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REVIEW

Life-history plasticity in female threespine stickleback

JA Baker!, MA Wund?, DC Heins®>, RW King!, ML Reyes! and SA Foster!

The postglacial adaptive radiation of the threespine stickleback fish (Gasterosteus aculeatus) has been widely used to investigate
the roles of both adaptive evolution and plasticity in behavioral and morphological divergence from the ancestral condition
represented by present-day oceanic stickleback. These phenotypes tend to exhibit high levels of ecotypic differentiation.
Population divergence in life history has also been well studied, but in contrast to behavior and morphology, the extent and
importance of plasticity has been much less well studied. In this review, we summarize what is known about life-history
plasticity in female threespine stickleback, considering four traits intimately associated with reproductive output: age/size at
maturation, level of reproductive effort, egg size and clutch size. We envision life-history plasticity in an iterative, ontogenetic
framework, in which females may express plasticity repeatedly across each of several time frames. We contrast the results of
laboratory and field studies because, for most traits, these approaches give somewhat different answers. We provide ideas on
what the cues might be for observed plasticity in each trait and, when possible, we inquire about the relative costs and benefits
to expressed plasticity. We end with an example of how we think plasticity may play out in stickleback life history given what we

know of plasticity in the ancestor.
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INTRODUCTION

Life-history traits are those features of organisms that are directly and
intimately connected to reproductive output. Although life-history
traits may have low average heritability, they typically possess sufficient
additive genetic variation to respond rapidly to selection (Mousseau
and Roff, 1987). In addition, life-history traits commonly exhibit
substantial plasticity (Mousseau and Fox, 1998; Nylin and Gotthard,
1998). This ability to respond to environmental challenges via rapid
evolution, plasticity or both may be a hallmark of life-history traits.
Individual life-history traits are integrated within a complex network
of positive and negative (tradeoff) relationships not just among
themselves (Stearns, 1989; Roff, 1992), but also with many other
aspects of the phenotype (Forsman, 2014). This complexity places
limits on the extent to which individual traits can shift plastically and
still cumulatively produce the maximum reproductive fitness (Brown
and Shine, 2007; Hamel et al., 2014). This complexity is particularly
important for female animals because of the large per-offspring
investment that females make.

Core reproductive life-history traits in female animals commonly
include the age (or size) at maturation, the level of reproductive effort,
egg or offspring size, clutch size (eggs or offspring produced during
one relatively short period of reproduction) and reproductive
frequency (Reznick et al., 2000). Growth rate is sometimes considered
to be a life-history trait (see, for example, Arendt, 1997). However, in
this review we differentiate it from those traits listed above because
although growth rate contributes to reproductive potential (for
example, by potentially increasing size at each reproductive event), it
is involved as an outside influence on the set of traits we consider (see
‘Initiation of Maturation’ section below). In iteroparous animals, these

female traits may be considered to be developmentally inducible,
although not in the usual ontogenetic sense. Rather, they represent
iteratively inducible traits that are expressed repeatedly throughout the
life of the organism (Foster et al., 2015). Even the most rapid plastic
responses in female life-history traits cannot be considered activational
(sensu Snell-Rood, 2013), a common characteristic of behavioral traits.
Nevertheless, life-history plasticity may be expressed at several very
different timescales—from clutch-to-clutch adjustments (Kolm, 2001;
Vrtilek and Reichard, 2014), to a gradual adjustment in reproductive
traits as the breeding season approaches (Kennedy et al., 2008), to
year-to-year shifts (Lee et al, 2012) and across generations via
maternal effects (Bashey, 2006; Galloway and Etterson, 2009).

Most trait expression probably comprises a mixture of constitutive
and plastic components (Grimaldi et al., 2005; Bourdeau, 2012). With
respect to life history, all normal females express a set of traits
associated with reproduction—a nonzero level of reproductive effort,
egg or offspring size, clutch or brood size; and frequency of
reproduction. In this respect, these are constitutive traits, and each
female presumably has some genetically determined level of expression
based on allelic variation associated with the individual traits. In many
species, life-history traits also show considerable inducible plasticity—
adjustments to the constitutive expression made in response to an
environmental cue. Trait expression, achieved by whatever mechan-
ism, is presumably optimized as part of the overall phenotype
(Lancaster et al., 2010).

In this paper, we review data for the threespine stickleback
(Gasterosteus aculeatus), and our use of the word ‘stickleback’ for
brevity refers to that species only. However, much of what we
conclude may apply to other stickleback species, and even many
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other teleosts. As we demonstrate, life-history traits of female stickle-
back show varying degrees of apparent plasticity. The likelihood that
plasticity will evolve in a particular trait depends on several factors,
one of which is the response time between exposure to a cue and the
expression of an appropriate response (Moran, 1992; Padilla and
Adolph, 1996). Thus, female stickleback life-history traits may require
different cues with different lag times before expression of the
phenotype (DeWitt et al., 1998). The reliability of the cue is also
important (DeWitt and Scheiner, 2004). The relative costs and benefits
of plasticity in individual traits may differ, and this may also
contribute to differences in levels of plasticity (Relyea, 2002; Koivula
et al., 2003). Finally, traits are linked both genetically and functionally,
and thus expressed plasticity in one trait would seem to require
simultaneous plastic expression in at least one other trait, and perhaps
more. In such cases, we may discover a hierarchy of trait plasticity that
reflects the relative importance of each trait in determining fitness.
The threespine stickleback adaptive radiation has proven a model
for understanding evolutionary processes in general (Bell and Foster,
1994), and for investigating behavioral (Foster and Wund, 2011;
Foster et al, 2015) and morphological (Wund et al., 2008, 2012)
plasticity specifically. In contrast, there has been much less discussion
of life-history plasticity in this model species. In this paper we seek to
summarize what we do know, and hopefully prompt researchers to
take fuller advantage of this easily studied species. For each core
reproductive trait noted earlier we provide a brief general overview of
plasticity in the trait, highlighting studies of fish where possible. This is
not a comprehensive review of plasticity per se, and hence the studies
we highlight are illustrative only; we minimize the number of
references for brevity. We indicate what we understand about plasticity
of each trait in stickleback, and the evidence that supports our
inference. We attempt to identify the cue that females use to adaptively
adjust trait expression, the reliability of the cue and the likely time lag
in response. In the last section we speculate on how plasticity may
operate within the overall life history of threespine stickleback,
discussing possible constraints, and costs and benefits where possible.

