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Admixture mapping of quantitative traits in Populus hybrid
zones: power and limitations

D Lindtke1, SC González-Martı́nez2, D Macaya-Sanz2,3 and C Lexer1,4

Uncovering the genetic architecture of species differences is of central importance for understanding the origin and
maintenance of biological diversity. Admixture mapping can be used to identify the number and effect sizes of genes that
contribute to the divergence of ecologically important traits, even in taxa that are not amenable to laboratory crosses because
of their long generation time or other limitations. Here, we apply admixture mapping to naturally occurring hybrids between two
ecologically divergent Populus species. We map quantitative trait loci for eight leaf morphological traits using 77 mapped
microsatellite markers from all 19 chromosomes of Populus. We apply multivariate linear regression analysis allowing the
modeling of additive and non-additive gene action and identify several candidate genomic regions associated with leaf
morphology using an information-theoretic approach. We perform simulation studies to assess the power and limitations of
admixture mapping of quantitative traits in natural hybrid populations for a variety of genetic architectures and modes of gene
action. Our results indicate that (1) admixture mapping has considerable power to identify the genetic architecture of species
differences if sample sizes and marker densities are sufficiently high, (2) modeling of non-additive gene action can help to
elucidate the discrepancy between genotype and phenotype sometimes seen in interspecific hybrids, and (3) the genetic
architecture of leaf morphological traits in the studied Populus species involves complementary and overdominant gene action,
providing the basis for rapid adaptation of these ecologically important forest trees.
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INTRODUCTION

Understanding the origin and maintenance of phenotypic variation
within and between species is of central importance in studies of
adaptation and speciation. Within-species variation has been recog-
nized as an important source for rapid adaptation (Barrett and
Schluter, 2008), whereas between-species differences are important for
understanding speciation driven through the accumulation of repro-
ductive isolation and increasing biological divergence (Orr, 2001;
Barton and Keightley, 2002; Funk et al., 2006). In both cases,
elucidating the genetic architecture of phenotypic variation is a
critical step for understanding its origin and maintenance.
With the emergence of quantitative trait locus (QTL) mapping, the

association of quantitative phenotypic variation with genetic poly-
morphisms and its applications in human medicine, agricultural
genetics and evolutionary biology have received much attention
(Tanksley, 1993; Lynch and Walsh, 1998; Mackay, 2001; Barton and
Keightley, 2002). QTL mapping utilizes recombinant individuals from
intra- or interspecific crosses that are obtained in the laboratory
(reviewed by Tanksley, 1993; Orr, 2001; Lexer and Widmer, 2008), and
has essentially contributed to advance our understanding of trait
evolution, selection and speciation (e.g. Bradshaw et al., 1998;
Grandillo et al., 1999; Zeng et al., 2000). Despite the successful
identification of QTLs in some organisms, no prevailing conclusions
about the genetic architecture of phenotypic variation have been

reached to date because of a shortage of data and experimental
limitations (Kearsey and Farquhar, 1998; Orr, 2001; Lexer and
Widmer, 2008). In particular, classical QTL mapping studies have
two main shortcomings. First, the use of artificial crosses restricts the
method to a handful of species with short generation times, a large
number of progeny and other characteristics that allow laboratory
rearing. Second, mapping is typically carried out on F2 or BC1

individuals because of time constraints, which implies that, unless a
large number of individuals are investigated, only coarse-scale genetic
mapping can be achieved.
Admixture mapping (Chakraborty and Weiss, 1988; Briscoe et al.,

1994; McKeigue, 1998) is a promising alternative to classical QTL
mapping studies that can overcome both of the above-mentioned
limitations by using naturally occurring recombinant individuals from
admixed populations or hybrid zones rather than laboratory crosses
for gene mapping (reviewed by Rieseberg and Buerkle, 2002; Buerkle
and Lexer, 2008). In contrast to association mapping studies that
target variation present within populations or species, admixture
mapping can be used to map phenotypic variation residing between
divergent taxa (Buerkle and Lexer, 2008). Repeated recombination
between parental chromosome blocks in hybrids breaks up the
combinations of parental genotypes and thus reduces admixture
linkage disequilibrium (LD) between markers. The resulting local
chromosomal ancestry blocks are then statistically tested for
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association with phenotypic variation (McKeigue, 2005; Buerkle and
Lexer, 2008). This approach is particularly promising as the chromo-
some block sizes that can be generated in the laboratory in reasonable
time by conventional QTL studies (Erickson et al., 2004) cannot keep
pace with the recent advancements in marker technology, whereas
naturally admixed populations can make the appropriate chromo-
some block sizes readily available. In addition, the use of natural
populations potentially allows characterization of the genetic archi-
tecture of adaptation and phenotypic divergence during speciation
in situ (Coyne and Orr, 2004; Buerkle and Lexer, 2008) and enables
the study of these differences under a wide range of environmental
conditions.
Despite the known utility of admixture mapping in human

populations (Winkler et al., 2010), the great promise it holds for
evolutionary studies and the abundance of natural hybrid zones
(Rieseberg and Buerkle, 2002), applications of admixture mapping to
non-human organisms are extremely rare. Although the few existing
studies on annual sunflowers (Rieseberg et al., 1999b), sticklebacks
(Malek et al., 2012) and Lycaeides butterflies (Gompert et al., 2013)
have demonstrated the utility of hybrid zones for gene mapping, more
empirical work and simulation studies are now needed to evaluate the
power and limitations of admixture mapping in non-human organ-
isms. In this study, we assess the performance of admixture mapping
by applying the approach to naturally occurring hybrids between
Populus alba (white poplar) and P. tremula (European aspen), and by
performing simulation studies.
Populus alba and P. tremula are widely distributed, ecologically and

