0.047 0.067 47.30% 0.76 (0.73–0.78) 0.011 0.011 0.023 46.01% 0.59 (0.55–0.64)

Abbreviations: GWIBD, genome-wide identical by descent; QR, quantile range.
Precision of Pedigree F was calculated using the zebra finch linkage map and 1000 simulation runs on both pedigrees. In the first three generations of the empirical pedigree, close inbreeding was
avoided, the fourth generation contains offspring of full-sib matings and in the last three generations six selection lines were bred that increased the inbreeding coefficient. In the random-mating
pedigree, parents were randomly assigned to each individual while keeping the total number of individuals and parents constant.
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first-cousin mating CV= 0.402, second-cousin mating CV= 0.737),
which has also been shown analytically (Hill and Weir, 2011).
By constructing an artificial human linkage map with a strict

uniform distribution of crossovers, we were able to compare our
simulation-based estimates of the s.d. in GWIBD in humans with their
analytical expectations (calculated with the formulas provided in
Franklin, 1977; Hill and Weir, 2011). The simulations yielded slightly
larger s.d. values of GWIBD than expected analytically, at maximum a
deviation of 3.3% (full-sib mating s.d.= 0.0412 vs 0.0420, first-cousin
mating s.d.= 0.0226 vs 0.0234, second-cousin mating s.d.= 0.0104 vs
0.0107). The deviation is probably caused by the use of an
infinitesimal model in the analytical approach (Franklin, 1977; Hill

and Weir, 2011), whereas we simulated 100 kb segments
(for computational feasibility) which slightly increased the s.d. in
IBD sharing. In line with this interpretation, analytical models yield
larger s.d. values in IBD sharing between relatives when they use a
localized distribution of crossovers instead of an infinitesimal model
(Risch and Lange, 1979; Suarez et al., 1979; Visscher, 2009).

Effects of meiotic recombination on precision and bias of
Pedigree F
As shown above, the s.d. of GWIBD resulting from full-sib,
first-cousin and second-cousin mating is almost twice as large in
zebra finches as in humans because of the differences in their genomic

Figure 2 Variation in inbreeding (realized GWIBD) for offspring of a full-sib mating (a, b), first-cousin mating (c, d) and second-cousin mating (e, f). Left
panels show the results for zebra finches and right panels show the results for humans, both derived from 10 000 simulation runs on the simple designed
pedigree depicted in Supplementary Figure S3. The black lines indicate the expected inbreeding coefficients calculated with Wright’s path method (1/4,
1/16 and 1/64, respectively).
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architectures. Consequently, Pedigree F in the seventh generation of
the empirical and the random-mating pedigree was more precise in
predicting GWIBD when simulating a human linkage map (empirical
pedigree: r2= 0.82, 95% quantile range (QR)= 0.79–0.85; Figure 3b)
than when simulating a zebra finch linkage map (empirical pedigree:
r2= 0.56, 95% QR= 0.49–0.63; Figure 3a). When we shortened
the pedigrees by three or four generations, precision of Pedigree
F dropped in both zebra finches and humans by the same percentage
(empirical Pedigree F4: zebra finches r2= 0.48, 95% QR= 0.40–0.57
and humans r2= 0.70, 95% QR= 0.65–0.75, for both a 14% reduction
in comparison with empirical Pedigree F7 (see also the equivalent
change in r2 in Supplementary Figure S5D); empirical Pedigree F3:
zebra finches r2= 0.39, 95% QR= 0.30–0.48 and humans r2= 0.57,
95% QR= 0.51–0.62, a 31% reduction in comparison with empirical
Pedigree F7 (see also the equivalent change in r2 in Supplementary
Figure S5C); Figures 4a and b). In preceding generations with lower
inbreeding levels (where many individuals have Pedigree F= 0,
s.d.= 0), the pedigree-based inbreeding estimates appeared more
precise on average (Table 1), because Mendelian noise can only
contribute to variation in GWIBD whenever Pedigree F40. This
highlights the fact that the coefficients of determination depend on the
inbreeding level and its variation within the pedigree or population
under study. In line with this, precision of Pedigree F was lower in the
random-mating pedigree, in which the mean and variance in
inbreeding were reduced (Table 1 and Supplementary Figures
S6A and B).
Regressing GWIBD7 over Pedigree F7 from 1000 simulations yielded