THE THREESPINE STICKLEBACK ADAPTIVE RADIATION

G. aculeatus comprises a very large complex of differentiated popula-
tions including a number of clear, but unnamed biological species
(Bell and Foster, 1994; McKinnon and Rundle, 2002). The complex is
broadly distributed in marine, brackish and coastal fresh waters in
boreal and temperate regions of the northern hemisphere, encom-
passing fully marine, estuarine, anadromous and freshwater lifestyles.
Freshwater populations in northern regions covered by ice during the
last glacial maximum must have been colonized in the past 12000
years (Reger and Pinney, 1996), whereas populations in unglaciated
regions can be much older (Oravec and Reimchen, 2013). Freshwater
populations in postglacial regions have generally been shown to
display pronounced parallelism in the divergence of behavior and
morphology among populations in response to foraging opportunities
(‘benthic-limnetic continuum’: Foster et al., 1998; Rundle et al., 2000),
and to differences in predation levels (Messler et al, 2007) that can
offer significant insights into the adaptive value of particular pheno-
types (Schluter, 2000). The impressive levels of parallelism in
morphology and behavior appear not to be mirrored in the patterns
of differentiation of female life-history attributes (Baker et al., 1998,
2005, 2008).

A second attribute of the threespine stickleback adaptive radiation
that is unusual, and of value with respect to understanding evolu-
tionary pattern, is the continued existence of oceanic stickleback,
considered to be reasonable surrogates for the ancestors that gave rise
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to the postglacial freshwater radiation within regions (see, for example,
Hohenloe et al., 2012; Foster, 2013). This attribute of the radiation
permits inference of the direction of evolutionary transitions, and
allows us to ask questions about the patterns of evolutionary change in
population contrasts.

INITIATION OF MATURATION

The size or age at which an organism begins to divert resources to
reproduction is a critical life-history trait (Henderson and Morgan,
2002; Barot et al, 2004). This may be especially important when
breeding opportunities are limited, as in semelparous fish (Crespi and
Teo, 2002), in monocarpic plants (Burd ef al., 2006) and in short-lived
organisms such as threespine stickleback (Baker et al., 2008) and
guppies (Reznick et al., 1990). Plasticity for size/age at reproduction
has been extensively modeled (Berrigan and Koella, 1994; Marty et al,
2011), comprehensively reviewed recently in insects (Teder et al,
2014) and has been demonstrated in a wide array of fish species
(Morita and Fukuwaka, 2006; Hutchings and Jones, 2008). Early-life
reproduction is likely to be particularly important in short-lived
species living in strongly seasonal environments that constrain
breeding to a short period of the year (Adolph and Porter, 1996;
Merila et al., 2000). Except for obligate annual species, the age at
which an organism matures is almost always plastic (Day and Rowe,
2002). In long-lived iteroparous organisms, this maturation plasticity
may permit the organism to skip reproductive events entirely
(Rideout et al., 2005; Skjeraasen et al., 2012). Some of the established
determinants of the expression of plasticity for maturity in fishes
include early-life growth rate (Bertechy and Fox, 1999; Copp and Fox,
2007), size (Teder et al., 2014) and energetic status (for example, lipid
content; Thorpe, 2007).

Females in most threespine stickleback populations can expect to
breed in only 1-2 seasons (Baker et al., 2008; but see Oravec and
Reimchen, 2013), even though in many populations older females are
often present. Seasonal constraints on the timing of the reproductive
period in most populations mean that if a female does not breed at
age 1, she must wait an entire year. Early reproduction, on average,
produces a higher intrinsic rate of increase because of reproductive
‘compounding’ (Roff, 2000; Anguilletta ef al., 2004), and thus selection
should favor plasticity because of the high value of reproducing at an
early age when it is profitable. Age and/or size at first breeding has
been shown to have a heritable basis in stickleback (McPhail, 1977;
Snyder and Dingle, 1989; Snyder, 1991), but several lines of evidence
strongly suggest that it is plastic as well. We have studied more than
130 freshwater populations over the past 20 years in Alaska and
southern British Columbia. In virtually all of these populations, a
(variable) proportion of first-year females is included in the breeding
pool in the wild (Figure 1). Although this could result from
populations consisting of a mixture of females that are genetically
determined to breed at either age 1 or age 2, and then die, the most
likely explanation is that females exhibit plasticity for initial age of
breeding. Such plasticity was nicely documented by Saito and Nakano
(1999) who demonstrated that females in one population bred either
at age 2 or age 3, depending upon the size they reached in the previous
year. We have raised more than 30 populations in the laboratory, and
have found that most females can become reproductive (given
appropriate light cues) at age 1, even in populations where age-1
breeders are uncommon in nature (for example, Walby Lake; Heins
et al., 2010). Furthermore, in the laboratory, the fish that fail to breed
at age 1 are nearly always unusually small individuals. These results
must be viewed with some caution, as our laboratory-reared fish
typically receive maximum rations throughout their first year of life,
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Figure 1 Size frequency of age-1 female threespine stickleback in Cornelius
Lake, Alaska. Solid bars indicate nonbreeding females, confirmed by
dissection; hatched bars indicate females that were in the clutch-production
cycle (Baker et al., 1998). Breeders are clearly primarily the larger fish,
although size is not a perfect predictor, as some larger fish are not breeders.
The main group of breeding females in this population are age-2 individuals.

and this may not be typical. Finally, Snyder (1991) showed that
stickleback could become reproductive as early as 195-220 days of age,
given sufficient growth and appropriate environmental cues.