morphologically well-differentiated species that often form large
‘mosaic’ hybrid zones along European river systems. P. alba is mainly
restricted to lowland flood–plain forests, whereas P. tremula prefer-
entially occurs in mixed upland habitats (Adler et al., 1994). Species
can be readily identified by leaf morphological characters (Lexer et al.,
2009), which are often associated with biomass accumulation and
growth (Rae et al., 2006).
Hybrids between P. alba and P. tremula fulfill many requirements

for admixture mapping in an almost ideal way: they show admixture
proportions that are intermediate between the two parental species
and are highly recombinant with low but existent levels of LD, which
will allow fine-scale mapping (Lexer et al., 2007, 2010; Buerkle and
Lexer, 2008); genetic maps among the parental species are thought to
be collinear (Pakull et al., 2009; Wang et al., 2011), and the genome
sequence of the closely related P. trichocarpa (Tuskan et al., 2006) can
be used as reference map; background LD in the parental populations
is low to moderate (Lexer et al., 2007); the allele frequency differential
between the parental populations is high (Lexer et al., 2007, 2010);
and at least some of the phenotypic traits of hybrids are intermediate
between the parental species (Rieseberg and Buerkle, 2002; Lexer
et al., 2009).
In this study, our primary aims were (1) to assess the power and

limitations of admixture mapping of quantitative phenotypic trait
differences in natural hybrid zones, and (2) to explore how the
approach may be used to infer the genetic architecture of species
differences as an alternative to laboratory crosses. By applying admix-
ture mapping to both empirical and simulated data, we demonstrate
that utilizing naturally occurring hybrids for genetic mapping is a
promising approach to investigate the evolution of species differences.

MATERIALS AND METHODS
Sampling, genotyping and genetic classification
Eight hundred and thirty individuals were sampled in ‘mosaic’ hybrid zones

and adjacent parental populations of P. alba and P. tremula along four different

river drainage systems, located in Spain (Duero; n¼ 137), Italy (Ticino;

n¼ 219), Austria (Danube; n¼ 288) and Hungary (Tisza; n¼ 186;

Supplementary Figure S1). Individuals were genotyped at 77 mapped micro-

satellite markers distributed across all 19 chromosomes of the Populus genome,

with linkage information available from the P. trichocarpa genome assembly

v. 2 (http://www.phytozome.net/poplar) and a controlled backcross to P. alba

(Supplementary Table S1). Laboratory procedures for DNA extraction, PCR

amplification and genotyping followed Lexer et al. (2005a) and Lindtke et al.

(2012), with allele size polymorphisms resolved on a 3100 (Spanish and

Austrian samples) or a 3130 (Italian and Hungarian samples) Genetic Analyzer

(Applied Biosystems, Foster City, CA, USA). In 10 out of the 77 loci,

amplification fragments were not consistent with a simple codominant

inheritance pattern and these loci were thus scored conservatively as dominant

markers. As genotypes for two microsatellites (G430 and O276) were not

available for the Spanish population, 75 loci were used for analyses that

combined all four hybrid zone localities.

Separately for each hybrid zone, individuals were assigned to three genotypic

classes (P. alba, P. tremula, admixed) according to admixture proportions (Q)

obtained by structure 2.3.2.1 (Pritchard et al., 2000), which classified 179 out of

all 715 phenotyped individuals (see below) as potentially admixed

(0.05pQp0.95). As most of these samples are from the Italian hybrid zone

(n¼ 109), we have used the Italian population as our primary mapping

population, and the pooled data set consisting of all four hybrid zone localities

(n¼ 179) for complementary analyses only. Various checks were performed to

verify the utility and reliability of the 77 microsatellite markers for mapping,

including allele frequency differential (d; Zhu et al., 2005), missing genotypes

and correlations between genome-wide individual ancestry and locus-specific

ancestry (LSA).

Phenotypic trait measurements
To apply admixture mapping to ecologically important species differences, leaf

morphological traits were chosen as model traits, as they differ considerably

between P. alba and P. tremula (Lexer et al., 2009), are associated with biomass

accumulation and growth, and have been used in previous QTL mapping

studies of a related species pair (e.g. Rae et al., 2006). We obtained phenotypic

data for 13, 68, 20 and 55 P. tremula; 97, 41, 149 and 93 P. alba; as well as 15,

109, 19 and 36 admixed individuals in Spain, Italy, Austria and Hungary,

respectively (715 individuals altogether; herbarium specimens suitable for

measurements were not available for all 830 genotyped individuals), with

species classified according to structure Q (above). Important aspects of leaf

blade and petiole morphology were assessed by taking 11 raw measurements,

complemented by 11 additional variables and aspect ratios that were computed

from those values (Table 1 and Supplementary Table S2), using measurements

from five leaves averaged per tree. All measurements and calculations were

standardized, but not transformed to normality, as this is not necessarily

Table 1 Traits mapped and measurements/calculations taken

Trait Description Measurement/calculation

PETL Petiole length Raw measurement (mm)

LFAREA Leaf area Model baseda (mm2)

PTRAT Petiole ratio Petiole length/lamina length

PETXM Petiole flatness at

petiole middle

Petiole cross-section length/widthb

at petiole middle

PETXB Petiole flatness at

petiole base

Petiole cross-section length/widthb

at petiole base

PETXA Petiole flatness at

petiole apex

Petiole cross-section length/widthb

at petiole apex

LFSHAP Leaf shape Lamina length/lamina width

LDRAT Lobe depth (Lobe width�sinus width)/lobe width

For additional traits see Supplementary Table S2.
aLeaf area¼28.5966þ0.6168� lamina length^0.8326� lamina width^1.2065; best fitting
allometric model based on 1288 observations from Spanish hybrid zone.
bThe raw measurements of the petiole cross-sections were taken in a way that length is always
the larger value of length and width.
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correct in the presence of a QTL effect (Churchill and Doerge, 1994). To

reduce the set of 22 mapping traits to a meaningful subset, a factor analysis

using the promax rotation was carried out with the factanal function in R

(R Development Core Team, 2011).