an unbiased mean slope of β= 1.00 in both zebra finches (empirical
pedigree 95% QR= 0.88–1.12; Figure 3a) and humans (empirical
pedigree 95% QR= 0.93–1.07; Figure 3b), as is expected for a direct
cause–effect relationship and a Berkson error model (Berkson, 1950).
Shortening the empirical pedigree led to a downward bias in slopes in
zebra finches and humans alike (empirical Pedigree F4: zebra finches
β= 0.89, 95% QR= 0.76–1.02 and humans β= 0.89, 95% QR= 0.82–
0.96, a 11% reduction in comparison with empirical Pedigree F7;
empirical Pedigree F3: zebra finches β= 0.77, 95% QR= 0.65–0.91 and
humans β= 0.78, 95% QR= 0.70–0.85, a 22% reduction in compar-
ison with empirical Pedigree F7; Figures 4c and d). However, short-
ening the random-mating pedigree had almost no effect on the regression
slopes (random-mating Pedigree F7: zebra finches β=1.00, 95%

QR=0.78–1.24 and humans β=1.00, 95% QR=0.87–1.13; random-
mating Pedigree F4: zebra finches β=0.99, 95% QR=0.75–1.24 and
humans β=0.99, 95% QR=0.84–1.14; random-mating Pedigree F3:
zebra finches β=1.03, 95% QR=0.75–1.31 and humans β=1.03, 95%
QR=0.86–1.19; Supplementary Figures S6C and D). This is because
under random mating each individual has on average the same pedigree
structure and thus the pedigree-based inbreeding coefficients of all
individuals increase on average by the same amount and almost linearly
across multiple generations when mean inbreeding levels in the popula-
tion are low (Falconer and Mackay, 1996). Thus, the Berkson error
model holds (Berkson, 1950) and Pedigree F4 and Pedigree F3 are
unbiased estimators of Pedigree F7.

Effects of meiotic recombination on precision and bias of Marker F
In the following, we first consider ‘ideal markers’ (Knief et al., 2015),
that is, markers that are never homozygous by chance alone (no IBS
without IBD). ‘Ideal markers’ were more precise and more accurate in
predicting GWIBD when simulating a zebra finch linkage map than
when simulating a human linkage map (compare red lines in Figures
4a and c with Figures 4b and d). They were also slightly more precise
and accurate when simulating the empirical pedigree than the
random-mating pedigree (compare red lines in Figures 4a–d with
Supplementary Figures S6A–D), as it has also been found by Wang
(2016). For instance, 20 ‘ideal markers’ yielded a precision of r2= 0.63
(95% QR= 0.47–0.76) in the empirical zebra finch pedigree, but only
r2= 0.53 (95% QR= 0.44–0.62) in the empirical human pedigree. In the
random-mating pedigree, 20 ‘ideal markers’ yielded a precision of
r2= 0.56 (95% QR= 0.37–0.72) in zebra finches, but only r2= 0.42
(95% QR= 0.30–0.54) in humans. Thus, markers are more reliable in
the species with the less reliable pedigree-based prediction and in the
pedigree with more variation in inbreeding. We then ask how many
markers are needed to obtain higher precision than given by Pedigree
F7.
In the seventh generation of our empirical pedigree, ∼ 15 randomly

distributed ‘ideal marker’ segments in the zebra finch genome
(out of 11 509 autosomal 100 kb segments= 0.13% of the autosomal
genome) gave the same precision as the pedigree-based estimate
(Figure 4a). In the human genome, 80 randomly distributed ‘ideal
marker’ segments (out of 28 801 autosomal 100 kb segments= 0.28%
of the autosomal genome) were needed (Figure 4b). In the seventh

Figure 3 An exemplary simulation run showing the realized GWIBD in 681 individuals from the seventh generation of our empirical pedigree over their
expected values (Pedigree F). Simulations are based on the linkage maps of (a) the zebra finch and (b) the human genome. Shown are the most
representative simulation runs (out of 1000 each) where regression slopes (β=1.00, 95% QR=0.88–1.12 and β=1.00, 95% QR=0.93–1.07) and
coefficients of determination (r2=0.56, 95% QR=0.49–0.63 and r2=0.82, 95% QR=0.79–0.85) were closest to the mean values from 1000 runs.
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generation of the random-mating pedigree, these estimates were
almost unchanged (Supplementary Figures S6A and B).
The ordinary least square regression slopes of GWIBD7 over Marker