In the wild, female oceanic stickleback in Alaska breed primarily
at age 2 (Baker et al, 1998, 2008; Karve et al, 2013; RW King,
unpublished data). Narver (1969) suggested that the ‘estuarine’
population in Chignik Lagoon, Alaska, bred at age 1; however, the
sizes of fish reported in that study (65-90 mm) are clearly age 2 based
on our extensive spatial and temporal sampling of ancestral popula-
tions in Alaska. Presumably, age-1 fish were not present on the
breeding grounds where Narver (1969) collected. Despite generally
breeding at age 2, a small and annually variable proportion of age-1
Alaska fish do breed (Figure 2). In British Columbia (JA Baker,
unpublished data) and the St Lawrence River estuary (Picard et al.,
1990), breeders are also a variable mix of age-1 and age-2 fish. As with
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freshwater stickleback, oceanic stickleback reared in the laboratory
(six populations from Alaska and three from British Columbia) all
show a very high probability of reproducing at age 1. These multiple
lines of evidence suggest that plasticity is the ancestral condition. In
most freshwater populations we observe at least two age classes of
breeding females, suggesting that many females can reproduce in
multiple years, as they do in the laboratory. Females from both
ancestral and freshwater populations that reproduce in the laboratory
at age 1 show a high probability of surviving to age 2 and breeding the
following year.

The cue initiating maturation is probably an aspect of the maternal
phenotype itself (Metcalfe and Monaghan, 2003), such as body size
(Weeks and Quattro, 1991; Saito and Nakano, 1999) or energy state
(Morgan, 2004; Vitousek et al., 2010). Our current work (ML Reyes
and JA Baker, unpublished data) suggests that size may be the most
important variable cueing reproduction at age 1 in stickleback, as fish
encountering a period of low rations late in their first growing season
recover size instead of lipid stores if ration is increased (Figure 3). This
also corresponds with the observation that size is the best predictor of
female reproductive output per clutch (Wootton, 1973a; Wootton,
1977; Ali and Wootton, 1999a; Baker et al., 2008), with energy state or
current ration level having smaller effects (Ali and Wootton, 1999a) or
no detectable effect at all.

Experiments (Wootton, 1973b; Inness and Metcalfe, 2008) show
that high rations increased the proportion of female stickleback that
matured at age 1, and that size is probably the best indicator of the
probability of maturing. Subsequently, Ali and Wootton (1999b)
found that breeding and nonbreeding first-year females did not differ
in average size, but they collected their fish from the wild in ‘mid-
winter’, when females may have already made a decision to mature or
not. Females begin mobilizing energy into ovarian and support tissue
in winter (Wootton et al., 1978, 1980; Wootton, 1994; Sokolowska and
Kulczykowska, 2006), indicating that a response (mature, or not) may
be determined several months before the reproductive season begins.
This suggests that the cue is likely to be highly reliable, because
reproducing when size or energy is insufficient likely leads to low
survival to age 2 (see, for example, Vitousek et al., 2010), and failing to
breed when size or energy is sufficient surrenders the compounding
advantage of early reproduction.

Reproduction at age 1 would be favored if it resulted in a lifetime
reproductive output exceeding that of females that delayed breeding to
age 2 (Roff, 2002). Because female size has the greatest influence on
clutch size, reproduction at age 1 should be favored only when it does
not substantially diminish survival to, or size at, age 2 (Hutchings,
1999). The enormous reproductive effort made by female stickleback
prevents most individuals from growing substantially during the
reproductive season (Wootton et al, 1978). However, in Alaska,
breeding ends by mid-July in most populations (Heins et al, 1999),
providing females up to 3 months of growth before the next winter.
This suggests that females of sufficient size and energy state that breed
at age 1 will be able to offset some of the growth cost of reproduction,
and will attain the highest lifetime output of potential offspring,
whereas smaller and/or less energetic females may do better by waiting
until age 2, favoring plasticity for this trait. This is the explanation for
the alternating reproductive age pattern observed by Saito and Nakano
(1999), in which seasonally late-hatched fish did not achieve the
minimum reproductive size until age 3, whereas early hatched fish
grew large enough to reproduce at age 2.
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Figure 2 Size frequency of anadromous threespine stickleback on the breeding ground in two Alaskan populations. (a-c) Anchor River population

1995-1997. (d) Mud Lake population (Karve et al., 2013). All fish are reproductive females captured on the breeding grounds. The clear size modes in Anchor
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Figure 3 Comparison of compensatory responses in somatic mass and lipid content of threespine stickleback in experimental (DPR3) and control (CONT) fish
that experienced a 50% reduction in ration in their fourth month of life (~2 months before over-wintering). The left panels show values at the end of
1 month of reduced ration; the right panels show values after a return to full ration for 1 month. The magnitude of the differences between control and
experimental fish for each panel is indicated by an effect size metric (Cohen’s d).
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REPRODUCTIVE EFFORT