Trait mapping
QTLs were mapped by using (1) available admixture mapping software, and

(2) linear regression analysis in R to overcome current limitations of existing

software (see below).

ADMIXMAP software. The admixture mapping software ADMIXMAP

(Hoggart et al., 2004; http://homepages.ed.ac.uk/pmckeigu/admixmap/) is

suitable for QTL mapping using microsatellite markers. The software applies

a hidden Markov chain Monte Carlo model in combination with regression

tests (Winkler et al., 2010), and uses an algorithm similar to the structure

software to model admixture and LSA, but cannot handle dominant markers.

Thus, ADMIXMAP was run for 67 codominant markers only. We did not pool

hybrid zones and considered the Italian mapping population only when using

ADMIXMAP, as microsatellite fragment sizes (which we suspect to differ

between localities because of processes unrelated to phenotype) are used as

direct input.

Ancestry association tests were carried out separately for each trait, using

the original allele counts (after addition of 0.5) from the parental reference

populations to specify the prior distributions of ancestral allele frequencies.

Samples were taken from 50 000 iterations with a thinning interval of 10 after

removing 500 iterations as burn-in. During the burn-in, 10 annealing runs

were performed. Default priors were applied except for the average number of

generations back to the un-admixed ancestral population, where we used a

gamma distribution with shape and rate parameters of 15 and 0.8, respectively

(corresponding roughly to a mean of 19 and a variance of 22), to reflect the

highly recombinant nature of the investigated hybrids. The performance of the

sampler was evaluated through visual inspection of diagnostic graphs

generated by the software.

Linear regression analysis. Although ADMIXMAP has the advantage that it

computes LSA and performs association tests within a single step, it is not

suitable for dominant markers, cannot deal with null alleles (non-amplifying

alleles) or multiple populations, and can only perform single-locus regression

analysis. Thus, in our second approach, we first estimated LSA and subse-

quently modeled the phenotype–genotype association in R (R Development

Core Team, 2011) by applying generalized linear models. Separately for each

hybrid zone locality, the software structure 2.3.2.1 (Pritchard et al., 2000; Falush

et al., 2003, 2007) was used to estimate LSA for all 77 markers (the site-by-site

output), using the recessive alleles option to account for the potential presence

of null alleles, following steps and settings as in Lindtke et al. (2012). Using

LSA rather than raw microsatellite fragment sizes as input for subsequent

analyses will remove locality-specific differences unrelated to chromosome-

block ancestry.

Structure. LSAs provide probability estimates for the ancestry of the observed

genotype per locus and individual, that is, the probability that both alleles

originate from P. alba (paa), both alleles originate from P. tremula (ptt) or one

allele is derived from each parent (pat and pta). These values are calculated for

each individual i from {1,y, N} and each locus l from {1,y, L}, where

pði;lÞaa þ p
ði;lÞ
at þ p

ði;lÞ
ta þ p

ði;lÞ
tt ¼ 1. Because our data are not phased (p

ði;lÞ
at � p

ði;lÞ
ta ),

knowing pði;lÞaa and p
ði;lÞ
at is already sufficient to describe the locus-specific

individual admixture proportion as

Sði;lÞ ¼ pði;lÞaa þ p
ði;lÞ
at ð1Þ

with S(i,l) ranging from 0 to 1 (from pure P. tremula to pure P. alba ancestry),

analogous to the genome-wide structure Q.

The genome-wide individual admixture proportion can be calculated by

averaging over the locus-specific estimates as

GðiÞ ¼ p
ðiÞ
aa þ p

ðiÞ
at ¼

1

L

XL

l¼ 1

pði;lÞaa þ 1

L

XL

l¼ 1

p
ði;lÞ
at ð2Þ

which is highly correlated to the structure admixture proportion Q (Italian data

set: r¼ 0.9999975, P-value o2.2e�16).

We modeled a single-locus association between the phenotype y of

individual i for each locus l by using generalized linear models as

yðiÞ ¼ mðlÞ þ aðlÞGðiÞ þ bðlÞSði;lÞ þ eði;lÞ ð3Þ

where m(l) is the intercept, e(i,l) the error term (Gaussian), S(i,l) is the locus-

specific admixture estimate and G(i) provides the adjustment of the model for

the confounding effect of genome-wide admixture (e.g. Hoggart et al., 2003).

However, gene action is often not strictly additive, but may range

continuously from dominance to recessiveness, or from over- to under-

dominance (particularly in hybrids, overdominant gene action might be

common; Tanksley, 1993; Charlesworth and Willis, 2009). In quantitative

genetics, a dominance deviation term can be used to describe the degree to

which the heterozygous genotype deviates from a phenotype expression that is

exactly intermediate between the two homozygotes (Tanksley, 1993). Thus, we

added the covariates G0ðiÞ ¼ p
ðiÞ
at and S0ði;lÞ ¼ p

ði;lÞ
at to equation (3) to account for

the potential non-additivity of the genome-wide and the locus-specific

component, respectively, and modeled y as

yðiÞ ¼ mðlÞ þ aðlÞ1 GðiÞ þ aðlÞ2 G0ðiÞ þbðlÞ1 Sði;lÞ þ bðlÞ2 S0ði;lÞ þ eði;lÞ ð4Þ

