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A parameter to quantify the degree of genetic mixing
among individuals in hybrid populations

ST Kalinowski and JH Powell

Hybridization between genetically distinct taxa is a complex evolutionary process. One challenge to studying hybrid populations
is quantifying the degree to which non-native genes have become evenly mixed among individuals in the population. In this
paper, we present a variance-based parameter, md, that measures the degree to which non-native genes are evenly distributed
among individuals in a population. The parameter has a minimum value of 0 for populations in which individuals from multiple
taxa are present but have not interbred, and a maximum value of 1 for populations in which all individuals have the same
amount of non-native ancestry. A recurrence equation showed that relatively few generations of random mating are required for
md to approach 1 (indicating a well-mixed population), and that md is independent of initial amounts of non-native ancestry.
The parameter is mathematically equivalent to FST and we show how existing formulae for FST can be used to estimate md when
diagnostic loci are available. Computer simulations showed this estimator to have very little bias for realistic amounts of data.
Heredity (2015) 114, 249–254; doi:10.1038/hdy.2014.93; published online 12 November 2014

INTRODUCTION

Hybridization between genetically distinct taxa is a complex ecological
process that has important implications for a diverse array of
population genetic questions. For example, medical geneticists study
admixed human populations to identify and map genes causing
diseases (for example, Mao et al., 2007; Cheng et al., 2010; Winkler
et al., 2010). Ecological geneticists study admixed populations to
understand how outbreeding affects survival and reproduction (for
example, Hogg et al., 2006; Johnson et al., 2010; Vander Wal et al.,
2012). Conservation geneticists study admixed populations to manage
the spread of introgressive hybridization (for example, Rhymer and
Simberloff, 1996; Hedrick, 2009; Muhlfeld et al., 2009). Agricultural
geneticists and environmental activists monitor wild populations to
detect genes from genetically modified organisms (for example,
Watrud et al., 2004; Piñeyro-Nelson et al., 2009; Zapiola and
Mallory-Smith, 2012). And finally, evolutionary biologists study
hybrid zones to better understand how selection, gene flow and mate
choice shape the genetic structure of natural populations (for example,
Barton and Hewitt, 1985).
Hybridization often begins when non-native individuals enter a

population and mate with individuals from a native taxon. At this
point, the population may have a ‘bimodal’ distribution of genotypes
(Harrison and Bogdanowicz, 1997). Such a population might consist
of mostly genetically ‘pure’ individuals of both taxa, and, potentially, a
few hybrid individuals. For some taxa, this will be as far as
hybridization proceeds (for example, Steeves et al., 2010). However,
if hybrids are fertile and pre-zygotic isolating mechanisms are weak,
hybridization may continue until all individuals in the population are
hybrids (Rhymer et al., 1994). At this point, ecologists sometimes call
the population a ‘hybrid swarm’ (for example, Allendorf et al., 2001).
If interbreeding continues, the distribution of non-native genes among

individuals in the population will become ‘unimodal’ and will
eventually approach the point in which all individuals have the same
amount of non-native genes—and the mixing can be viewed as
complete.
Genetic data are often used to quantify the amount of non-native

genes in admixed populations and the degree to which these genes
have become mixed in the population. The analysis of such data is
relatively straightforward when there are fixed genetic differences
between the taxa (for example, Rhymer et al., 1994), and sophisticated
methods are available to study hybridization when fixed genetic
differences between taxa are not present (for example, Pritchard
et al., 2000; Anderson and Thompson, 2002; Hey, 2010). Therefore, it
is usually relatively straightforward to use genetic data to estimate the
ancestry of each individual in a hybrid population.
One challenge to interpreting such data is the potentially complex

distribution of different levels of hybridity among individuals in the
population. As discussed above, the amount of non-native genes
present in individuals sometimes varies widely among the individuals
in a population. Quantifying this variability is relevant to many
analyses, but there is no widely accepted way to do this. A common
practice is to report the total proportion, P, of non-native genes in a
population and present a graph showing the distribution of non-native
genes among all individuals (for example, Pertoldi et al., 2010).
This approach conveys a lot of information about the distribution of
non-native genes among individuals in a population, but makes it
difficult to compare the degree of genetic mixing among different
populations.
Vernesi et al. (2003) developed a parameter, which they called the

‘true hybridization index’ (THI), that solves this problem by quantify-
ing how well the genes of multiple taxa are mixed in a population.
THI has a range of 0–1, with 0 indicating that no mixing has occurred
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(all individuals are genetically pure), and 1 indicating that the
population is thoroughly mixed (all individuals have the same amount
of ancestry from each contributing taxon).
The purpose of this present investigation is to extend Vernesi et al.