IBD7 estimated from 15 and 80 randomly distributed segments in the
zebra finch and human genome, respectively, were biased downward
and only when using ∼ 160 segments to estimate Marker IBD7 did the
slopes become almost unbiased (both in the empirical (Figures 4c and
d) and random-mating pedigree (Supplementary Figures S6C and D)).
This means that when using Marker IBD7 (or even more so when
using Marker IBS7, see below) in a heterozygosity–fitness study, the
inbreeding load (Szulkin et al., 2010) in a population will be
underestimated.
We now consider nonideal markers like microsatellites that can be

IBS without being IBD. We empirically estimated the IBD–IBS
discrepancy (mean from 11 microsatellites) as 13.3% in our zebra
finches (see Supplementary Information). After incorporating this into
our simulations of the empirical pedigree, ∼ 40 randomly distributed
segments in the zebra finch genome (out of 11 509 autosomal 100 kb
segments= 0.35% of the autosomal genome) were needed to obtain an
estimate of GWIBD7 that is as precise as the pedigree-based estimate

(empirical Pedigree F7) (Figure 4a). Using the same IBD–IBS
discrepancy for humans we found that ∼ 160 randomly distributed
segments (out of 28 801 autosomal 100 kb segments= 0.56% of
the autosomal genome) were needed (Figure 4b). However, these
estimates change drastically when considering the random-mating
pedigree, where only 160 randomly distributed segments in the zebra
finch genome provided an as precise estimate of GWIBD7 as the
pedigree (Supplementary Figures S6A and B). This is probably because
variation in inbreeding is much lower and thus the same IBD–IBS
discrepancy (13.3%) adds relatively more noise.
Regressing GWIBD7 over Marker IBS7 yielded slopes that were

biased downward. Using ∼ 80 and 160 segments for the marker-based
inbreeding estimates in zebra finches and humans yielded comparable
slopes between Marker IBD7 and Marker IBS7 in the empirical
pedigree (Figures 4c and d). The coefficient of determination
(and thus the correlation coefficient rxy) was increasing more rapidly
for Marker IBS7 than for Marker IBD7 with increasing numbers of loci
(Figures 4a and b) and the s.d. (s.d.x) was decreasing faster in Marker
IBS7 than in Marker IBD7 (probably because the distribution of
Marker IBS7 was less skewed). The slope of an ordinary least square

β

Figure 4 Comparison of precision (a, b) and bias (c, d) when predicting GWIBD by Pedigree F7 (black), ‘ideal markers’ (Marker IBD7, red) and microsatellites
(Marker IBS7 with an IBD–IBS discrepancy of 13.3%, blue) in the empirical pedigree. The left and right panels are estimates from 1000 simulation runs in
zebra finches and humans, respectively. The black solid line indicates the average precision and bias of pedigree-based estimates (Pedigree F7) of inbreeding
(±1 s.e.) which is not influenced by the number of markers (slight changes in precision and bias across the different numbers of markers are caused by
random sampling noise in GWIBD). The dashed black line indicates Pedigree F4 (±1 s.e.) and the dotted black line Pedigree F3 (±1 s.e.). The red and blue
lines indicate average precision and bias (±1 s.e.) of Marker IBD7 and Marker IBS7, respectively, for varying numbers of markers (100 kb genomic segments)
used for predicting the inbreeding level of individuals (GWIBD7) in the seventh generation of the empirical pedigree.
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regression line with independent variable x and dependent variable y
(which is GWIBD) is calculated as rxy× s.d.y/s.d.x and thus at some
point Marker IBS7 is a less biased estimate of GWIBD7 than Marker
IBD7. However, one should keep in mind that at that point precision
of Marker IBS7 is lower than precision of Marker IBD7.