The ratio of the parameter estimates for each locus, b2(l)/b1(l), can be used

analogous to the dominance/additivity statistics in QTL mapping (Tanksley,

1993) to describe the effects of P. alba alleles as strictly additive for b2/b1¼ 0,

as dominant for b2/b1¼ 1, as recessive for b2/b1¼ �1, as overdominant for

b2/b141 or as underdominant for b2/b1o�1 (note that in case b1o0,

overdominant gene action will be defined as a decrease in the trait value for

heterozygotes, whereas underdominance will indicate an increase in the trait

value—the reversals of the definitions that hold for b140). The same applies

to the genome-wide parameters a1(l) and a2(l).
To assess if a focal locus explained a relevant proportion of the phenotype,

an information theoretic approach was used to compare the model that

includes the locus-specific effect to a model that contains the genome-wide

effect only. In particular, we compared equation (3) to

yðiÞ ¼ mþ aGðiÞ þ eðiÞ ð5Þ

and equation (4) to

yðiÞ ¼ mþ a1GðiÞ þ a2G0ðiÞ þ eðiÞ ð6Þ

by calculating the Akaike information criterion (AIC; Akaike, 1973) using the

aictab function (AICcmodavg package) in R. A locus was kept as a candidate

QTL if AICmodel (5)�AICmodel (3)X4 (additive model) or AICmodel (6)

�AICmodel (4)X4 (dominant/recessive model), denoting that explanation of

the phenotype was considerably improved by incorporating a locus-specific

effect in the model.

A common problem in multiple regression analysis is collinearity arising

from high correlation between explanatory variables. LSA estimates for loci

with low information content will mainly reflect their Markov chain Monte

Carlo priors that are given by genome-wide admixture proportions, and will

consequently show high correlation between locus-specific and genome-wide

effects. Five markers (O30_1, G1416, G430, O14 and O206) with small allele

frequency differential (do0.1; with d¼
P

|fi1�fi2|/2, where fi1 and fi2 represent

the ith allele frequencies in the two parental populations, respectively; Zhu

et al., 2005), and consequently high correlation between locus-specific and

genome-wide admixture proportions (r40.98) were therefore excluded from

the marker panel for all regression analyses.

To account for more complex genetic architectures of phenotypic traits

controlled by multiple QTLs, and to reduce false-positive results due to ghost

peaks, the identified candidate QTLs were subjected to a stepwise model

selection approach. Forward selection was followed by backward elimination

using the stepAIC function (MASS package), with the scope of the searched

model space being the genome-wide effects (G(i) and G0(i)) and candidate

QTLs for both additive and dominant-recessive components (S(i,l) and S0(i,l)).
The Bayesian information criterion (BIC; Schwarz, 1978) was used for model

selection, as it tends to favor more parsimonious models (Grueber et al., 2011).
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Forward selection followed by backward elimination has been shown to

perform well for QTL mapping (Broman and Speed, 2002).

Although stepwise model selection is computationally fast, it cannot make

use of the full power associated with the information theoretic approach, as it

compares only two models at a time and ignores model uncertainty

(Whittingham et al., 2006). Therefore, we additionally used an exhaustive

search over all possible models with the same scope as above, using the BIC

(dredge and model.avg functions in MuMIn package). The set of best models

with DBICo4 from the top model was kept and full-model averaged

parameter estimates were obtained. The coefficient of determination R2 was

computed to estimate the contribution of each marker (additive and

dominant/recessive components) in explaining phenotype by controlling for

all other variables included in the model, and to estimate the proportion of

variance explained by all markers kept in the full model by controlling for

genome-wide admixture (r.squaredLR function in MuMIn package).

We applied the linear regression analysis to both the Italian hybrid zone

samples and the pooled data set. To combine samples, we used residual trait

values obtained by a one-way analysis of variance, with locality as cofactor.

Simulations
Simulations were performed to assess the power of admixture mapping using

structure LSA estimates and linear regression analysis. The performance of

ADMIXMAP has been studied elsewhere (Hoggart et al., 2003, 2004).

Admixed populations were simulated using the software quantiNemo 1.0.4

(Neuenschwander et al., 2008), and were designed to match the real data as in

Lindtke et al. (2012). Briefly, 77 microsatellite markers on 19 chromosomes

were generated by using the map positions and original allele frequencies from

P. alba and P. tremula calculated from the Italian population. Four QTLs were

inserted into this genetic map and subsequently used to simulate quantitative

trait values. Ten replicate admixed populations, consisting of different hybrid

generations, backcrosses and immigrants, were sampled at generations 7, 12

and 22. Eight different genetic architectures for quantitative traits were

modeled (Supplementary Table S3), with a proportion of phenotypic variation

explained by genotype (total genetic effect) of 0.2 or 0.5, and sample sizes of

100 or 500 individuals. Candidate QTLs were identified and subjected to the

stepwise model selection procedure as described above. Power (proportion of

successfully detected QTL-linked markers) and false-positive rate (FPR;

number of false positives divided by the number of final candidate QTLs)

were determined for each generation, genetic architecture, genetic effect and

replicate. The full description of the simulation approach is available in

Supplementary Information.

Linkage disequilibrium
The size of ancestral chromosome blocks generated by interpopulation

recombination is critical for admixture mapping of phenotypic trait differences

(Buerkle and Lexer, 2008) and is reflected by the extent of LD spanning along

ancestral chromosome blocks. We therefore estimated correlations in LSA

between adjacent genetic regions to evaluate the amount of non-random

associations of ancestral alleles along chromosomes. Pairwise correlations

between all locus pairs were calculated by resampling genotypes for each locus

(0, 1 or 2 alleles originating from P. alba), with sampling probabilities defined

by structure LSA estimates (ptt, patþ pta or paa). This resampling approach

allowed us to collapse LSA probabilities into discrete genotypes. Residuals from

a binomial generalized linear model with Q as explanatory variable were

calculated from the resampled genotypes to control for potential population

structure due to different levels of admixture. After 500 replications, the

median correlation coefficients between residuals were recorded for the Italian

population, and two simulated data sets (generation 22 and 32; 109 randomly

chosen individuals).

