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A maximum-likelihood estimation of pairwise relatedness
for autopolyploids

K Huang1,3, ST Guo1,3, MR Shattuck2, ST Chen1, XG Qi1, P Zhang1 and BG Li1

Relatedness between individuals is central to ecological genetics. Multiple methods are available to quantify relatedness from
molecular data, including method-of-moment and maximum-likelihood estimators. We describe a maximum-likelihood estimator
for autopolyploids, and quantify its statistical performance under a range of biologically relevant conditions. The statistical
performances of five additional polyploid estimators of relatedness were also quantified under identical conditions. When
comparing truncated estimators, the maximum-likelihood estimator exhibited lower root mean square error under some conditions
and was more biased for non-relatives, especially when the number of alleles per loci was low. However, even under these
conditions, this bias was reduced to be statistically insignificant with more robust genetic sampling. We also considered
ambiguity in polyploid heterozygote genotyping and developed a weighting methodology for candidate genotypes. The statistical
performances of three polyploid estimators under both ideal and actual conditions (including inbreeding and double reduction)
were compared. The software package POLYRELATEDNESS is available to perform this estimation and supports a maximum ploidy
of eight.
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INTRODUCTION

Knowledge of the relatedness between individuals in a population is of
central importance to many aspects of biology, including population
genetics, conservation and sociobiology (that is, Charpentier et al.,
2012; Mattila et al., 2012; Liu et al., 2013). Although the coefficient of
relatedness between individuals can be calculated from a known
pedigree, in the absence of this information, relatedness can be
estimated using genetic marker data. A number of estimators have
been developed for this purpose and can generally be classified into
two categories: method-of-moment and maximum-likelihood
estimators.
Method-of-moment estimators substitute sample moments for

the unknown population moment to estimate various population
parameters. These methods can generate an unbiased estimation of
relatedness, including either r directly (that is, Queller and Goodnight,
1989; Li et al., 1993; Ritland, 1996), or both r and Δ (four-gene
coefficient, the probability that both genes of one individual are
identical by descent (IBD) to both genes of another individual)
simultaneously (that is, Lynch and Ritland, 1999; Wang, 2002;
Thomas, 2010). Here we define r as the probability that an allele
sampled from one individual at a locus is IBD to one of the alleles
from the other individual. Although this IBD definition of relatedness
is incompatible with that of Wright (1921), which was based on the
correlation between individual allele frequencies (see Supplementary
Files for details), the two definitions are identical in the absence of
double reduction, inbreeding and selfing. According to IBD, r should

range from 0 to 1. However, method-of-moment estimators can
produce relatedness values outside of this range. This potential
problem can be resolved by truncating the estimators, although this
produces bias (Milligan, 2003; Wang, 2011).
The second method, maximum likelihood, was developed by

Milligan (2003) and Anderson and Weir (2007) for estimating
pairwise relatedness. This was based on the earlier work of
Thompson (1975). Maximum likelihood estimates the probability of
observing a given pairwise allelic pattern ϕ (two-gene coefficient, the
probability that a single allele in one individual is IBD to one in
another individual), Δ and the allele frequencies. By searching
parameter space for ϕ and Δ values that maximize the probability
of the genotype pattern observed, maximum-likelihood values can be
determined. Because maximization can be limited to the parameter
space as defined by probabilities of IBD, invalid values for the
parameters are avoided.
Both methods are limited to making estimations based on disomic

inheritance. Although some coefficient of coancestry estimators
developed for diploids can be extended to polyploids (that is,
Loiselle et al., 1995; Ritland, 1996), as has been done in the software
SPAGEDI V1.4 (Hardy and Vekemans, 2002), they fail to directly
estimate polysomic inheritance. A significant proportion of plant
species are autopolyploid, with 30–80% of angiosperms showing
polyploidy (Burow et al., 2001) and most lineages showing evidence
of paleoploidy (Otto, 2007). Although rare, polyploidy is also present
in animals (for example, Salmonidae fish, African clawed frog:
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Xenopus laevis, Weather Loach: Misgurnus anguillicaudatus). There
are two distinct mechanisms of genome duplication that result in
polyploidy: allopolyploidy and autopolyploidy. In allopolyploidy,
chromosomes originate from two species; in autopolyploidy, all
chromosomes originate within a single species, often due to unreduced
gametes. This paper focuses on autopolyploids.
Because of their importance to agriculture, there has been much

scientific investigation of plant autopolyploids (López-Pujol et al.,
2004; Luo et al., 2006). In addition, autopolyploids do not exhibit
disomic inheritance, whereas allopolyploids do so because of minor
differences between chromosomes originating from different species
(Luo et al., 2006). Polyploids displaying disomic inheritance can thus
be described using normal diploid models once alleles are assigned to
the alternative duplicated loci (cf Ritland and Ganders, 1985).
However, diploid models cannot be applied to polyploids that display
polysomic inheritance, that is, autopolyploids. Thus, few models apply
directly to autopolyploids (cf Murawski et al., 1994; Thompson and
Ritland, 2006). Here we focus on polyploids displaying polysomic
inheritance, and introduce a maximum-likelihood method for esti-
mating coefficients of relatedness for co-dominant markers in
panmictic populations.