The relationship between current and future performance is mani-
fested in one of the principal tradeoffs shaping life-history evolution—
the ‘cost of reproduction” (Reznick et al., 2000; Kuparinen et al., 2011).
The level of effort put toward reproduction can affect the probability
of survival (Gunderson, 1997; Moore and Attisano, 2011), future
reproduction via reduced growth (Roff, 2000; Tsiklris et al., 2007) or
both (Koivula et al, 2003), depending upon environmental conditions
(Shine, 1980; Hamel et al., 2014). Plasticity in level of reproductive
effort has been documented in a variety of ectotherms, including
insects (review in Nylin and Gotthard, 1998), fish (Pampoulie et al.,
2000; Kolm, 2001), snakes (Brown and Shine, 2007) and marine
iguanas (Vitousek et al., 2010). In animals, plastic expression can range
from clutch-to-clutch adjustments (Wisenden, 1993) to the sudden
abandonment of reproduction and resorption of eggs (Vitousek et al,
2010; Moore and Attisano, 2011). In some fish, annual opportunities
for spawning may be skipped (Trippel and Harvey, 1989; Skjeeraasen
et al., 2012). In iteroparous organisms like the threespine stickleback,
which are capable of producing multiple clutches in multiple years,
plasticity of reproductive effort may exist at three levels: (1) within
years across sequential clutches, (2) within years for the number of
clutches and (3) across years. These could represent different plastic
response mechanisms or different manifestations of a single plastic
mechanism.

The mass of the eggs spawned in a single clutch is a common proxy
for the relative amount of energy devoted to reproduction by a female
during the time interval required to produce the clutch (Roff, 2002).
Scaled to female body mass, this metric constitutes one of the most
widely used indices of reproductive effort (gonadosomatic index:
Gunderson and Dygert, 1988; relative clutch mass; Heins and Baker,
1993). On this basis, threespine stickleback make a relatively large
effort per clutch. Averaged over 83 populations, Alaskan stickleback
produce clutches that weigh more than one-fourth the somatic weight
of the female (mean=26.6%, Figure 1 in Baker et al, 2008), and
oceanic females produce clutches that weigh >36% their body weight
(Baker et al., 1998). Similar values were observed for stickleback from
British Columbia (Baker et al, 2013; JA Baker, unpublished data).
Wootton and Fletcher (2009) reported values of ~16% for their
highest ration; however, they used a different measure of female mass
in their calculations. An approximate adjustment indicates that their
values are similar, or only slightly lower, than ours.

Reproductive effort can also be evaluated over an entire season by
incorporating the frequency of clutch production. Our data for
multiple laboratory-reared populations, and that of Wootton for
Welsh populations (Wootton, 1973b; Wootton and Fletcher, 2009)
show that healthy, well-fed females can produce 8-9 clutches, and
occasionally more, at intervals of 3-9 days within a season, producing
up to 1000 eggs before ceasing reproduction (see also Brown-Peterson
and Heins, 2009). Thus, a female stickleback may produce eggs that
represent 1.4 times (Wootton and Fletcher, 2009) to 2.25 times
(JA Baker, personal observation) and to possibly 3—4 times her somatic
mass in one season (Wootton, 1973b). The careful experiments of
Wootton, 1973b) indicated that larger and better fed females produced
more clutches, but not larger relative clutch masses (scaled for body
size). This effect has been reported in other species (Donelson et al.,
2008; Hamel et al, 2009). Similarly, Hooker (1988) reported in an
experimental study of two stream stickleback populations from
extreme southwestern British Columbia that females could produce
up to 9 clutches per season, and a maximum total of about 850 eggs.
However, interclutch intervals ranged more widely (10-30 days), and
Hooker (1988) found that smaller females actually produced more
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Figure 4 The relationship between dry clutch mass (an indicator of
reproductive effort) and female somatic mass in Big Beaver Lake, Alaska,
1997. Each symbol indicates an individual female. At the mean somatic
mass of 0.90g, female clutch mass can vary higher or lower by as much as
one-third from the expected value along the regression line.

clutches, so that seasonal fecundity was almost independent of
female size.

The balance of experimental evidence thus suggests that clutch-to-
clutch plasticity in reproductive effort in threespine stickleback is
limited, and that females may generally reproduce near the maximum
level for their body size and energy state. These conclusions are also
consistent with the finding that the average level of reproductive effort
per clutch across stickleback populations closely tracks average body
size (Baker et al., 2008). Nevertheless, there is often substantial
individual variation in the clutch mass to body mass ratio among
wild-caught females (Figure 4) that is difficult to reconcile with the
experimental studies of Wootton, 1973b). Field data suggest that, as
the breeding season nears, individual females integrate cues from their
current state (body size, lipid stores, liver glycogen level) and ration
level to set the level of per-clutch reproductive effort for that season
(Vitousek et al., 2010) that, under certain circumstances, may result in
considerable individual variation about the population effort-size
trajectory. At present, we do not know how much of this variation
is due to constitutive (allelic variation) or plastic effects.

Reproductive effort in fish tends to remain fairly consistent
throughout a reproductive season (examples in Vrtilek and
Reichard, 2014), and therefore within-season plasticity of reproductive
effort may be mediated primarily via the number of clutches in many
cases. Studies by Ali and Wootton (1999a) and Wootton and Fletcher
(2009) show that once stickleback females begin reproducing, they
maintain their initial strategy of making a size-appropriate clutch mass
regardless of subsequent changes in ration levels. In contrast, inter-
clutch interval is sensitive to ration, lengthening under low rations.
This plasticity for interclutch interval may simply be a nonadaptive
response to resource reduction. However, it may also indicate adaptive
plasticity if the resources required to maintain the original interclutch
interval would result in a somatic cost (for example, poorer condition
or immune system function), leading to a lower survival probability.