RESULTS

Phenotypic traits in hybrid zones
Phenotypic measurements in four hybrid zone localities, ranging from
Southwestern to Central Europe (Supplementary Figure S1), yielded
information on patterns of variation for 22 leaf morphological traits
(Table 1 and Supplementary Table S2) in two Populus species and
their hybrids. Factor analysis revealed that most variation within the
22 traits was explainable by 13 factors, with the first seven factors
showing eigenvalues 41 (Supplementary Table S4). One representa-
tive trait for each of these first seven factors (absolute value of the
loading 40.995) was chosen to be included in further analyses. This
reduced the set of mapping traits to LFAREA, PTRAT, LFSHAP,
PETXB, PETXM, PETXA and LDRAT. In addition, PETL was
included in the set of mapping traits as it has already been examined
in a previous QTL study (Rae et al., 2006). Thus, eight leaf blade and
petiole traits were included in the final analysis, of which we have
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chosen PETL, LFAREA, PTRAT and PETXM as representative traits to
be shown in more detail in the main article.
Considerable intraspecific phenotypic variation was identified for

all eight mapping traits (Figure 1 and Supplementary Figure S2). The

four examined localities differed significantly in their median
trait values for all traits in P. alba, and most traits in P. tremula
(Figure 1 and Supplementary Figure S2). P. alba showed a clear
southwest–northeast gradient in PETL and LFAREA, with the north–
easternmost population having the largest values. Interspecific
phenotypic differentiation between P. alba and P. tremula showed
different magnitudes dependent on the trait studied. Owing
to the southwest–northeast variation present in P. alba, this species
exhibited shorter petioles and smaller leaves than P. tremula in Spain
and Italy, but the opposite pattern in Austria and Hungary. PETL,
LFAREA and PTRAT were highly correlated among admixed indivi-
duals for the pooled and the Italian data set (Spearman’s rank
correlation coefficients r for the correlations PETL–LFAREA,
PETL–PTRAT and LFAREA–PTRAT were 0.85, 0.76 and 0.42 for
pooled data, and 0.86, 0.81 and 0.50 for Italy, respectively; all
P-values were o4e�8; all other correlations had absolute values of
ro0.45).
For the Italian hybrid zone (our primary mapping population),

hybrids showed trait values that were either intermediate between the
parental species or similar to one or the other parent (Table 2,
Figure 2a and Supplementary Figure S3a). The parental populations
were significantly differentiated for most of the studied traits, and
admixed individuals showed a non-random relationship between
genome-wide structure Q and phenotype for all traits except LDRAT
(P-values of linear regression slopes o0.1), which suggests a heritable
component for these traits (Table 2).

Table 2 Summary statistics of phenotypic traits for the Italian hybrid

zone

Trait P. tremula

mean (s.d.)

Admixed mean

(s.d.)

P. alba

mean

(s.d.)

P-value

Wilcoxon

testa

P-value

traitBQ for

admixedb

PETL 42.32 (10.28) 35.50 (10.78) 32.01 (9.89) 0.000 0.018

LFAREA 1940 (633) 1754 (743) 1476 (548) 0.000 0.062

PTRAT 0.796 (0.127) 0.665 (0.128) 0.659 (0.159) 0.000 0.002

PETXM 1.498 (0.225) 1.376 (0.175) 1.290 (0.103) 0.000 0.080

PETXB 1.407 (0.206) 1.419 (0.184) 1.303 (0.159) 0.006 0.075

PETXA 1.326 (0.175) 1.289 (0.118) 1.339 (0.156) 0.493 0.018

LFSHAP 1.098 (0.152) 1.205 (0.166) 1.194 (0.167) 0.003 0.022

LDRAT 0.189 (0.062) 0.175 (0.060) 0.197 (0.044) 0.160 0.999

Abbreviations: LDRAT, lobe depth; LFAREA, leaf area; LFSHAP, leaf shape; PETL, petiole
length; PETXA, petiole flatness at petiole apex; PETXB, petiole flatness at petiole base; PETXM,
petiole flatness at petiole middle; PTRAT, petiole ratio; s.d., standard deviation.
P-values o0.05 are marked in bold.
aP-values for Mann–Whitney–Wilcoxon test for the null hypothesis that trait values for parental
populations are from the same distribution.
bP-values for the null hypothesis that linear regression slopes for phenotypic traits of admixed
individuals as a function of structure Q are zero.

Figure 2 Raw phenotypes and locus-specific associations for four representative traits, Italian hybrid zone. (a) Boxplots of untransformed measurements for

P. tremula (trem), admixed individuals (adm) and P. alba (alba), boxplot widths being proportional to sample size. (b) Genotype–phenotype associations of

admixed individuals for each candidate locus with relative importance 40.5. Residual phenotypes (y axis) were calculated by using full-model averaged

parameter estimates (Coef; Table 3), including all variables except the focal marker in the model, and are plotted against locus-specific admixture

proportions S of the focal marker (x axis, with 0.0 representing P. tremula and 1.0 representing P.alba ancestry; marker names indicated at top left of each

scatterplot). Regression lines were computed from Coef (additive and dominant/recessive components) of the focal marker. R2 for focal markers are

indicated at the top right of each scatterplot. For additional traits see Supplementary Figure S3.
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Genetic architecture of phenotypic traits
Italian hybrid zone. By conducting single-locus tests for genotype–
phenotype associations using an information theoretic approach,
several candidate QTLs for all eight traits could be identified
(Figure 3, Supplementary Figure S4 and Supplementary Table S5).
Correlated traits such as PETL and LFAREA also showed overlap in
their set of candidate loci. By incorporating dominant/recessive terms
into the model, additional candidate loci were identified, most of
which showed strong evidence for over- or underdominant gene
action in subsequent multivariate regression analysis (Table 3). The
software ADMIXMAP tended to identify a similar set of candidate
QTLs as the single-locus additive model (Supplementary Table S5 and
Supplementary Figure S5).
An exhaustive search algorithm and model selection were carried