DISCUSSION

Mendelian noise in GWIBD
Both the genetic map length and the number of chromosomes under
consideration are known to influence the variation in IBD (Franklin,
1977; Stam, 1980; Hill and Weir, 2011; Kardos et al., 2015). Similarly,
it has been predicted that the distribution of crossovers along
chromosomes will influence the amount of variance in IBD
(see, for example, Risch and Lange, 1979; Rasmuson, 1993; Guo,
1995; Forstmeier et al., 2012), but to our knowledge it has never
received attention in a modeling framework. Here we show that the
variance in IBD is much larger in zebra finches than in humans,
because in the former almost half of the genome is inherited in only
six segments (that is, the interiors of chromosomes Tgu1, Tgu1A,
Tgu2, Tgu3, Tgu4 and Tgu5) that only rarely break up by crossovers
(Backström et al., 2010). Hill and Weir (2011) provide a formula to
calculate the expected s.d. in GWIBD for full-sib mating, first-cousin
mating and second-cousin mating that assumes a uniform distribution
of crossovers along chromosomes. We used the genetic length of all
simulated zebra finch chromosomes in this formula and compared the
results with those from our simulation (that incorporates the skew in
the distribution of crossovers). The s.d. increased by a factor of
1.79, 1.81 and 1.93, respectively. Within birds, such a highly nonuni-
form distribution of recombination events has been observed only in
zebra finches and long-tailed finches so far (Singhal et al., 2015), yet it
should be noted that even more extreme examples of a skewed
distribution of recombination can be found in other organisms
(for example, corn (Zea mays); Gore et al., 2009). In the following,
we will discuss the effect of this nonuniform distribution of crossovers
on precision and bias of Pedigree and Marker F.

Effects of meiotic recombination on pedigree-based estimates of
inbreeding
The maximum precision of pedigree-based estimates of GWIBD
depends on the amount of Mendelian sampling noise and is thus
higher in humans than in zebra finches. When shortening the pedigree
from seven to four or three generations or when reducing the mean
inbreeding level and its variation, precision of the pedigree-based
estimate of inbreeding drops (Table 1, Figures 4a and b;
Supplementary Figures S6A and B) and the relative reduction is
independent of the underlying meiotic recombination landscape
(that is, precision is reduced by the same percentage in zebra finches
and humans). Besides losing precision, Pedigree F is also systematically
biased downward when pedigree founders are related but less so when
the mean and variation in inbreeding is low as in the random-mating
pedigree (Figures 4c and d; Supplementary Figures S6C and D; Balloux
et al., 2004; Kardos et al., 2015; Wang, 2016). Thus, there is not a
single best pedigree depth in terms of bias and precision for every
pedigree structure but the optimum is actually reached at the
minimum number of generations that captures most of the variation
in Pedigree F (Wang, 2014, 2016), and this number is a pedigree-
specific parameter.

Effects of meiotic recombination on marker-based estimates of
inbreeding
In zebra finches, fewer markers are needed to reach the same precision
as Pedigree F than in humans. This is mostly because Pedigree F is a
less precise estimate of GWIBD in zebra finches than in humans.
Moreover, each single marker in the zebra finch genome contributes
more to an increase in precision of Marker F than in the human
genome, and this is reflected in the steeper increase in precision with
an increasing number of markers (see Figure 4a versus b). The skewed
distribution of recombination events in the zebra finch leads to the
inheritance of large blocks in the center of macrochromosomes
(Forstmeier et al., 2012). We speculate that whenever a marker in
the zebra finch genome is located in one of these blocks, it captures
information on a relatively large proportion of the genome and thus
on the inbreeding level of an individual. However, whenever it is
located more toward the telomeres it will be less informative. In
humans, the pronounced block-like inheritance of genomic regions is
absent and consequently each marker adds approximately the same
but on average less information (because recombination rates are
generally higher), and this is also evident in the smaller standard errors
in humans compared with zebra finches in Figure 4.