(2003) work in several ways. First, we show how their genetic mixing
parameter (which we call the ‘degree of genetic mixing’) can be
derived in a simple, biologically meaningful way. This new definition
allows us to show how the amount of genetic mixing in a population is
related to the amount of gametic disequilibrium present in a
population, and to show how the parameter increases in a randomly
mating population. We also present a nearly unbiased formula for
estimating this parameter when diagnostic loci are available and
discuss how best to estimate the parameter when diagnostic loci are
not available.

METHODS AND RESULTS

A genetic mixing parameter, md

We seek to derive a parameter (We use ‘parameter’ to refer to a
numeric characteristic of an entire population and ‘statistic’ to refer to
a quantity calculated from a sample (Everitt and Skrondal, 2010)) that
quantifies the degree of genetic mixing among taxa in a population
and has a range of 0 to 1. We will derive such a parameter here and
compare it to the parameter THI of Vernesi et al. (2003) in the
Discussion.
A parameter quantifying the degree of genetic mixing among taxa

can be derived as follows. As above, let P represent the overall
proportion of non-native genes in a population. Furthermore, let
Pi represent the proportion of non-native genes in the genome of the
ith individual. Finally, let N represent the total number of individuals
in the population. With this notation, P ¼ 1

N

P
iPi. The variance of Pi,

Var(Pi), serves as a useful measure of how well mixed native and non-
native genes are in the population. If the two taxa have interbred for a
long time, all individuals in the population will have similar values of
Pi, and Var(Pi) will be low. Var(Pi) will take a minimum value of zero
when all individuals in the population have exactly the same amount
of non-native ancestry. On the other hand, if there has not been
extensive interbreeding between the taxa present in the population,
Var(Pi) will be high. Var(Pi) will take a maximum value when all
individuals in the population are genetically pure members of either
taxa (Pi for every individual is either 0 or 1). The variance of Pi for this
case is P(1−P), the variance of a Bernoulli random variable. Given
this, we propose a measure, which we will call md, of how well mixed
non-native genes are in a population

md ¼ 1� Var Pið Þ
P 1� Pð Þ ð1Þ

This parameter is equivalent to THI as defined by Vernesi et al.
(2003) (see below), but we call it the ‘degree of genetic mixing’ in a
population because we do not believe it is appropriate to call any
parameter describing the amount of hybridization in a population the
‘true hybrid index’. There are lots of reasonable ways of quantifying
hybridization in a population, and, therefore, no single ‘true’ index.
This parameter has a minimum value of 0, which occurs when a
population consists of individuals from two species that have not yet
interbred, that is, Var(Pi)=P(1−P). This parameter has a maximum
value of 1.0, which occurs when all the individuals in the population
have the same amount of non-native ancestry. Note that md is
undefined if P equals 0 or 1. This is appropriate, as it does not make
sense to quantify how genetically well mixed a population is when
there are genes from only one taxon in the population.

Our parameter can also be defined for hybrid populations having
more than two taxa. Let Pj represent the proportion of the genes in the
population that belong to the jth taxa and let Pij represent the
proportion of genes in the ith individual that are from the jth taxa.
With this notation, md is equal to

md ¼ 1�
P

jVar Pji

� �
P

jPj 1� Pj

� � ð2Þ

Genetic mixing and gametic disequilibrium
It is well known that recently hybridized populations have high
amounts of gametic disequilibrium (even at unlinked loci), and that
this disequilibrium declines with time. This suggests that there may be
a relationship between md and the amount of gametic disequilibrium
in a population. This, indeed, is the case. Let D represent the
parametric amount of gametic disequilibrium present at a pair of loci
in a hybrid population, and let D represent the average value of
D across all the pairs of loci in the population. Barton and
Gale (1993); Equation 2b have shown that for populations in
Hardy–Weinberg equilibrium

Var Pið Þ ¼ 1
2D ð3Þ

If we divide both sides of Equation 3 by P(1−P), we obtain

Var Pið Þ
P 1� Pð Þ ¼

1
2D′ ð4Þ

where D′ is a popular standardized measure of gametic disequilibrium
that has a maximum value of 1.0 (Lewontin, 1964; Hedrick, 2011).
Combining Equations 1 and 4 shows the relationship between md

and D′

md ¼ 1� 1
2D′ ð5Þ

This is a very useful result for two reasons. First, it relates the degree
of mixing in a population to the amount of gametic disequilibrium
present in the population, a quantity frequently estimated in genetic
samples. Second, it allows us to make quantitative statements about
how quickly genes in a population will mix when there is random
mating.