out to build the final multivariate regression model and to obtain
full-model averaged parameter estimates. Only a subset of candidate
QTLs showed a relative importance of 40.5 (Table 3). Full-model
averaged parameter estimates are informative regarding the direction
of QTL effects (negative signs indicate reduction of trait values by
P. alba alleles), effect size (e.g. the parameter estimate can be
transformed into QTL effect expressed in percent species difference)
and gene action (Table 3). QTL effects were sometimes biased towards
a single direction, as for PETL (of nine coefficients, eight were

negative), PETXM (of nine coefficients, seven were negative) and
LFSHAP (all four coefficients were positive). Effect sizes in terms
of percent species differences showed a wide range of magnitudes.
For example, the final model for PETXM incorporated many QTLs
of small effect, whereas large but complementary QTL effects were
found for LFAREA.
Gene action was often not strictly additive, and QTLs showed

evidence for over- or underdominance in many instances (Table 3,
Figure 2b and Supplementary Figure S3b). Note that estimates for
gene action may involve a large error, particularly if b1 is close to zero.
The estimates should thus be seen as a rough approximation,
although the overall trend for gene action should be robust. In cases
where the same candidate locus was identified for several traits, gene
action was often consistent across traits (i.e. dominance of ASP302 for
PETL, LFAREA and PTRAT, and of G1133 for PETL and PTRAT;
Figure 2b and Table 3).
After controlling for the residual genome-wide effect, the final

models explained 37.9%, 38.7%, 27.3% and 28.5% of phenotypic
variation for PETL, LFAREA, PTRAT and PETXM, respectively
(13.5–24.6% for the other four traits; Table 3). A single QTL explained
on average 8.6% (range 2.3–18.2%) of phenotypic variation (only loci
with relative importance 40.5, joint additive and recessive/dominant
components, all other parameters in the model controlled for; Table 3).

Figure 3 Genotype–phenotype associations of four representative traits mapped in the Italian hybrid zone. Depicted are DAIC from single-marker regression

analyses, with values o0 truncated to zero. Dark gray lines, additive model; light gray lines, dominant/recessive model. Marker loci with DAIC values X4

(marked by horizontal line) are labeled. Squares indicate markers that were included in final multivariate regression models (Table 3); dark gray, additive

component; light gray, dominant/recessive component; filled squares, relative importance 40.5. Tick marks on x axis indicate markers according to their

relative map position along chromosomes I to XIX (separated by gray vertical lines); black tick marks, codominant markers; gray tick marks, dominant

markers. For additional traits see Supplementary Figure S4.
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Table 3 Final models of multivariate regression analysis, exhaustive search, for the Italian hybrid zone

Trait Marker Chr. Position (bp) d Additive components Dominant/recessive components Gene action a R2 combined b