Our evidence for substantial plasticity for reproductive effort also
includes comparisons of many populations assayed in the wild and
raised in a common laboratory environment. In the presumably
benign laboratory environment, effort is typically lower per clutch for
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first-year females than in the field (Figure 5; Baker et al., 2013).
Oceanic and estuarine populations, in which the majority of females
appear to breed in just 1 year, with few lifetime clutches (Narver, 1969;
Crivelli and Britton, 1987; Boulé and FitzGerald, 1989), show a
relatively small change compared with freshwater populations. Fresh-
water populations can produce many clutches in a single breeding
season (Wootton, 1973b; Wootton and Evans, 1976; Copp et al., 2002;
Wootton and Fletcher, 2009), and probably in more than a single year
in many populations (Baker et al., 2008; Lee et al., 2012). The smaller
reduction by ancestral stickleback in the laboratory suggests that more
limited plasticity of reproductive effort is the ancestral condition.
Reproductive effort also appears to be reduced with length of
migration in anadromous stickleback in Alaska (Karve et al., 2013;
JA Baker, personal observation), but at present we do not know
whether this represents plasticity or population-specific adaptive
variation.

The energetic needs of reproduction may be met in two ways—
stored energy or energy consumed as reproduction proceeds, corre-
sponding to the ends of a continuum from capital to income breeding
(Houston ef al., 2007; Stephens et al., 2009). It is likely that stickleback
fall somewhere between these extremes because even fed maximum
rations (16% body weight per day: Wootton and Fletcher, 2009),
stickleback reproductive effort declines over a spawning season.
Stickleback might express adaptive plasticity for this trait as well (as
do aspic vipers; Lourdais et al., 2002). Stickleback emerge from a 5-6-
month winter in early May in Alaska, and have 0.5-1.0 months to
regenerate lipid stores and liver glycogen for reproduction. Thus,
depending on their energy state emerging from the winter, and early-
season food quantity, females may enter the reproductive period with
varying levels of reproductive capital that then may cue plastic
adjustments in traits that depend critically on energy flow for
reproduction (Madsen and Shine, 1999; Casas et al., 2005).

A plausible explanation for the difference between data derived
from experimental versus wild-caught populations is that Wootton
worked with largely annual populations (for example, Wootton and
Fletcher, 2009), whereas our data come mostly from populations in
which females may reproduce over 2-3 years. Annual versus longer-
lived populations might be anticipated to evolve differently with regard
to the expression of plasticity in reproductive effort, and indeed
probably in most traits. Thus, our data suggest that stickleback may
exhibit more substantive plasticity, by setting an appropriate level of
reproductive effort before the breeding season—even though they do
not change that effort throughout a season.

Stickleback that can breed in more than a single season also often
display season-to-season plasticity in level of effort, expressed onto-
genetically as an increasing commitment to reproduction as they age.
That is, allometric slopes (model II, reflecting error in both x and y
variables) relating clutch mass to body mass are >1 in many
populations we have studied (Figure 6). Such an increase is expected
under lifetime allocation models of reproductive effort (Roff, 2002),
and thus represents adaptive plasticity. All of our data bearing on this
phenomenon are from cross-sectional studies of females of multiple
ages collected at one time, and we know of only one study (Lee et al.,
2012) that has tracked individual stickleback across multiple years.
However, numerous experiments by Wootton cited above suggest that
the population-level trends relating reproductive effort to body size/
age may mirror those of the individual females themselves. This form
of plasticity should be expressed even within a breeding season in
annual populations, and indeed this was observed by Poizat et al.
(1999) in the Camargue estuary, southern France. These data suggest
that plastic adjustments to reproductive effort between years is
adaptive, most likely because lower than maximum levels of repro-
duction at young ages can enhance survival to one or more subsequent
breeding years (minimize survival cost; Bertschy and Fox, 1999) in
most freshwater populations. The energy state of the female, perhaps
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Figure 6 (a) The distribution of population-level regression slopes (model 1) for 65 Alaskan populations of threespine stickleback. A slope of >1 indicates
that relative reproductive effort increases with size/age. (b) An example of a one population’s relationship; each filled circle represents an individual female.
A 99% bivariate probability ellipse is fitted to the data, with the model Il regression trend indicated by a dashed line.

in combination with current income, may be a cue to adjust the
overall level of reproductive effort to maximize survival to older ages,
at least in populations where older females commonly breed. In
contrast, older females may commit greater resources to reproduction
as they have reduced probability of breeding in future years.

Body size is the best predictor of clutch size in stickleback (Fletcher
and Wootton, 1995; JA Baker, personal observation), and a popula-
tion’s clutch mass to body mass regression trend may approximate the
constitutive expression of reproductive effort across the lifetime (the
trajectory). Individual females may have constituently lower or higher
efforts at each size, but may generally follow the population trajectory.
However, females could adaptively modify this expression by either
increasing or decreasing reproductive effort to maximize their
expected lifetime output of offspring. The cue is likely to be female
energy state, and current feeding conditions, and must act in just a few
weeks before first breeding of each season, and thus the lag time
between cue and response is relatively short. This is a clear case of
iterative developmental plasticity in which females are able to adjust
reproductive effort in relation to perceived food availability, individual
condition and expectation of future reproductive opportunities.