THEORY AND MODELLING

Identity-by-descent and relationship estimation
Most estimators assume that: (i) populations are large (that is, in the
limit of infinite) and panmictic; (ii) there is no inbreeding; and
(iii) individuals have autosomal loci with Mendelian inheritance. In
diploids, the relatedness coefficient (r) can be calculated from two
‘higher-order’ coefficients:

r ¼ f=2þ D: ð1Þ
Δ is the probability that two individuals share two alleles that are

IBD at any given locus, and ϕ is the probability that they both share
one allele that is IBD (Lynch and Ritland, 1999). For example, the
probability that parents and offspring share an allele that is IBD is 1, so
ϕ= 1 and Δ= 0; the probability that full-sibs share one or two alleles
that are IBD is either 0.5 or 0.25, so ϕ= 0.5 and Δ= 0.25. The ϕ and
Δ for specific relationships are listed in Table 1.
Using the same assumptions and assuming no inbreeding or

double reduction, in tetraploids, the relatedness coefficient can be
expressed as:

r ¼
X4
i¼0

iDi=4; ð2Þ

where
P4

i¼0 Di ¼ 1, and Δi is the probability that two tetraploids
share i alleles that are IBD at any given locus. For relationships
between polyploids in outbred populations, r is equivalent to that of
diploids. The values of deltas for tetraploid relatives, assuming no
double reduction (in polyploids, the phenomenon in which two
chromatids of a single chromosome can pass to a same gamete;
Mather, 1936), are shown in Table 1.
For inbred populations, Jacquard (1972) described a set of nine

identity-by-descent configurations that fully describe the possible IBD
relationships between a set of four alleles possessed by two diploids.
These are denoted d1,…,d9 and are shown in Figure 1. The probability
that a pair of individuals are in IBD mode di is denoted as δi.
Therefore, the coefficient of coancestry (denoted as θ, an equivalent
parameter measuring the probability that two alleles, one randomly
drawn from each individual, are IBD; Jacquard, 1972) is:

y ¼ d1 þ 1

2
d3 þ d5 þ d7ð Þ þ 1

4
d8: ð3Þ

Here, the coefficient of δi is the number of IBD allele dyads between
two individuals of di (Figure 1). In outbred populations, the two alleles
in a single individual cannot be IBD, so the first six IBD configurations
are not possible and δi= 0 (i= 1,…,6), reducing Equation (3) to
Equation (1), and r= 2θ.
The possible IBD relationships between tetraploids are more

complex, with a total of 109 IBD configurations possibly existing
between two individuals (see Supplementary Materials). Because this
estimate assumes outbreeding, we do not further consider inbreeding.
Thus, only five configurations are possible, denoted Di (0⩽ i⩽ 4,
where i is the number of IBD alleles shared by two individuals). The
IBD configuration for a pair of individuals cannot be obtained from
their genotypes, because alleles with the same allelic type may not be
IBD. However, alleles identical by state (IBS) can be determined; these
are alleles sharing the same allelic type, which include those that are
both IBD and non-IBD.
There are 9 and 109 IBS configurations in diploids and tetraploids,

respectively. Denoted as s1,…,s9 and S0,…,S108, their patterns are
similar to IBD configurations. For diploids, the lines in Figure 1
represent alleles with the same allelic type. IBS modes for autote-
traploids are given in Supplementary Materials.
Under the assumption that two individuals belong to a single

population that conforms to the Hardy–Weinberg equilibrium, the
probabilities of observing each IBS configuration (S), conditioned on a
particular IBD mode (D), can be calculated. The conditional
probabilities of five outbred IBD configurations, in which one
genotype is AiAiAiAi, are shown in Table 2. Additional conditional
probabilities can be generated by an additional programme (see
Supplementary Files). The conditional probability is the sum of the
products of the probabilities of three sub-genotypes:

Pr SjDð Þ ¼
X

Pr Gab;i

� �
Pr Ga;i

� �
Pr Gb;i

� �
: ð4Þ

Where Gab is the IBD sub-genotype shared by two individuals, and
Ga and Gb are the additional two non-IBD sub-genotypes of two
individuals a and b, respectively. The sub-genotype is a subset of a
genotype if a genotype can be defined as a multiple set, because the
sub-genotype of a tetraploid can consist of zero to four alleles. Pr(G) is
the probability of choosing G from sub-genotypes with the same
number of alleles as for G. For example, Pr AiAið Þ ¼ p2i and
Pr AiAiAjAj

� � ¼ 6p2i p
2
j , where pi and pj denote the allele frequencies

of Ai and Aj, respectively.
Taking Pr(AiAiAiAi, AiAiAiAj|D2) as an example, there is only one

possible Gab, Ga and Gb: Gab=AiAi, Ga=AiAi and Gb=AiAj. Using the

Table 1 Relatedness coefficients for specific relationships in diploids

and tetraploids in the absence of selfing, inbreeding or double

reduction

Relationship r Diploids Tetraploids

Δ ϕ Δ4 Δ3 Δ2 Δ1

Self/clone 1 1 0 1 0 0 0

Parent/offspring 1/2 0 1 0 0 1 0

Full-sib 1/2 1/4 1/2 1/36 2/9 1/2 2/9

Half-sib/grandparent 1/4 0 1/2 0 0 1/6 2/3

Nephew 1/4 0 1/2 0 0 2/9 5/9

Great-grandparent 1/8 0 1/4 0 0 1/36 4/9

First cousin/grand-nephew 1/8 0 1/4 0 0 1/27 23/54

Non-relatives 0 0 0 0 0 0 0
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probabilities given in Table 2, the single-locus likelihood of a specific
relationship with Δ= [Δ4,…,Δ0]

T between two individuals can be
calculated. When the IBS mode of those individuals is S, conditioning
on the IBD mode yields:

L ¼ Pr SjDð Þ ¼
X

Pr SjDið ÞDi: ð5Þ
Although each locus is characterized by its own set of allele

frequencies for multilocus estimation, the degree of relatedness
between the two individuals (Δ) is constant across loci because it
represents their overall relatedness to each other. Therefore, the
multilocus likelihood for unlinked loci is obtained by taking the
product of the single-locus likelihoods. The logarithm of likelihoods
(L*) for each loci is computed to simplify the calculations, and their
summary is denoted as L�.