Genetic mixing in randomly mating populations
Interpreting empirical estimates of md would be easier if we knew how
quickly it could increase in simple evolutionary scenarios, for example,
if there was random mating in a population. The relationship between
md and D′ makes it easy to make some simple statements about the
behavior of md in cases like this. For example, it is well known that
D and D′ for unlinked loci decrease by a factor of 0.5 in a randomly
mating population (for example, Hedrick, 2011). This fact tells that if
we use unlinked loci to estimate the ancestry of individuals, 1−md will
decrease by a factor of 0.5 every generation of random mating.
Therefore, if a population begins with genetically pure individuals
from two taxa (md= 0), and the individuals in the population mate
randomly for t generations, md at generation t, md

(t), will equal

md
tð Þ ¼ 1� 1

2

� �t ð6Þ
For the first three generations of random mating, md will equal 1/2,

3/4 and 7/8 (Figure 1). After five generations of random mating,
md will be ~ 0.97, and mixing will be nearly complete. This relation-
ship assumes that the population begins with genetically pure
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individuals from two taxa, but is independent of the proportion of
non-native individuals that enter the population.

Estimation
We will discuss estimation of md in two contexts: cases in which
diagnostic loci are available and cases in which diagnostic loci are not
available.

Estimation using diagnostic loci
Estimating md using diagnostic loci is facilitated by noting the term
Var(Pi)/P(1−P) in Equation 1 is mathematically equivalent to
Wright’s FST (Wright, 1951), or more specifically, FST for one locus
with two alleles. The only difference between md and FST is that Pi in
Equation 1 refers to the frequency of alleles in an individual whereas
Pi in Wright’s (1951) definition of FST refers to the frequency of alleles
in a population. The similarity is not coincidental. FST quantifies
how allele frequencies vary among populations; our parameter,
md, quantifies how allele frequencies vary among individuals. The
mathematical equivalence between md and FST allows us to use the
well-developed literature on FST to estimate md (see below).
If diagnostic loci are available to unambiguously discriminate

between native and non-native alleles, standard methods for estimat-
ing FST can be used to estimate md. For example, Weir and
Cockerham’s ŷ (1984) can be used to produce an estimate of md, m̂d

m̂d ¼ 1� ŷ ð7Þ
Weir and co-workers have presented a few alternative methods for
estimating ŷ (Weir and Cockerham, 1984; Weir and Hill, 2002; Weir,
2010). The method most appropriate for the application here is the
estimator designed to compare gene pools in randomly mating
populations (Weir and Cockerham, 1984, unlabeled equation at the
top of page 1363; Weir and Hill, 2002, Equation 5). Using our
notation, this estimator is calculated as

ŷ ¼
1

N s�1

P
iniðP̂i � PÞ2 � 1P

i
ðni�1Þ

P
iniP̂ið1� P̂iÞ

1
N s�1

P
iniðP̂i � PÞ2 þ ðn�1ÞP

i
ðni�1Þ

P
iniP̂ið1� P̂iÞ

ð8Þ

where Ns is the number of individuals sampled from a hybrid
population, ni is the number of amplified alleles in individual i, P̂i

is the estimated proportion of non-native alleles in the genome of
individual i, and n is the average number of alleles amplified in each
genotyped individual

n ¼ 1

N s � 1

Xn
i¼1

ni �
P

in
2
iP

ini

 !
ð9Þ

These equations, as noted above, are only applicable for loci having
diagnostic alleles.
ŷ can also be calculated using software designed for estimating FST