Impc Coef d (b1) Effecte R2 f Imp c Coef d (b2) Effect e R2 f

PETL ASP302 1 30444558 0.58 0.91 �1.24 �129.19 0.114 0.47 �0.74 �77.17 0.031 0.60 0.138

G1133 3 4716293 0.81 0.93 �1.24 �130.11 0.089 0.51 �0.99 �103.48 0.033 0.80 0.143

G1869 3 16805774 1.00 0.09 �0.09 �9.31 0.014 0.60 �0.83 �86.47 0.028 9.28 0.049

G2034 6 22219025 0.96 0.01 �0.01 �0.96 0.018 1.00 2.48 259.50 0.087 �271.04 0.100

G1065 6 24119014 0.82 0.01 �0.01 �1.13 0.014 �Inf 0.014

Q 0.52 0.96 100.01 0.066 0.04 �0.13 �13.74 0.004 �0.14 0.076

Total �169.57 �22.49 0.379g

LFAREA ASP302 1 30444558 0.58 1.00 �1.63 �261.44 0.128 0.88 �1.69 �269.99 0.072 1.03 0.182

G1869 3 16805774 1.00 0.25 �0.28 �45.14 0.028 0.04 �0.05 �7.64 0.010 0.17 0.045

G2034 6 22219025 0.96 0.28 0.36 58.40 0.002 Inf 0.002

ASP322 6 25184620 1.00 1.00 2.37 378.83 0.058 0.03 0.01 2.38 0.013 0.01 0.109

G2062 8 5051212 0.86 0.93 �1.28 �205.52 0.027 0.07 �0.07 �10.70 0.011 0.05 0.070

O344 10 14738667 0.93 0.13 0.11 17.71 0.037 0.17 0.18 29.21 0.022 1.65 0.040

Q 0.16 0.39 62.35 0.011 Inf 0.011

Total �115.56 �135.98 0.387g

PTRAT ASP302 1 30444558 0.58 0.80 �0.97 �90.31 0.056 0.37 �0.56 �52.53 0.025 0.58 0.079

G1719 1 35488312 0.56 0.79 1.87 174.56 0.074 Inf 0.074

G1133 3 4716293 0.81 0.56 �0.58 �54.43 0.034 0.40 �0.72 �67.00 0.025 1.23 0.072

Q 0.08 �0.19 �17.30 0.000 -Inf 0.000

Total �144.74 37.73 0.273g

PETXM O137 1 9087453 0.98 0.78 0.95 79.73 0.023 Inf 0.023

G1838 5 8802231 0.81 0.28 �0.32 �27.05 0.031 0.22 �0.29 �24.63 0.012 0.91 0.039

W17 7 8696038 0.53 0.05 �0.06 �5.25 0.024 0.22 �0.47 �39.40 0.037 7.50 0.039

G1295* 7 11243952 0.65 0.25 �0.28 �23.50 0.013 0.25 �0.59 �49.57 0.000 2.11 0.037

O312 7 11625195 0.89 0.40 0.45 37.42 0.010 0.00 0.010

O28 18 11993250 0.49 0.91 �1.43 �119.66 0.041 0.00 0.041

Q 0.31 0.67 56.35 0.044 0.05 �0.13 �11.00 0.012 �0.20 0.061

Total �81.69 �44.87 0.285g

PETXB O268 8 13427006 0.83 0.51 0.74 130.94 0.049 0.07 �0.07 �13.10 0.008 �0.10 0.054

G1949 9 1444490 0.34 0.10 �0.08 �14.30 0.002 0.44 �1.54 �273.11 0.052 19.10 0.058

Q 0.62 �1.24 �220.54 0.075 0.22 0.72 127.77 0.040 �0.58 0.089

Total �103.90 �158.43 0.135g

PETXA G1838 5 8802231 0.81 0.04 �0.01 �14.26 0.005 0.53 �0.74 �707.29 0.059 49.59 0.062

G1831 6 3671141 0.72 1.00 1.38 1324.57 0.103 0.31 �0.37 �358.20 0.040 �0.27 0.123

Q 0.13 0.30 292.52 0.043 Inf 0.043

Total 1310.31 �772.97 0.178g

LFSHAP O220 4 7778968 0.43 0.79 1.03 177.60 0.059 0.00 0.059

O149 10 16581540 1.00 0.89 1.30 223.40 0.064 Inf 0.064

G1381* 17 6100168 0.77 0.42 0.45 77.83 0.017 0.34 0.80 137.79 0.001 1.77 0.055

Q 0.05 �0.07 �12.51 0.012 0.00 0.012

Total 242.92 361.19 0.222g

LDRAT O167 6 5821040 0.96 0.24 �0.26 �182.58 0.013 0.64 1.07 759.63 0.068 �4.16 0.098

W12 6 19471676 0.92 0.81 �0.98 �693.38 0.022 0.33 0.63 443.18 0.041 �0.64 0.084

G1894 15 809326 0.97 0.95 1.61 1137.83 0.085 0.39 0.69 488.50 0.063 0.43 0.105

Q 0.11 �0.27 �190.36 0.004 0.77 �4.00 �2835.28 0.140 14.89 0.151

Total 71.51 �1143.97 0.246g

Abbreviations: Chr, chromosome; d, allele frequency differential; LDRAT, lobe depth; LFAREA, leaf area; LFSHAP, leaf shape; Q, genome-wide effects G and G0; QTL, quantitative trait locus;
PETL, petiole length; PETXA, petiole flatness at petiole apex; PETXB, petiole flatness at petiole base; PETXM, petiole flatness at petiole middle; PTRAT, petiole ratio.
Markers with a relative importance 40.5 are marked in bold and loci scored as dominant markers are indicated with an asterisk.
aGene action of P. alba alleles, b2/b1, where values of 0 denote additivity, �1 recessiveness, 1 dominance, o�1 underdominance and 41 overdominance.
bR2 for each marker (additive and dominant/recessive component), adjusted for all other parameters in the full model (r.squaredLR function MuMIn package).
cRelative importance of the predictor variables, calculated as a sum of the Akaike weights over all of the best models in which the parameter of interest appears (model.avg function MuMIn
package).
dFull-model averaged parameter estimates (coefficient is zero if not included in model; model.avg function MuMIn package). Positive or negative signs indicate an increase or decrease of the trait
value by P. alba alleles.
eQTL effect in percent species difference. Total indicates the sum over individual effects maintained in the full model. Positive or negative signs indicate an increase or decrease of the trait value
by P. alba alleles.
fR2 for each parameter, adjusted for all other parameters in the full model (r.squaredLR function MuMIn package).
gTotal R2 of the full model including all markers, adjusted for Q (r.squaredLR function MuMIn package).
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Pooled data from four hybrid zones. By pooling hybrid zones, the set
of identified candidate QTLs differed considerably from the set of
QTLs identified in the Italian hybrid zone. Overlapping candidate loci
from single-marker regression include G1133 (PETL and PTRAT),
G1065 (PETL), O312 (PETXM) and O344 (LFAREA; Figure 3 and
Supplementary Figure S6). Compared with the Italian data set, a
substantially smaller amount of residual phenotypic variation could
be explained by genotype in the final models (18.8%, 8.3%, 8.5% and
4.1% for PETL, LFAREA, PTRAT and PETXM, respectively).

Simulations
Simulation studies on the power of admixture mapping were
performed for varying sample sizes, numbers of generations since
admixture and genetic effects, by modeling eight different genetic
architectures (Figure 4). Stepwise model selection on candidate QTLs
reduced the number of ghost QTLs, even if those showed DAIC values
higher than the target loci, and also allowed identification of
physically linked QTLs as independent candidates (data not shown).

As expected, power increases significantly if 500 rather than 100
individuals are analyzed, or if the genetic effect is 0.5 rather than 0.2
(Figure 4). The total number of false positives does not increase by
analyzing 100 individuals or traits with a small genetic effect
(Supplementary Table S6); however, the FPR increases (Figure 4).
An extended number of generations since admixture resulted in
reduced power and higher FPR. More complex genetic architectures
(two or three additive QTLs) tended to reduce power as well. This
might be due to the smaller genetic effect of a single QTL on a trait
for complex architectures, as the total genetic effect on a trait was held
constant at 0.2 or 0.5, independent of the number of QTLs.

Linkage disequilibrium
For the Italian hybrid zone, an age of 32 generations since admixture
was estimated by ADMIXMAP (95% confidence interval (CI):
22.9–42.6 generations). Correlation coefficients between all locus-
pairs estimated by re-sampling genotypes showed weak and rather
diffuse indications of LD irrespective of physical linkage (Figure 5a).