L� ¼
X

L�j : ð6Þ

Parameter space
The maximum-likelihood estimate of Δ is found by searching the
parameter space until a maximum is found. In outbred populations,
the parameter space of Δ is ∑Δi= 1 and 0⩽Δi⩽ 1. Another
constraint for diploids in outbred populations was given by
Thompson (1976): diploid IBD parameters Δ and ϕ are subject to
the constraint 4Δ(1−Δ−ϕ)oϕ2, which is applied by Anderson and
Weir (2007) but not by Milligan (2003). We considered the situation
in which two individuals have fathers who are related and mothers
who are also related, but the mother and father of any given individual
are unrelated. Under such conditions, p and q were the probabilities
that two individuals shared an IBD allele inherited from their fathers
and mothers, respectively. As these two events are independent, the
diploid IBD parameters Δ and ϕ can be expressed as follows:

D ¼ pq

and

f ¼ 1� pð Þqþ 1� qð Þp;
where 0⩽ p and q⩽ 1. Following the same procedures, we assumed
that pi is the probability that two tetraploids from an outbred
population share i IBD alleles inherited from their fathers, and qi is
the probability for i IBD alleles inherited from their mothers. Thus,
the tetraploid IBD parameters Δi can be expressed as:

Di ¼
Xi

j¼0

pjqi�j:

Thus, the constraint for Δ can be calculated although complicated
to express, and equivalent information is contained within pi and qi.
Therefore, we used pi and qi instead for searching as they are inside the

parameter space, making the tetraploid IBD parameters valid. By
simulation, we found that Thompson’s (1976) constraint can reduce
bias of the likelihood estimator.

Genotype ambiguity
A distinct feature of polyploidy population genetics is the formation of
partial heterozygotes. Alleles can vary in number from 0 to 4 copies in
tetraploids. For example, there are three types of partial heterozygotes
(that is, AiAiAiAj, AiAiAiAj and AiAjAjAj) if two alleles (Ai and Aj) are
present in an ambiguous genotype. Although some methods are able
to determine tetraploid genotype (that is, Xu et al., 2002; Pfeiffer et al.,
2011; Serang et al., 2012; Voorrips et al., 2011; Uitdewilligen et al.,
2013), additional instrument or software may be required.
We describe an alternative method to estimate the coefficient

of relatedness in scenarios in which heterozygote genotypes are
unclear but allele frequencies are known. If two types of alleles,
Ai and Aj, are detected in an individual, the probability ratio of
the three possible genotypes AiAiAiAj, AiAiAjAj and AiAjAjAj is
4p3i pj : 6p

2
i p

2
j : 4pip

3
j ¼ 2p2i : 3pipj : 2p

2
j . Similarly, if three alleles

are detected, Ai, Aj and Ak, the probability ratio of the
three genotypes AiAiAjAk, AiAjAjAk and AiAjAkAk is
12p2i pjpk : 12pip

2
j pk : 12pipjp

2
k ¼ pi : pj : pk. Subsequently, each

possible genotype dyad of the two individuals is weighted by its
probability, allowing Equation (6) to be modified to:

L� ¼
X
j;k

Pj;kL
�
j;k;

where Pj,k is the probability of kth possible genotype pairs at the jth
locus, and L�j;k is the logarithm of this value. The remaining steps are
unchanged, and after the most probable D̂ is found, r̂ is obtained by
Equation (2). In general, an algebraic solution is impossible (Milligan,
2003). As a result, a downhill simplex algorithm is used to search for
the D̂ that maximizes the likelihood within the parameter space. The
simplex consists of ν+1 points (each representing a Δ). If the distance
between the points with the minimum and maximum likelihoods is
below 0.00001, the algorithm is convergent and the iteration is
terminated. A new simplex is then generated by adding a value of
the current best point in each dimension, and repeating to prevent the
simplex from being trapped in a ridge. An error o0.0001 for

d1 d2 d3 d4 d5

d6 d7 d8 d9

Figure 1 Configurations of identity by descent between two diploids. In each
subfigure, the two upper dots represent the two alleles of one individual,
whereas the other two represent the alleles of the second individual. The
lines indicate alleles that are IBD.

Table 2 Probability of specific identity-in-state patterns, given the

mode of identity by descent if the genotype of one individual is

AiAiAiAi

IBS mode Allelic state IBD mode

D4 D3 D2 D1 D0

S108 AiAiAiAi,AiAiAiAi p4
i p5

i p6
i p7

i p8
i

S107 AiAiAiAi,AjAjAjAj 0 0 0 0 p4
i p

4
j

S106 AiAiAiAi,AiAiAiAj 0 p4
i pj 2p5

i pj 3p6
i pj 4p7

i pj

S105 AiAiAiAi,AiAjAjAj 0 0 0 p4
i p

3
j 4p5

i p
3
j

S104 AiAiAiAi,AjAkAkAk 0 0 0 0 4p4
i pj p3

k

S103 AiAiAiAi,AiAiAjAj 0 0 p4
i p

2
j 3p5

i p
2
j 6p6

i p
2
j

S102 AiAiAiAi,AjAjAkAk 0 0 0 0 6p4
i p

2
j p

2
k

S101 AiAiAiAi,AiAiAjAk 0 0 2p4
i pj pk 6p5

i pj pk 12p6
i pj pk

S100 AiAiAiAi,AiAjAjAk 0 0 0 3p4
i p

2
j pk 12p5

i p
2
j pk

S99 AiAiAiAi,AjAjAkAl 0 0 0 0 12p4
i p

2
j pkpl

S98 AiAiAiAi,AiAjAkAl 0 0 0 6p4
i pj pkpl 24p5

i pj pkpl

S97 AiAiAiAi,AjAkAlAm 0 0 0 0 24p4
i pj pkplpm

Alleles with the same label are identical by state.
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tetraploids can be achieved with ~ 600 attempts. Using these methods,
this model can be applied to any level of ploidy by replacing the four
with v (the level of ploidy) in Equation (2). The conditional
probabilities in Table 2 from haploid to octoploid can be generated
(see Supplementary Files). However, for species with an odd number
of ploidy, Thompson’s (1976) constraint cannot be applied.