(for example; GENEPOP; Rousset, 2008). Doing this requires reorga-
nizing the data so that each individual in the sample is represented as a
population and the diagnostic alleles from all loci are pooled into a
single locus. Appendix shows how this can be done to create a
GENEPOP file (Rousset, 2008).
Weir and Cockerham’s (1984) ŷ is essentially unbiased when used

to estimate FST. However, ŷ may not be as unbiased when used to
estimate md. Weir and Cockerham’s formula for ŷ (Equation 8 in our
paper) assumes alleles sampled from an individual are random and
independent draws from a gene pool (which, in our application, is an
individual’s genome). With this assumption, the estimated proportion
of non-native ancestry in the ith individual, P̂i, will be binomially

distributed. This will not be true when there is gametic disequilibrium
in a population (for example, in the early generations of hybridiza-
tion). When there is gametic disequilibrium in a population, the alleles
present in diploid genotypes are not always going to be independent.
This is easily seen by considering an F1 individual (that is, an
individual having one parent from each hybridizing taxon). In an F1

Figure 1 The distribution of hybridity coefficients (Pi) among individuals in a
randomly mating populations over five generations (t=0–5). Individuals with
Pi equal to 0 or 1 are genetically pure members of alternative taxa.
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individual, every locus will be heterozygous and Pi will equal 0.5.
Because each locus is heterozygous, P̂i will also equal 0.5—no matter
how few or many loci are genotyped. In other words, when an F1
individual is genotyped, there will be no sampling error in P̂i.
Equation 8 assumes binomial sampling error, so terms in Equation
8 intended to eliminate sampling bias will not work as intended. This
could result in a negative estimate of Var(Pi)/P(1−P), which would
produce an estimate of md that is 41.0. This is equivalent to an
estimate of FST being ozero.
We used computer simulations to estimate how much bias there

was in the estimates of md calculated from Equation 7 and 8 for
realistic amounts of data. We simulated populations of 50, 200 and
2000 randomly mating individuals that were founded with 20% non-
native individuals. We modeled these populations after cutthroat trout
(Oncorhynchus clarkii)—a species which frequently hybridizes with
non-native rainbow trout (O. mykiss)—and assumed the ratio of the
genetic effective population size, Ne, to census size, N, was 0.23 (Finger
et al., 2011). We achieved this ratio of Ne to N by varying the
reproductive success according to the method of Anderson (2001). For
each individual, 52 chromosomal arms were simulated with 10 equally
spaced, species–specific diagnostic di-allelic loci. Recombination was
allowed to occur once per chromosomal arm per generation
(Danzmann et al., 2005). In each generation we calculated the true
degree of mixing, md, for each population. Then we drew 1000
simulated samples of 10, 20, 50 or 100 individuals with genotypes at 8,
16, 48 and 96 loci. The bias in estimates of md was calculated by
comparing the average estimate of md with the parametric value for
the populations, that is, bias ¼ average m̂dð Þ �md .
The simulations were performed using a program written by us in R

(R Development Core Team, 2008).
The computer simulations showed that there was only a modest

amount of bias in the first few generations of mating, and this bias was
becoming negligible by the fifth generation (Table 1). In all cases,
estimates of md tended to be slightly higher than the parametric value
(that is, the bias was positive). As expected, the amount of bias was
greatest in small samples, and for populations in the early stages of
hybridization. The smallest samples we examined had 10 individuals
genotyped at eight diagnostic loci. Even with these small samples, the
bias observed in the second generation (0.0330), was only 4.4% of the
parametric value (0.75). When the number of diagnostic loci was
increased to 16, the bias was reduced to just over 2%. The bias present
in the estimates of md for populations that had five generations of

random mating (md= 0.97) was much lower. Even for the smallest
samples, it was only 0.6% of the parametric value.

Estimation using non-diagnostic loci
When diagnostic loci are not available, md can be estimated by
estimating the ancestry of each individual in a sample, and then
inserting these estimates into Equations 1 or 2, (depending on the
number of taxa involved). There are a variety of methods for
estimating the ancestry (Pi) of hybrid individuals using loci that do
not have diagnostic alleles (for example, Pritchard et al., 2000;
Anderson and Thompson, 2002). The computer programs STRUC-
TURE and NEWHYBRIDS have been popular for this type of analysis.
The accuracy of estimates of md obtained from Pi′s calculated by these
programs will depend on how well the Pi′s are estimated. md is
calculated from the variance of Pi, so if there is a bias in this variance,
there will be a bias in estimates of md. Little is known about the error
structure of STRUCTURE or similar analytic approaches, but it is
likely that these errors will be affected by the amount of genetic
differentiation among the taxa being studied, the number of loci
genotyped and the amount of genetic variation at those loci.
We performed a series of computer simulations to explore how