EGG SIZE

Offspring size is a critical life-history trait (Bernardo, 1996), and
selection on offspring size is often strong. It may be particularly
pronounced in fish (Kingsolver et al, 2001), and in which it
commonly favors larger size in the youngest fish (Duarte and
Alcaraz, 1989; Perez and Munch, 2010). In egg-laying species, an
additional complicating feature is that the females produce eggs, and
thus the egg-to-offspring mapping must also be taken into account.

Heredity

Although egg size itself may be under direct selection (Einum and
Fleming, 2000b; Simons, 2008), the primary target of selection in most
cases appears to be the size and performance of the fry. Thus, there is
often found to be a positive correlation between egg size and fry size or
capability (Einum and Fleming, 2000a; Segers and Taborsky, 2011).
Because even small differences early in life can lead to large variations
in fry fitness (Anderson, 1988; Perez and Munch, 2010; JA Baker,
unpublished data) plasticity should be a considerable advantage to
females. Egg-size plasticity has been well studied, and it is widespread
in both egg-laying (Kolm, 2001; Gagliano and McCormick, 2007) and
live-bearing (Rodd et al, 1997; Auer, 2010) fish. Complicating the
issue is the fact that egg size is a property of both the female and
offspring phenotype (Bernardo, 1996), and therefore the best egg size
for fry may not be the optimal egg size for females (Einum and
Fleming, 2000b). Females may express egg-size plasticity in at least
four ways (Marshall and Uller, 2007), three adaptive for themselves
and/or the fry (anticipatory, selfish and bet-hedging), and one
nonadaptive (transmissive).

Baker and Foster (2002) notwithstanding, egg size appears to show
no appreciable short-term adaptive plasticity in stickleback based on
experimental manipulation of female diet or condition (Fletcher and
Wootton, 1995; Ali and Wootton, 1999b; Inness and Metcalfe, 2008),
on comparisons across sequential field collections throughout a
breeding season (JA Baker, personal observation) or on sequential
clutches when reared in the laboratory (JA Baker, unpublished data).
In one population in Wales studied experimentally by Fletcher and
Wootton (1995), a significant, positive correlation was observed
between egg size and ration size as ration increased from 2 to 16%
body weight per day, suggesting adaptive plasticity with energy income



as the cue. However, this pattern was entirely generated by a reduced
egg size at only the lowest ration, suggesting nonadaptive plasticity
instead. Even under such widely varying rations, the lipid—protein
ratio of eggs remained unchanged (confirmed by Wootton and
Fletcher, 2009), a finding similar to that in Atlantic salmon (Berg
et al., 2001), although different from live-bearing guppies (Reznick
and Yang, 1993). In addition, unlike reproductive effort, we observed
no consistent difference in egg size between lab-raised and wild-caught
fish in most populations. Studies show that the cestode parasite
Schistocephalus solidus almost always reduces stickleback egg size
(Heins and Baker, 2003), and in most populations egg size is inversely
related to severity of parasitism, strongly implicating nonadaptive
nutrient theft (Heins and Baker, 2008; Heins et al., 2014). However, a
recent study found potential adaptive plasticity for egg size in two
populations (Heins and Baker, 2014), but in these cases the females
have a reliable cue—the parasite within them.

The most plausible explanation for the lack of clutch-to-clutch egg-
size plasticity is that females have no reliable cue to guide an
appropriate response. The highest mortality rate in most fish popula-
tions occurs at the youngest ages (Houde, 1987; Perez and Munch,
2010), and is often attributed to starvation. If so, the cue for
provisioning eggs should accurately predict fry feeding environment
if the plasticity is to be adaptive. The duration from onset of
vitellogenesis to exogenously feeding stickleback fry is at least 14 days
at mid-summer Alaska water temperatures (5-6 days to produce a
clutch, 6-7 days to hatch and 2-3 days to complete development and
begin exogenous feeding), and it is even longer at the cool tempera-
tures experienced early in the breeding season (JA Baker, unpublished
data). If female stickleback plastically established a target egg size at the
onset of vitellogenesis based on current information on the food
availability for fry, this cue would need accurately to predict conditions
2-3 weeks later. Unpredictable variability in weather, competing fry
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density and temperature make it unlikely that such a cue could be
sufficiently accurate.

Despite the apparent lack of short-term plasticity in egg size,
approximately half of all freshwater, and all oceanic, populations we
have studied exhibit egg-size plasticity between reproductive seasons
(iterative ontogenetic plasticity). This is expressed as a positive
relationship between egg size and female size or age (Figure 7;
Fletcher and Wootton, 1995; Baker et al, 1998, 2008, 2013). This
pattern implies that the ‘decision’ to produce eggs of a particular size
might be reset annually, cued by the size, age or energy state of the
female when she begins breeding in a particular year, a possibility
supported by modeling studies such as those by Kindsvater and Otto
(2014). However, this relationship is not displayed in all freshwater
populations in Alaska. Because the ancestor displays the relationship,
this indicates that some Alaskan populations may no longer express
this plasticity. If the cue is indeed internal to the female herself, this
could indicate that they have actually lost the ancestral ability to
plastically respond. Further evidence of age-related plasticity in egg size
is evident from plots comparing clutch size and egg size with female
size in one of our long-term study populations (Figure 8). In this
population in 1990-1993, females produced body size-appropriate
clutches throughout life, but the oldest females appeared to maintain
their fecundity by decreasing egg size. It is important to note that this
inferred plasticity is based only on cross-sectional studies thus far
(females of different sizes and ages within a collection).