Polyploid method-of-moment estimator
Huang et al. (2014) developed a method-of-moment estimator for
polyploids, which models the probability of each similarity index
conditioned on the reference genotype (see also Lynch and Ritland,
1999). The similarity index is defined by the number of alleles that are
identical in state between two individuals. However, for this method,
unlike for diploid estimators (that is, Wang, 2002; Ritland, 1996), each
allele is counted only once. For example, in autotetraploids, the
similarity index for each locus has only five values (0, 0.25, 0.5, 0.75
and 1). Table 3 summarizes similarity indices and probabilities of
proband genotypes given the allele frequencies and the array of deltas
for reference individual AiAiAiAi. By summarizing the expressions with
the same similarity index for a reference genotype pattern (Table 3),
the following equation is established:

P ¼ EþMD;

where Δ is a column matrix consisting of all ‘higher-order’ coefficients
from Δ4 to Δ1. Each element in P is the probability of the
corresponding similarity index being observed, and E is the probability
that a certain similarity index is observed when relatedness is 0 (the
column with the header of 1 in Table 3). M is the matrix consisting of
four columns headed by deltas in Table 3. The moment vector of the
similarity index consisting of the first to fourth moments can be
expressed as:

S ¼ CEþ CMD:

Where C is a 4× 5 matrix with Cij= [1− 0.25(j− 1)]i. Equating the
observed moments to the expected (S=Ŝ) and estimated deltas to the
true deltas D ¼ D̂

� �
solves the estimator as:

D̂ ¼ CMð Þ�1ðŜ � CEÞ: ð7Þ
The single-locus r̂ can be obtained from Equation (2), whereas in

multilocus estimation the locus-specific weight is given by the inverse
of the variance of r̂. This is calculated numerically by Var(X)=
E(X2)−E2(X). The estimate across all loci is the weighted average of
each estimate of each locus, with both individuals being used for
reference; the final r̂ is the arithmetic mean of the two estimates.
Huang et al. (2014) also developed a solution to address ambiguous
genotypes using this estimator: the matrices E and M are weighted by
the probability of each reference genotype, and P is weighted by the
probability of each proband–reference genotype pair.

Coefficient of coancestry estimators
Some coefficient of coancestry estimators (θ) developed for diploids
can be extended to polyploids (for example, Loiselle et al., 1995;
Ritland, 1996). Although θ is alternatively defined as the correlation
between the additive values of the two individuals (Ritland, 1996),
here we continue with the IBD definition used by other estimators: θ is
the probability that a pair of alleles randomly sampled from two
individuals at a locus are IBD. In diploid outbred populations, θ= 1/4
for parent–offspring, θ= 1/4 for full-sibs, θ= 1/8 for half-sibs and
θ= 1/16 for first-cousins (Jacquard, 1972). The first estimator
presented by Ritland (1996) is used as an example and compared
with our maximum-likelihood estimator.
Ritland’s (1996) estimator assigns a similarity index (Si) to a

genotypic pair for each of n possible alleles. For a diploid, there are
four possible values of the ith allele: 0 (one or no individuals contain
Ai), 1/4 (both individuals contain a single Ai), 1/2 (one individual
contains two and the other individual one Ai) or 1 (both individuals
are homozygous for Ai). The single-locus estimator of Ritland (1996)
is given by:

ŷ ¼
P

iSi=pi
� �� 1

n� 1
:

Hardy and Vekemans (2002) expanded these estimators to higher
levels of polyploidy by expanding the definition of the similarity index
Si to a product of the frequency of Ai in the two individuals:

ŷ ¼
P

iSaiSbi=pi
� �� 1

n� 1
:

Relatedness can be obtained by Equation (12). However, by doing
so the estimator becomes biased. To obtain an unbiased estimator, we
use the harmonic mean of ŷaa and ŷbb as the denominator, therefore
the single-locus relatedness estimator is:

r̂ ¼ 1

2
ŷab

1

ŷaa
þ 1

ŷbb

� �
: ð8Þ

In multilocus estimation, the final estimated relatedness is the
weighted average of r̂ for each locus, and weight is the inverse of the
expected summation of the similarity index across alleles for outbred
non-relatives, which is also the allelic richness of this locus.
Using Equation (8), the relatedness coefficient can also be estimated

using the method of Loiselle et al. (1995). When the allele frequency
within an individual is equal to the population allele frequency (for
example, a heterozygote at an uniform biallelic locus), ŷaa will be 0. To
avoid obtaining an undefined final estimated relatedness, the r̂ at such
loci is not taken into account for calculating the weighted average of r̂.
These coefficients of coancestry estimators consider situations in

which inbreeding occurs, but do not incorporate ‘higher-order’
coefficients ðD̂Þ used in this paper’s estimator. To handle ambiguous

Table 3 The similarity index and coefficients of probability for reference individuals AiAiAiAi

Proband genotype Similarity index Coefficient of probability

Δ4 Δ3 Δ2 Δ1 1

AiAiAiAi 1 1� p4
i pi � p4

i p2
i � p4

i p3
i � p4

i p4
i

AiAiAiA* 0.75 �4p3
i 1� pið Þ ð1� 4p3

i Þ 1� pið Þ ð2pi � 4p3
i Þ 1� pið Þ ð3p2

i � 4p3
i Þ 1� pið Þ 4p3

i ð1� pi Þ
AiAiA*A* 0.5 �6p2

i 1� pið Þ2 �6p2
i 1� pið Þ2 ð1� 6p2

i Þ 1� pið Þ2 ð3pi � 6p2
i Þ 1� pið Þ2 6p2

i 1� pið Þ2
AiA*A*A* 0.25 −4pi (1−pi)3 −4pi (1−pi)3 −4pi (1−pi)3 (1−4pi)(1−pi)3 4pi (1−pi)3

A*A*A*A* 0 − (1−pi)4 − (1−pi)4 − (1−pi)4 (1−pi)4 (1−pi)4
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genotypes, the similarity indices are weighted by the probability of
each possible genotype pair.