estimation error in Pi′s affected estimates of md. A systematic
investigation of the error structure present in STRUCTURE or
NEWHYBRIDS is beyond the scope of this investigation, so we
examined how three plausible, generic models of estimation error
affected estimates of md. In all simulations, we assumed there were two
hybridizing taxa. As above, we simulated populations of 50, 200 or
2000 individuals and kept track of the parametric values of Pi for each
individual in the population. Estimates of Pi were obtained in the
simulation by assuming one of the three statistical models of
estimation error. The first model assumed that the ancestry of one
of the taxa was always underestimated by a constant amount. The
second model assumed that estimates of the ancestry of two taxa were
biased towards 0.5 by a constant proportion. The third model assumed
that estimation error was normally distributed. We tested different
magnitudes of estimation error for each model and ran 10 000
simulations for each case to quantify the bias in estimates of md.
The simulations showed that the bias in estimates of md was a

function of how well the ancestry of each individual, Pi, was estimated
(results not shown). Good estimates of Pi produced good estimates of
md. There did not appear to be any thresholds affecting how
estimation error in Pi was propagated to estimates of md.

DISCUSSION

We have defined and derived a parameter, md, that quantifies the
amount of genetic mixing of native and non-native genes in a hybrid
population. The parameter that we developed is related to both FST
and the average amount of pairwise gametic disequilibrium in a
population. The value of this parameter will rapidly approach 1.0 in
randomly mating populations; after five generations of random
mating, md will be ~ 0.97. Computer simulations showed that when
diagnostic loci are available, one of Weir and Cockerham’s (1984)
estimators of FST did a very nice job of estimating md. If diagnostic loci
are not available, md can be estimated by inserting the estimated
ancestry of each individual into Equations 1 or 2,.
The genetic mixing parameter described here may be thought of as

an alternative version of the ‘true hybridization index’ (THI) para-
meter of Vernesi et al. (2003). Both parameters have a range of 0 to 1.0
and both parameters quantify as to how well genes are mixed in a
population. In fact, md and THI are mathematically equivalent. The
main difference between md and THI is how the parameters are

Table 1 Statistical bias of m̂d calculated from Equation 6 and 9
estimated from computer simulations for samples of varying sizes
(NLoci, NIndividuals) from a population of 200 individuals after t
generations of random mating (see text for details)

NLoci

t=2: md=0.75 t=5: md=0.97

NIndividuals NIndividuals

10 20 50 10 20 50

8 0.0330 0.0326 0.0325 0.0065 0.0062 0.0059

16 0.0154 0.0150 0.0150 0.0036 0.0034 0.0032

48 0.0043 0.0039 0.0039 0.0015 0.0015 0.0014

96 0.0016 0.0012 0.0012 0.0010 0.0010 0.0010

Note that the bias was positive in all the cases; this indicates that the estimated values of md
tended to be higher than the parametric value.
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defined. md is defined as a variance of the amount of non-native genes
across individuals in a population. As noted above, this variance will be
zero when the population is genetically well mixed and all individuals
have the same amount of non-native ancestry. THI is defined as the
average variance of genetic ancestry within individuals. This is
explained as follows. The first step in calculating THI is calculating
the variance of ancestry, Vi, within each individual in the sample. If d
taxa are hybridizing, and we use our notation, the variance of non-

native genes in the ith individual is Vi ¼
P

j
Pij�1

dð Þ2
d . Notice that this

variance measures how close the native and non-native ancestries of
an individual are to 1/d. This quantity, somewhat surprisingly, is
related to the amount of mixing in a population. If all the individuals
in a population are genetically pure, the proportion of native and non-
natives genes in the ith individual, Pij, will be 0 or 1,and the values of
Vi for every individual will be relatively high. On the other hand, if all
individuals in a population have the same amount of non-native
genes, the values of Pij will be closer to 1/d and the values of Vi will be
smaller. This is the principle THI uses to quantify the amount of
mixing in a population. More specifically, THI is calculated by taking
the average of Vi across individuals and then standardized to account
for the minimum and maximum values of this average (given the
amount of non-native genes in the population). This calculation
produces a quantity with the same value as md. md has the advantage
of a simple, easy-to-interpret definition. This is important because it
allowed us to relate md to the amount of gametic disequilibrium in a
population, identify howmd changed in randomly mating populations,
and estimate md using formulae for FST.
In randomly mating populations, md will rapidly approach 1.0 at a