A comparison between Pedigree and Marker F
Assessing ∼ 15 and 80 ‘ideal markers’ (like long runs of homozygosity
in dense SNP panels; McQuillan et al., 2008; Knief et al., 2015) for
their IBD status (Marker IBD7) in zebra finches and humans,
respectively, yields as precise estimates of GWIBD7 as a complete
seven-generation pedigree (both in the empirical and random-mating
pedigree). When shortening the pedigree, precision of the pedigree-
based estimate of inbreeding drops (Figure 4 and Supplementary
Figure S6), and then the same precision is reached with even fewer
‘ideal markers’.
The surprisingly small number of ‘ideal markers’ needed in the

zebra finch genome to reach the same precision as Pedigree F is in
good agreement with an earlier empirical estimate for our captive
population: a comparison of the strength of marker- and pedigree-
based estimates of inbreeding depression suggested that 11 micro-
satellites reflect an individual’s realized inbreeding coefficient equally
well as the pedigree (Forstmeier et al., 2012). Microsatellites used in
that study were spread across nine chromosomes, including the
macrochromosomes Tgu1, Tgu1A, Tgu2, Tgu3, Tgu5, Tgu6 and
Tgu9, that together sum up to half the physical zebra finch genome
and rarely break up in meiosis (Backström et al., 2010). Thus, they are
potentially more informative than a random set of ‘ideal markers’
(as considered here). Because of a limited number of segregating
haplotypes in our captive population, being IBS for a single micro-
satellite reflects IBD well (Forstmeier et al., 2012), but this may not be
the case in large and panmictic populations in the wild (Knief et al.,
2015). To our knowledge, empirical field studies have rarely assessed
the extent to which IBS of microsatellite markers reflects IBD of the
surrounding genomic region, a question that now can be addressed by
either using dense SNP panels or several microsatellites located within
small genomic regions (for example, 100 kb, see Knief et al., 2015).
Considering the results from the random-mating pedigree where the
mean and variation in inbreeding are lower, the need to assess
the IBD–IBS discrepancy becomes obvious. In both the empirical and
the random-mating pedigree, incorporating the IBD–IBS discrepancy
into our simulations decreased the precision of the molecular markers
and consequently more markers were needed to get as precise estimates
of GWIBD7 as with Pedigree F7. However, the loss in precision was
much stronger in the random-mating pedigree because the same
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IBD–IBS discrepancy (13.3%) translates into a much larger error when
mean inbreeding levels are lower (Miller and Coltman, 2014).

CONCLUSIONS

We here show that meiotic recombination affects precision and bias of
pedigree- and marker-based estimates of inbreeding. In addition to the
number of chromosomes and the number of crossovers (that together
constitute the genetic map length), the distribution of crossovers along
chromosomes also has an effect on variation in GWIBD, such that a
more nonuniform distribution of crossovers increases the
Mendelian noise.
The amount and distribution of meiotic recombination is species

specific (Rasmuson, 1993) and consequently cannot be changed for a
study organism. All else being equal, Pedigree F is a more precise
estimate of GWIBD in species with more meiotic recombination (and
a more uniform distribution of crossovers), whereas Marker F is losing
precision. However, adding a small number of genetic markers
compensates for the loss and eventually results in more precise
estimates of GWIBD than Pedigree F. The exact number of markers
that are needed to obtain a precise estimate of GWIBD is strongly
dependent on the demographic history of the study population (Miller
and Coltman, 2014). Whether it is more effective to reduce the marker
sampling noise (by increasing the number of randomly distributed
markers) or the IBD–IBS discrepancy (by clustering markers to get
more reliable information about IBD; Knief et al., 2015) remains to be
tested empirically.
If a pedigree is fully informative about all inbreeding or at least

about most of the variation in inbreeding in a population (Wang,
2014, 2016; which may be the case when founding a captive
population from a wild one) then Pedigree F yields an unbiased
estimate of GWIBD. However, as soon as a pedigree does not cover all
inbreeding in a population (which is rather the rule in wild
populations) Pedigree F is a biased predictor of GWIBD. Although
Marker F is also biased downward when predicting GWIBD from a
small number of molecular markers, the bias can be easily reduced by
increasing the number of molecular markers in the study.
We suggest that it is generally advantageous to use molecular

markers in heterozygosity–fitness studies, especially if (1) large
numbers (⩾10 000) of SNPs can be genotyped (see, for example,
Hoffman et al., 2014; Kardos et al., 2015; Huisman et al., 2016; Wang,
2016), (2) if moderate numbers (∼30–100) of microsatellites can be
genotyped and (3) the pedigree covers only few generations or
pedigree founders are related.
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