Calculating relatedness from pedigrees
The coefficient of coancestry can be calculated from pedigree data by a
recursive algorithm (Karigl, 1981). For polyploids, the coefficient of
coancestry between two individuals is the same as in diploids:

yab ¼ 1

2
yfb þ ymbð Þ: ð9Þ

Here, a, b, f and m are individuals, and f and m are the father and
mother of a, respectively, where the probability that an allele in f or m
is inherited by a is 1/2. It can be inferred that a cannot be an ancestor
of b because Equation (9) becomes divergent. If b is an ancestor of a,
then another algorithm is needed to calculate the coefficient of
coancestry of an individual with itself. This can be achieved using
the equation:

yaa ¼ 1

2ðv � 1Þ þ
v � 2

4ðv � 1Þ yff þ ymmð Þ þ 1

2
yfm: ð10Þ

where ν is the level of ploidy. Clearly, θab= θba and θab= 0 if a and b
are not related, such that the coefficient of coancestry can be calculated
by iteration or recursion for any situation once the ancestry of a and b
is known.
In polyploids, multivalent formation can result in double reduction,

which occurs when sister chromatids segregate into the same
chromosome (Darlington, 1929). Under pure random segregation,
the rate of double reduction, α (Fisher and Mather, 1943), assumes a
minimum value of 0, and increases to 1/7 (with pure random
chromatid segregation) and 1/6 (with complete equational segrega-
tion) for tetrasomic inheritance (Muller, 1914).
If double reduction is considered, the Equation (10) to calculate the

coefficient of coancestry within the same individual should be
modified. For octosomic or decasomic inheritance, there are three
rather than two types of origins for the gamete, so an additional
parameter is needed for the segregation ratios (Fisher and Mather,
1943). Here, αi is the probability that double reduction occurred i time
(s) in a gamete (∑αi= 1, 0⩽ i⩽ [v/4]), and θaa is given by:

yaa ¼ 1

2
þ 1

2
yfm þ

v=2
2

� �
�P

iai

v
2

� � yff þ ymm � 2ð Þ: ð11Þ

The derivation of Equations (10) and (11) can be found in
Supplementary Files. Equation (11) can be inferred from the

coefficient of coancestry within the same individual from an outbred
population at equilibrium (the genotypic frequencies are equal among
generations). This is written as:

yaa ¼ 8
P

iai þ v

8
P

iai þ v2
:

Where θaa= 0.3 for tetraploids under purely random chromatid
segregation. In the presence of double reduction, Equation (9) remains
unchanged. In tetraploids, for example, although the probability an
allele in f or m is inherited by a is 1/4 under double reduction, the
number of IBD allele pairs between a and b is also doubled.
In the absence of double reduction, inbreeding or selfing, the

relatedness coefficient can be calculated from r= 4θ. However, it
cannot be applied because r may exceed 1. By Equations (5) and (6)
presented by Hardy and Vekemans (1999), Wright’s coefficient of
relationship can be calculated from the coefficient of coancestry as:

rab ¼ yabffiffiffiffiffiffiffiffiffiffiffiffi
yaaybb

p : ð12Þ

Which is used as the true relatedness for simulation; the derivation
of Equation (12) is given in Supplementary Files.

Statistical behaviour of estimators of relatedness
To investigate the statistical behaviour of estimators, six estimators
were compared. These included the maximum-likelihood estimator
(ML) described in this paper, the method of moment for polyploids
(MOM; Huang et al., 2014) and a coefficient of coancestry estimator
(RI; Ritland, 1996), applied when genotypes are known and when
genotypes are ambiguous, the latter of which are denoted ML*,
MOM* and RI*. All estimators were truncated to the range of 0–1 for
ease of comparison.
Four comparisons considering various conditions were performed:

(i) the distributions of r̂ in a particular relationship; (ii) the
performance of multilocus estimations in ideal conditions; (iii) the
minimal number of loci needed to achieve specific requirements; and
(iv) the robustness of these estimators in a finite population with
strong genetic drift, inbreeding and double reduction.

Distribution
For this application, four relationships (parent–offspring, full-sibs,
half-sibs and unrelated) were simulated. For each pair of individuals,
the genotype of one individual was randomly generated according to
the Hardy–Weinberg equilibrium. The other genotype was then
obtained from the randomly generated genotype as a reference and
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Figure 2 Distribution of r̂ estimates between autotetraploids using six different methods (ML, MOM and RI for exact genotypes, ML*, MOM* and RI* for ambiguous
genotypes) for four relationships (PO for parent–offspring, FS for full-sibs, HS for half-sibs and UN for unrelated). Each distribution was based on a sample of 200 000
estimates taken from five loci, each segregating for eight alleles with their frequencies drawn from the triangular distribution.
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their relationship ðD̂Þ. A triangular allele frequency distribution was
simulated, where this followed the proportions 1, 2,…,n. Numerical
results were obtained from Monte Carlo simulations assuming true
allele frequencies were available. The results are given in Figure 2 using
five loci, each segregating for eight alleles because eight was the
minimum number needed to display all 109 IBS configurations. Their
distribution under other settings can be found in Supplementary
Materials.
Figure 2 shows that the likelihood estimators exhibited less variance

for kin dyads. However, for non-relatives, the RI and MOM estimators
gave a higher frequency of 0 estimates. Furthermore, the ML*
estimator converged near the true value even when the correct
genotype was unavailable. In contrast, the MOM* and RI* estimators
both showed negative bias in relatives.

Root mean square error
This application used multiple multiallelic loci to estimate relatedness
for specific relationships under ideal conditions: population size was
sufficiently large, true allele frequency was available, mating was random,
inbreeding was absent and chromosome segregation was purely random.
Because both truncated and maximum-likelihood estimators

have a bias, the root mean square error (RMSE), which incorporates
bias and sampling variance, was used to measure overall accuracy.
RMSE can be calculated by the following equation:
RMSE r̂ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bias2 r̂ð Þ þ Var r̂ð Þ

p
.

In this section, the number of loci (l) was simulated from 1 to 100,
with each locus segregating five or ten alleles with their frequencies
drawn from triangular distribution. The results for each relationship
type were calculated for 15 000–100 000 pairs of individuals. The
number of dyads simulated was dependent on l; with smaller values of
l, more simulations were performed to smoothen the curves. The
RMSE of r̂ is shown in Figure 3.
Figure 3 shows that different estimators behaved differently

statistically. The ML estimator yielded the largest RMSE for

non-relatives and half-sibs. Although the RI estimator exhibited a
large RMSE for related dyads, the RMSE of these relationships was
relatively small for the MOM and ML estimators.
If the correct heterozygous genotypes were unavailable, all the

performance of all estimators was reduced. However, when the
number of alleles was high, the performance of both the ML* and
MOM* estimators improved. For both the RI and RI* estimators, an
increase in alleles made little difference to estimator performance.