rate specified by Equation 6. There are, however, many plausible
reasons as to why natural populations will behave differently. For
example, if mating between the two taxa is not random, genetic
mixing may proceed more slowly. Alternatively, if hybrid individuals
have a lower evolutionary fitness, mixing will be slower. Mixing will
also appear to be slower if non-native individuals continuously enter a
population. And, finally, the rate of mixing will be affected by the
genotypes of the first individuals to enter a population. If these
individuals have mixed ancestry, md will be higher than if the first
immigrants were genetically pure non-natives.
A few comments regarding the definition of a ‘hybrid swarm’ may

be useful, as several definitions are present in the literature. Rhymer
and Simberloff (1996) defined a hybrid swarm as a population
containing individuals with various degrees of non-native ancestry.
Allendorf et al. (2001) used a slightly different definition; they specified
that all individuals in a hybrid swarm must be hybrids. Finally,
Allendorf and Leary (1988) provided the most strict definition; they
defined a hybrid swarm as a population in which all individuals in the
population have the same amount of non-native ancestry (that is,
md= 1). All of these definitions may be useful, but in some
circumstances it may be more useful to quantify how well mixed
non-native genes are in a population rather than to classify a
population as being a hybrid swarm or not. This is especially likely
to be true as the number of loci used to study hybridization increases.
Genomic data are expected to have very high power to detect slight
amounts of variation in ancestry. Therefore, when genomic data are
available, it may not be useful to define a hybrid swarm as a
population in which all individuals have the same amount of non-
native ancestry.
We conclude this paper with a discussion of what it means for genes

in a hybrid population to be ‘mixed.’ We have assumed throughout
this paper that native and non-native genes are well mixed when all

the individuals in the population have the same amount of non-native
ancestry. This criterion should be useful for studying populations that
are in the early stages of hybridization or have stable distributions of
hybrid genotypes. Other mixing criteria and parameters may be more
informative for examining populations that have been hybridizing for
a long time. In particular, if populations have been hybridizing for a
long time, it may be more useful to quantify how thoroughly
recombination has broken up and shuffled the genomes of native
and non-native taxa into small chromosomal segments (for example,
vonHoldt et al., 2011 and references within). When genomic data are
available, such an approach can be used to date the timing of
admixture (Tang et al., 2006). If such data are not available, and a
population is in the early stages of admixture, the mixing degree
parameter presented in this paper should be informative.
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APPENDIX

GENEPOP files with genotypes of standard format and reformatted to
estimate Var(Pi)/P(1−P). As an example, let us consider a sample
of four fish, in which: two fish are native fish with no non-native
genes, one fish is an F1 hybrid, and the last fish is a pure non-
native fish.
Here is a sample data file for these four individuals with diploid

genotypes at three loci.

Sample GENEPOP data in normal format

Diagnostic Locus1, Diagnostic Locus2, Diagnostic

Locus3

POP
Ind1, 11 11 11
Ind2, 11 11 11
Ind3, 12 12 12
Ind4, 22 22 22

The data file above can be reformatted to estimate Var(Pi)/P(1−P)
using GENEPOP (see below). Note that each individual in the original
sample is considered a ‘population’ in the reformatted GENEPOP file.
Note also the data is reformatted to be haploid.

Sample GENEPOP data reformatted to calculate Var

(Pi)/[P(1P)]

Diagnostic Loci
POP
Ind1Locus1a, 01
Ind1Locus1b, 01
Ind1Locus2a, 01
Ind1Locus2b, 01
Ind1Locus3a, 01
Ind1Locus3b, 01
POP
Ind2Locus1a, 01
Ind2Locus1b, 01
Ind2Locus2a, 01
Ind2Locus2b, 01
Ind2Locus3a, 01
Ind2Locus3b, 01
POP
Ind3Locus1a, 01
Ind3Locus1b, 02
Ind3Locus2a, 01
Ind3Locus2b, 02
Ind3Locus3a, 01
Ind3Locus3b, 02
POP
Ind4Locus1a, 02
Ind4Locus1b, 02
Ind4Locus2a, 02
Ind4Locus2b, 02
Ind4Locus3a, 02
Ind4Locus3b, 02

In this example, the parametric value of md is equal to 0.2667. An
estimate calculated from GENEPOP’s estimate of Var(Pi)/P(1−P) is
equal to 0.2571.
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