CLUTCH SIZE

Clutch size may be the most fundamental life-history trait, as it
represents the maximum number of offspring that can result from a
single reproductive event. As a result, the diversity and evolution of
clutch sizes have been subjects of intense interest (Godfray et al,
1991). As opposed to reproductive effort, clutch size is relatively easily
defined, and relatively easily quantified if done so just before
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Figure 7 The relationship between egg size (mean dry mass) and female somatic mass (blotted, eviscerated) in four populations of Alaskan threespine
stickleback. (a) Resurrection Bay marine; (b) Anchor River anadromous; (c) Daniels Lake fresh water; (d) Bear Paw Lake fresh water.
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Figure 8 (a) The relationship between clutch size and female body size (3
years pooled) in the Solid Rock, Alaska, population. (b) The relationship
between egg size and female body size in the same population for the same
samples. Note that the oldest females (estimated to be age 4) produce
appropriate clutches for their body size, but produce smaller eggs than
expected.

reproduction. Plasticity for clutch size has been documented in a wide
array of poikilotherms (Roff et al, 1999: Klemetsen et al., 2003),
including numerous fish (Kennedy et al., 2008; Evans et al., 2010).
Little clutch-to-clutch size fluctuation is reported in ectotherms, but
there is evidence for long-term plasticity cued by energy acquisition
during the prespawning period when the gonads are developing.
In many exploited marine species, for example, downregulation of
fecundity is common as the spawning season approaches (Kennedy
et al, 2007, 2008, 2009), and is likely an adaptive adjustment of
spawning season fecundity to match nutrient levels.

Female stickleback are group-synchronous spawners (Wallace and
Selman, 1979), rapidly and synchronously enlarging a clutch of eggs
via vitellogenesis and then spawning all quickly in the nest of a single
male. This process may be repeated as many as 9 times in a single
season in freshwater populations (Wootton and Fletcher, 2009; JA
Baker, personal observation), although oceanic populations appear to
produce many fewer, though larger, clutches (Boule and FitzGerald,
1989; Dufresne et al., 1990; RW King, personal observation). Clutch
size mirrors reproductive effort in threespine stickleback (Baker et al.,
1998, 2008; Wootton and Fletcher, 2009), with population-level
correlations between these traits ranging from 0.79 to 0.90 (N=83
populations; JA Baker, unpublished data). High correlations between
these traits are typical other species as well (Su et al, 1997; Kinnison
et al, 2001). As with reproductive effort, clutch size is primarily a
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function of female size, and under a normal ration does not change
appreciably across spawnings (Wootton and Fletcher, 2009; JA Baker,
personal observation). Clutch size does show a tradeoff with egg size,
once female size effects have been removed (Baker et al., 1998, 2005;
Oravec and Reimchen, 2013). Stickleback may not be capable of
downregulating clutch size to the extent observed in many marine
species, but at present the potential for this to occur is unexplored.

It may be difficult to disentangle the effect of plasticity in
reproductive effort from that in clutch size or seasonal fecundity in
species like stickleback. Reproductive effort for a female of some
specified size can be approximated as clutch size X egg size. Plastic
reductions in reproductive effort would likely be achieved via
reductions in the number of follicles recruited into vitellogenesis
(assuming no change in egg size) and, as a result, clutch size will
decline proportionally to reproductive effort. The data cited earlier for
downregulation of fecundity in many marine fishes could thus
represent plasticity for level of reproductive effort instead. The
distinction is important because traditional life-history theory distin-
guishes reproductive effort, clutch size and egg size as linked traits, but
individually free to respond to natural selection (Jorgensen et al., 2011;
but see Winkler and Wallin, 1987).

PLASTICITY WITHIN AN OVERALL LIFE HISTORY

In this last section, we try to provide an illustration of how
multivariate plasticity might play out within the life history of a fish
like the threespine stickleback. For brevity and simplicity, we confine
ourselves to events that might occur during the reproductive portion
of the lifespan, although it is clear that events earlier in life may change
how the reproductive portion of the life history plays out (Lee et al,
2012). Plasticity for egg or offspring size is one of the most widely
reported aspects of fish life histories, and here we use it as a central
trait to explore how multivariate life histories may evolve. We first
examine the effect of egg-size plasticity in a hypothetical species that
possesses this ability. We then ask how stickleback might differ, given
their apparent lack of short-term egg-size plasticity. We also explore
the direction of evolution in fresh water given the known ancestral
condition.

Contemporary phenotypic evolutionary ecology emphasizes the
importance of the integration of multiple traits (Pigliucci, 2003;
Reynolds, 2009; Robinson and Beckerman, 2013). DeWitt and
Langerhans (2004) expand on this idea by differentiating between
constitutive and plastic aspects of integrated phenotypes. The effect of
plasticity, and the degree to which plasticity in one trait may be linked
to plasticity in other traits, depends upon the limits of plasticity in
each trait (Polacik et al., 2014), and the forms of the functions relating
specific trait values to fitness, modified by the effects of body size,
somatic condition (Reznick and Ghalambor, 2001; Ghalambor et al.,
2007), density (Leips et al, 2009) and perhaps growth rate. The
increase in maternal fitness derived from a plastic response
(for example, increased offspring survival or growth) should equal
or exceed the expected loss because of negatively correlated traits
(for example, the egg-size vs clutch-size tradeoff). This linkage has
implications for the evolutionary trajectory of life-history traits, and
for the evolution of plasticity in them.