Confidence intervals
We also evaluated the requirements to distinguish particular relation-
ships. We calculated the minimal number of loci needed to obtain a
95% confidence interval of± 0.05 units of r (the probability that
r̂A½r � 0:05; r þ 0:05� is 0.95), with ploidy levels ranging from diploid
to octoploid. Bias was high when ambiguous genotypes were used for
the estimations, and r̂ did not converge to the true value (Figure 2). As
a result, we did not consider ambiguous genotypes for this application.
Moreover, because the RMSE of half-sibs was usually the highest
among the relationships tested (Figure 3), we only calculated half-sibs
for simplicity. Results are shown in Figure 4.
The ML estimator required fewest loci to achieve a high degree of

accuracy, nearly 90 and 85% of what was required for the MOM and
RI estimators, respectively. Because polyploids have more copies of
alleles and genetic information than diploids, the minimal number of
loci required for higher levels of ploidy was fewer than that for
multiallelic loci. By contrast, in biallelic loci or loci with few alleles, the
probability that two non-relatives share IBS alleles was higher for
polyploids. Therefore, at higher levels of ploidy, more loci were needed
if the loci possessed few alleles, especially for biallelic loci.

Finite populations
Although these estimators performed reasonably well under the given
assumptions, real cases often diverge from ideal conditions. To
simulate nature, we simulated a finite population with strong genetic
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Figure 3 Multilocus RMSE of r̂ between autotetraploids as a function of the number of alleles under a triangular allele frequency distribution. Six estimators were
compared, including the polyploid maximum-likelihood estimator (ML, first row), the truncated polyploid method-of-moment estimator (MOM, second row), the
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drift, inbreeding and selfing. Following Toro et al. (2011), the
generations originated from 20 founder individuals. The genotypes
of the founder individuals were randomly generated according to the
Hardy–Weinberg equilibrium.
Ten discrete generations each consisting of 20 individuals were

simulated. The parents of an individual were randomly selected from
the last generation (some individuals did not reproduce) resulting in a
data set of 200 individuals and 20 100 dyads. The true relatedness
coefficients were computed from the pedigree using Equation (12),
and the estimate of relatedness was obtained using the six estimators
(Figure 3). To compute the estimators, we used the observed allele
frequencies calculated from the genotypes of the 200 individuals.
Because we do not develop a method for estimating allele frequencies
from ambiguous genotypes in this paper, the observed allele frequen-
cies were obtained from the true genotypes.
Four kinds of loci were simulated, including two with too few alleles

to generate the 109 IBS modes (2 and 5 alleles) and two with enough
alleles (10 and 15 alleles). For each simulation, 20 unlinked loci were
used with their initial allele frequencies drawn from a triangular
distribution. The mean true relatedness r̂ð Þ of the simulated popula-
tions varied between runs due to random mating. In particular,
inbreeding in the first few generations may lead to an increase in r̂ð Þ.
Therefore, for each locus type, the simulation was repeated 40 times to
ensure that r̂ð Þ for different numbers of alleles was the same.
Monomorphic loci were not used because the estimators failed to
give a valid estimate. A linear equation r̂ ¼ b1r þ b0 was used for
regression analysis, the weighted least-squares solution was obtained
and the coefficient of determination (R2) and RMSE calculated
(Table 4; Figure 5). Additional results from varying numbers of loci
and alleles are presented in Supplementary Materials.
We also investigated the effect of double reduction on these

estimators. The double reduction rate was assumed to be 1/7 in these
simulations (Muller, 1914). To obtain a distribution of genotypes in
equilibrium, each individual in the founder population was produced
from eight temporary generations of non-relatives, in which indivi-
duals in the first temporary generation had a θaa= 0.25. The true
relatedness coefficient was obtained using Equations (9) and (11).
Therefore, in the founder population, the coefficient of coancestry for
the same individual was 0.299998≈0.3, whereas that between different
individuals was 0. The other parameters were the same as in the
previous application, and results are shown in Table 4 with α= 1/7 in
the first column (Figure 5).
The MOM* estimator encountered the singular matrix problem at

n= 5, and the RI estimator performed worse for biallelic loci, whereas
the ML estimator was more stable (Table 4). Although the R2 of the RI
estimator increased as n increased, the RMSE did not change
significantly, unlike in the other two estimators. Due to small

population size and strong drift, some alleles were lost in the last
few generations, reducing the performance of the estimators compared
with results shown in Figure 3, even for a higher initial number of
alleles (n= 15). Moreover, the range of estimates for all estimators was
restricted to (0, 1), so the slopes deviated from 1.
Double reduction did not thus affect the distribution of true

relatedness. However, the performance of all estimators was slightly
reduced.
In Figure 5, most values of r lie in the range (0, 0.5). The points of

parent–offspring pairs formed a vertical line at r= 0.5 in the MOM
and RI estimators. Because these estimators cannot give an accurate
estimate for r, the longer length of these lines at r= 0.5 suggests a
larger RMSE. In contrast, a similar line was absent in the ML estimator
because the variance of the estimates was too small, resulting in
overlapping points. However, for half-sibs and grandparent–offspring
pairs (r= 0.25), other types of outbred relationships (r= 0.125 or
0.0625) or ambiguous genotypes, sampling variance increased, so
vertical lines are present. The line of the ML estimator was usually the
shortest, suggesting a lower RMSE.
Similar to estimates of 0 or 1, there are two estimates (Δ2= 1 or

Δ1= 1) that also lie on the edge of parameter space. If two individuals
share only one or two IBS alleles at all loci, these parameters produce
the largest likelihood and give an estimate of r̂ ¼ 0:5 or 0.25,
respectively. As a result, there were two additional horizontal lines
in the ML estimators.
The results for the original estimators (without truncation) can be

found in Supplementary Materials. Truncation can be expected to
cause a reduction in slope and RMSE and an increase in R2.
Nonetheless, the ML estimator still had better statistical values, with
the exception of the slope, as the slope of the original MOM estimator
was closer to 1.

DISCUSSION

Statistical behaviour
We developed a maximum-likelihood method for estimating the
relatedness coefficient for polyploids. The probability of observing
an IBS mode conditioned on each IBD mode was calculated by
following existing procedures (Thompson, 1975). A numerical algo-
rithm was subsequently applied to find the optimal solution for r̂, and
the statistical behaviours of various estimators of relatedness for
autotetraploids were simulated and compared. Marker-based related-
ness estimates typically showed large sampling variance, due to
variance in identity by descent among loci and in identity-by-state
alleles that are not IBD (Lynch and Ritland, 1999). The RMSE and
variance were reduced by increasing the number of loci or by
switching to loci that were more polymorphic. Overall, likelihood
estimators exhibited lower RMSE than other estimators we examined
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Table 4 Statistics of r̂ for a finite population of autotetraploids

α n r̂ Var(r) ML MOM RI

β1 β0 R2 RMSE β1 β0 R2 RMSE β1 β0 R2 RMSE

0 2 0.162 0.023 0.662 0.024 0.283 0.170 0.687 0.028 0.255 0.185 0.415 0.288 0.021 0.475

5 0.161 0.023 0.739 −0.037 0.558 0.132 0.727 −0.040 0.554 0.135 0.733 −0.042 0.563 0.135

10 0.164 0.023 0.749 −0.055 0.646 0.133 0.740 −0.057 0.657 0.134 0.733 −0.059 0.653 0.137

15 0.161 0.023 0.766 −0.061 0.686 0.131 0.760 −0.062 0.702 0.131 0.743 −0.064 0.685 0.135

Mean 0.162 0.023 0.729 −0.032 0.543 0.141 0.728 −0.033 0.542 0.146 0.656 0.031 0.481 0.221

0* 2 0.161 0.023 0.331 0.015 0.212 0.167 0.572 0.026 0.212 0.183 0.212 0.011 0.196 0.178

5 0.162 0.023 0.552 −0.026 0.509 0.144 0.229 −0.024 0.376 0.194 0.521 −0.028 0.523 0.148

10 0.162 0.023 0.651 −0.045 0.629 0.137 0.582 −0.042 0.631 0.143 0.626 −0.049 0.638 0.142

15 0.162 0.023 0.688 −0.054 0.672 0.135 0.656 −0.052 0.692 0.136 0.658 −0.056 0.672 0.141

Mean 0.162 0.023 0.556 −0.028 0.505 0.146 0.510 −0.023 0.478 0.164 0.504 −0.031 0.507 0.152

1/7 2 0.165 0.023 0.649 0.024 0.279 0.171 0.683 0.028 0.258 0.185 0.292 0.296 0.011 0.470

5 0.162 0.023 0.730 −0.037 0.552 0.134 0.716 −0.039 0.544 0.137 0.729 −0.042 0.559 0.136

10 0.163 0.023 0.754 −0.055 0.649 0.132 0.745 −0.057 0.661 0.133 0.735 −0.059 0.655 0.136

15 0.163 0.023 0.758 −0.060 0.681 0.132 0.753 −0.062 0.698 0.132 0.735 −0.063 0.680 0.137

Mean 0.163 0.023 0.723 −0.032 0.540 0.142 0.724 −0.033 0.540 0.147 0.623 0.033 0.476 0.220

1/7* 2 0.165 0.023 0.320 0.015 0.204 0.172 0.561 0.026 0.209 0.186 0.202 0.013 0.183 0.182

5 0.164 0.023 0.540 −0.025 0.499 0.147 0.220 −0.024 0.366 0.197 0.512 −0.028 0.512 0.151

10 0.162 0.023 0.643 −0.044 0.624 0.138 0.575 −0.041 0.627 0.144 0.618 −0.048 0.632 0.143

15 0.163 0.023 0.690 −0.055 0.672 0.136 0.660 −0.052 0.693 0.136 0.660 −0.057 0.673 0.141

Mean 0.163 0.023 0.548 −0.027 0.500 0.148 0.504 −0.023 0.474 0.166 0.498 −0.030 0.500 0.154

Twenty unlinked loci each segregating n alleles were simulated and results displayed. The first column shows the rate of double reduction, and ambiguous genotypes are denoted by an asterisk.
The slope (β1), intercept (β0), coefficient of determination (R2) and RMSE were calculated for each estimator. Statistics were obtained from 804 000 dyads by the weighted least-squares method.
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for relatives, whereas the ML estimator produced a higher RMSE for
non-relatives (Figures 2 and 3). The RMSE of estimators decreased
rapidly as a function of l in multilocus estimations (Figure 3).
The RMSE of the likelihood estimator for unrelated dyads was

highest because the estimator also generated IBS configurations that
shared some IBS alleles by chance. This resulted in a positive estimate
of r (Figure 2). Because each locus had eight total alleles that could be
sampled between individuals, the probability that unrelated tetraploid
dyads shared IBS alleles was higher than that for diploids, especially for
biallelic loci. As a result, all estimators performed worse for biallelic
loci (Figure 3; Table 4). For this reason, for hexaploids and octoploids,
more alleles were required.
The MOM estimator may encounter a singular matrix problem

when the number of alleles is too small (Huang et al., 2014).
Singularity or near singularity can result from zero or near-zero
coefficients in the set of equations, making Equation (7) unsolvable.
This problem can also occur for diploid estimators. For example, for
biallelic loci with uniformly distributed allele frequency, the Lynch and
Ritland (1999) estimator has a sampling variance of infinity. Unfortu-
nately, this scenario is more frequent for polyploids, but the
probability of a singular matrix is reduced when the number of alleles
is greater or equal to the level of ploidy (Huang et al., 2014). However,
this does not guarantee that singularity is avoided, because some
combinations of allele frequencies can also result in a singular matrix.