If a plastic increase in egg size is cued by the environment
(presumably to maintain fry fitness), then to preserve the original,
presumably optimal, multivariate female life history, there must be a
plastic decrease in reproductive effort (~fecundity) to balance the
increased cost of reproduction. This is a logical adaptive tradeoff, as a
plastic increase in offspring size would likely only occur when
conditions (for example, food abundance) worsen. Without reducing



reproductive effort, future survival or reproduction would be com-
promised, lowering lifetime fitness. In fish that produce several
clutches per season, the lowered reproductive effort could be
accomplished via a reduction in the number of eggs produced per
clutch, to reduce per-clutch cost (an immediate tradeoff), or a reduced
number of clutches to reduce ‘cumulative’ seasonal reproductive cost
(a ‘delayed’ tradeoff). Which of these tactics confers greater fitness
depends upon their relative costs and benefits. Increased per-clutch
effort seems most likely to exact relatively immediate survival costs
(Siegel et al, 1987; Rodewald and Foster, 1998; Sinervo, 1999),
whereas longer-term costs may involve survival probability between
reproductive season, or future reproduction costs mediated by lower
growth or reduced condition (examples above) or physiological stress
(Edward and Chapman, 2011; Schwartz and Bronikowski, 2011). The
gain from a specified amount of expressed egg/offspring size plasticity
will be determined only partly by the shape of the offspring size-fitness
function (likely to be sigmoidal; Smith and Fretwell, 1974; Jorgenson
et al., 2011). In this example the amount of expressible plasticity in egg
size will also be constrained by the shape of the function relating the
level of reproductive effort to its cost. The shape of this cost function is
less clear. In addition, the total fitness gain in the above example will
depend upon female size, as in organisms like stickleback both
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fecundity (always) and egg size (often) are positive functions of
female size.

Female stickleback show a complex pattern of plasticity across the
traits we examined, and as indeterminate growers the life-history traits
are also strongly affected by body size (Wootton 1973a; Baker ef al.,
1998, 2008). A typical set of correlations among life-history traits,
female size and somatic condition are shown in Figure 9. Female
threespine stickleback show no clutch-to-clutch plasticity in egg size
and, therefore, if ration level for females is reduced for a length of time
sufficient to deplete energy capital, stickleback are unable to increase
egg size to buffer potential environmental effects on their offspring.
Adaptive plasticity may be expressible only by reduction in reproduc-
tive effort that, as indicated above, is probably mediated in one of (or a
combination of) the three ways: (1) via a reduction in the number of
follicles recruited into vitellogenesis (that is, reduced clutch size) as
body size/energy content declines, (2) via a longer interclutch interval
or (3) by earlier cessation of reproduction (produce fewer seasonal
clutches). If fluctuations in adult ration are mirrored by reductions in
fry ration (via density effects, for example; Allen et al., 2008), this
means that fry fitness would also be reduced as the environment now
requires a larger fry while, in addition, clutch size is also reduced—a
double hit to within-season fitness. Thus, the principal fitness benefit
of life-history plasticity must be survival to reproduce in a subsequent
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Figure 9 Matrix plot showing the relationships between female life-history traits, body mass and somatic condition in Big Beaver Lake, Alaska. The 99%
probability ellipses are plotted for each pairwise combination of traits. Correlations were based on log values for female somatic mass, clutch size, egg size
and clutch mass. Condition was the residual from a regression of log somatic mass on log SL.
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year. This option is available only to populations that can spawn in
multiple years, and as a result annual and longer-lived stickleback
populations could evolve differently with respect to their expressible
life-history plasticity.

The apparently limited within-season reproductive plasticity sug-
gests that much of the annual variation seen in stickleback populations
(Baker et al, 2008) might derive from variation in the relative
abundance of different genetically based phenotypes in response to
fluctuating natural selection. The oceanic stickleback that colonized
freshwater habitats following the most recent glaciation, and which
gave rise to the present-day adaptive radiation, appears to possess no
appreciable clutch-to-clutch plasticity for egg size. As suggested earlier,
this is likely because of the lack of an appropriate cue to fry conditions
on the spawning grounds. As a result, freshwater populations appear
to lack this plastic ability as well, and to date there is no indication that
any population has evolved this ability, although admittedly few have
been studied in sufficient detail. This situation appears parallel to that
shown by brown trout, in that local adaptation to different streams
was detected without substantial evolution of plasticity (Rogell et al.,
2012).

About half of all stickleback populations we have studied in Alaska
and British Columbia possess what we are calling season-to-season
plasticity in egg size, expressed as a positive relationship between egg
size and female size or age. The phenomenon is widespread (Roff,
1992), but a general explanation for why egg/offspring size should
increase with female size/age has not yet been found, although several
theoretical models (for example, Parker and Begon; Falster et al., 2008;
Kindsvater and Otto, 2014) suggest some possibilities. Unfortunately,
we can suggest no explanation for stickleback that fits with any of the
possibilities in their models. Despite the lack of an explanation, the
interesting fact is that the positive relationship is ancestral, and it
appears that perhaps half of all populations no longer express it. This
loss of response is almost certainly because of relaxed selection by
some unknown factor, and understanding the conditions that differ
between these types of populations may help to resolve the general
issue, although to date this has not been attempted.

In summary, the threespine stickleback adaptive radiation has been
widely used to investigate both adaptive change and phenotypic
plasticity in behavioral and morphological traits. Similarly, presumably
adaptive variation in life history has been documented for many
populations. However, the potential for using this system to under-
stand life-history plasticity, and to contrast it to evolutionary change,
has not been widely appreciated. The widespread geographic and
habitat distribution (Bell and Foster, 1994), the tremendous variation
of all life-history traits (Baker et al., 2008) and the relative ease of
studying stickleback in both nature and the laboratory make this
species ideal for such investigations.
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