Ambiguous genotypes
When genotyping polyploid heterozygotes, balanced heterozygotes
cannot be distinguished from unbalanced heterozygotes. In this case,
each candidate genotype pair is weighted by its probability. This
situation also brings a negative bias to both the likelihood and moment
estimators. The true genotype pair of a kin dyad is diluted by other
candidate genotype pairs that are usually less similar. For example, in a
pair of tetraploid clonemates, both genotypes are AiAiAiAj. Therefore,
each has three possible genotypes (AiAiAiAj, AiAiAjAj and AiAjAjAj) and
there are nine combinations of genotype pairs. Three pairs give
accurate estimates. Estimates of the other six pairs are o1, and the
final r̂ is a maximum-likelihood solution (ML) or a weighted average
(MOM or RI). Under such conditions, all estimators are less efficient,
but in particular, the RI estimators are unusable if the number of alleles
is too few. The ML estimator performs better than other estimators
under most conditions (Table 4).

Inbreeding, selfing and double reduction
The new likelihood estimator assumes no inbreeding or double
reduction, so that the number of non-zero ‘higher-order’ coefficients
is equal to the level of ploidy and the range of r̂ is (0, 1). Because the
probabilities of inbreeding, selfing or double reduction IBD config-
urations are not modelled, some estimates may be inaccurate. For
example, the genotype patterns AiAjAkAl and AiAiAiAi do not have a
higher estimate than AiAjAkAl and AiAmAnAo. If inbreeding, selfing or
double reduction occurs, the former genotypes are more similar and
should be assigned a larger r̂. Therefore, underestimation occurs for
the likelihood estimator (that is, the slope deviates from 1 in Table 4).
There are nine IBD configurations for diploids. By contrast, IBD/

IBS models for autotetraploids are more complex, with a total of 109
distinct configurations. The number of IBD configurations increases
from haploid to octoploid, with 2, 9, 31, 109, 339, 1043, 2998 and
8405 possibilities, respectively. Because there are too many deltas in
polyploids, it is impossible to solve for each delta. As a result, IBD
configurations that involve double reduction and inbreeding were
omitted from this model. However, a finite population including both

inbreeding and double reduction was simulated, and regression
analyses were performed to evaluate the statistics. Although all
estimators were less efficient than under ideal conditions (a larger
RMSE and greater sensitivity to the initial number of alleles because of
the strong role of drift), the likelihood estimator showed greater
robustness in simulation and was superior to the other estimators for
multiallelic loci regardless of double reduction (Table 4; Figure 5). The
MOM estimator performed well when there were multiallelic loci, and
the original MOM estimator (without truncation) had the largest slope
(40.8; see Supplementary Material).

Biallelic markers
The likelihood estimator can be applied to a wide range of data,
including microsatellites, single nucleotide polymorphisms and other
co-dominant markers. However, because fewer alleles reduce accuracy,
we suggest that only loci with many alleles be used, particularly if an
application requires a high level of accuracy. Loci containing few
alleles (for example, biallelic loci) can only achieve high levels of
reliability with many. However, the number of unlinked loci is limited
in the genome and with many loci, there is increased risk that adjacent
loci will be linked and thus not represent independent data points.
Although linked loci do not introduce bias, they do not increase
reliability. This causes the RMSE to reach an asymptote as the number
of loci increases. Furthermore, where genotypes are ambiguous,
biallelic loci are also problematic as the bias is too large (Figure 5).
However, single nucleotide polymorphism data can still be used,
especially with newer genotyping-by-sequencing and haplotype pre-
diction technologies (Xu et al., 2002; Uitdewilligen et al., 2013). These
techniques provide means for unambiguous genotyping and also
determine the haplotype. The haplotype of adjacent single nucleotide
polymorphisms can be treated as an allele of a multiallelic locus, which
can largely improve the reliability of estimation.

Properties of polyploids
Alleles in polyploids have more copies, so contain more information
than alleles in diploids (Huang et al., 2014). Therefore, for multiallelic
loci, fewer loci are required to achieve the same reliability for
polyploids (Figure 4). Nevertheless, it is noteworthy that the chance
of two non-relatives or less-related individuals sharing IBS alleles is
higher under the same conditions, which can interfere with estimation
and result in a positive bias. For example, more loci are required for
higher levels of ploidy when alleles are few (Figure 4).
In extreme allotetraploids, there are two homologous sets each

consisting of two homologous chromosomes. If a chromosome
exclusively pairs with its homologue, this leads to disomic inheritance
(Stift et al., 2008). For these cases, we can use diploid estimators. Some
empirical studies show that many polyploids are actually in the
intermediate inheritance (Allendorf and Danzmann, 1997; Jannoo
et al., 2004). Intermediate inheritance may be expected in fertile
interspecific hybrids, as their parents are usually related and therefore
are expected to possess some degree of chromosomal homology
(Jannoo et al., 2004), leading to complex mixtures of disomic and
polysomic inheritance. Gametic and genotypic frequencies also deviate
from expectation, resulting in additional positive bias for the ML and
MOM estimators (see Supplementary Material), whereas the RI
estimator is not affected.

CONCLUSIONS

Overall, the maximum-likelihood estimator we developed provides
several advantages over existing methods. First, it generally exhibits
lower RMSE compared with other estimators. Second, all estimates fall
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within a biologically meaningful range, and ‘higher-order’ coefficients
can be explained as probabilities. Thus, the biological interpretation of
individual estimates is straightforward. Third, it provides a solution for
situations in which the allele dosage cannot be determined.
Although the maximum-likelihood estimator of relatedness per-

formed well in simulations, there are conditions under which other
estimators performed better, according to specific metrics. There is no
single estimator with superior performance under all conditions and
by all metrics. For specific applications under specific research
conditions, it is possible to identify one optimal estimator. The
software package POLYRELATEDNESS provides a simulation function that
helps researchers evaluate the performance of each estimator under
their given conditions.
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