Figure 4 (a) Power and (b) FPR of multivariate regression analysis using a stepwise model selection approach. Shown are results from simulation studies for
7, 12 or 22 generations, since admixture, different sample sizes (n¼100 or 500), genetic effects (g¼0.2 or 0.5) and genetic architectures or gene action

(null, no QTL; add, additive; dom, dominant; rec, recessive; over, overdominant; under, underdominant; 2loci, two additive loci; 3loci, three additive loci).
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Figure 5 LD measured as correlation coefficients between all locus-pairs for admixed individuals for (a) the Italian hybrid zone locality; (b) simulated data

after 22 generations (above diagonal) and 32 generations of admixture (below and on diagonal). Given are median correlation coefficients obtained from

resampling structure LSAs in 500 replicates. Dark color indicates strong positive correlation between loci. White lines separate chromosomes.
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In contrast, simulated data after 22 and 32 generations of
admixture with a similar distribution of Q and the same marker
information content as the real data showed evidence for LD between
physically linked loci (Figure 5b). The results indicate that the marker
densities achieved by our microsatellite-based QTL scan are low
compared with the number of recombination break points along
hybrid chromosomes.

DISCUSSION

Power of admixture mapping in natural hybrid zones
Despite the frequent application of admixture mapping in human
medicine (reviewed by Winkler et al., 2010), very few studies have
adopted this technique for phenotypic trait mapping in non-human
organisms (Rieseberg et al., 1999b; Malek et al., 2012; Gompert et al.,
2013). Thus, the power and limitations of admixture mapping of
quantitative traits in natural hybrid populations (which may differ in
several aspects from human admixed populations) require explora-
tion. We will discuss some of the obstacles and opportunities
encountered by applying admixture mapping to interspecific hybrid
zones of Populus spp. and simulated data. The pronounced differences
between our study system and human admixed populations might be
typical for other natural hybrid zones for which the application of
admixture mapping would be desirable (e.g. reviewed by Buerkle and
Lexer, 2008). These differences may include greater levels of diver-
gence, limitations in sample size and genome coverage and the
number of generations since admixture (Lexer et al., 2010). Hybridiz-
ing populations of wild species may also display higher levels of
intraspecific genetic and phenotypic variation, depending on their
life-history characteristics (Lynch and Walsh, 1998).

Sample size. Knowledge from classical QTL studies (Tanksley, 1993)
concerning the required sample size for mapping appears to be
directly transferable to admixture mapping. For example, small
sample size reduces power because QTLs of small effect will remain
undetected (Bradshaw et al., 1998; Zeng et al., 2000; Orr, 2001).
Studies comparing results for different sample sizes indicate that small
sample size does not necessarily result in a higher absolute number of
false positives, as QTLs found in smaller data sets were also detected
after analyzing more individuals (Bradshaw et al., 1998; Zeng et al.,
2000). Our simulation results for admixture mapping are perfectly in
line with these findings (Figure 4 and Supplementary Table S6).

Genetic architecture. Our simulations indicate that over- or under-
dominant gene action can be detected by admixture mapping by
including a dominant/recessive deviation term in regression models,
similar to an approach commonly applied in classical QTL studies
(Tanksley, 1993). This might improve QTL identification particularly
in the presence of over- or underdominance, or pseudo-overdomi-
nance (Erickson et al., 2004). More complex genetic architectures
involving two or three additive loci resulted in lower detection power,
probably because the total genetic effect on phenotype was parti-
tioned across loci in the simulations (Figure 4 and Supplementary
Table S6).
Results from the Italian mapping population indicate that the

genetic architecture of the investigated quantitative traits is in fact
rather complex. For the eight examined traits, on average 2.6 markers
with a relative importance 40.5 remained in the final regression
models, many of them with evidence for over- or underdominant
gene action (Table 3; Figure 2b, Figure 3, Supplementary Figure S3b
and Supplementary Figure S4).

LD and genome coverage. The estimated number of430 generations
since admixture in the Italian Populus hybrid zone suggests that
recombination should have had sufficient time to break up physically
linked loci. The estimated number of generations since admixture
may be inaccurate depending on the hybrid zone history, the
precision of the specified map and the amount of continuous gene
flow from the parental taxa (Falush et al., 2003; Hoggart et al., 2004).
Nevertheless, the existence of small ancestral chromosome blocks
achieved by a considerable amount of recurrent recombination was
also suggested by correlation coefficients between locus-pairs that did
not differ between physically linked and unlinked loci (Figure 5a). In
contrast, high correlation coefficients occasionally seen between
physically unlinked loci suggest that the exact map location of
identified candidate QTLs should be considered with caution. This
LD pattern may indicate imperfectly shared synteny to the P.
trichocarpa genome (Pakull et al., 2009; Wang et al., 2011), metho-
dological issues in estimating LSA (e.g. due to errors during PCR
amplification, or other problems associated to empirical rather than
simulated data) or correlations of LSA between physically unlinked
genetic regions (for example, because of shared selection pressures or
epistasis). As our marker panel might thus not always cover the causal
QTL regions, our results could be interpreted as a lower bound for the
number of QTLs controlling the studied traits in natural interspecific
hybrids.
The weak patterns of LD in the Italian mapping population

(Figure 5a) highlight the importance to test for LD when attempting
admixture mapping with a limited number of genetic markers. This
becomes also evident from our simulation results where an increased
number of generations since admixture reduced power and increased
FPR (Figure 4), probably due to recombination between QTLs and
genetic markers. Using an appropriate marker density can easily solve
this issue in future studies. The small chromosome blocks identified
in Populus hybrids indicate that fine-scale admixture mapping will be
feasible, for example, by using data generated by genotyping-by-
sequencing (e.g. Stölting et al., 2013).

Variation between hybrid zones. Genetic data obtained from different
hybrid zone localities are expected to differ because of processes
unrelated to phenotype (e.g. genetic drift). With admixture mapping,
this effect can be diminished by using local parental populations as
reference for estimating LSA. Nevertheless, the possibilities of genetic
drift of ancestry blocks within hybrid zones and local chromosome
rearrangements represent a general issue for mapping when genetic
data from different localities are pooled.
The substantial intraspecific variation for mappable (i.e. heritable)

traits among hybrid zones, particularly for PETL and LFAREA,
suggests the presence of considerable amounts of standing genetic
variation (Barrett and Schluter, 2008) maintained by environment-
dependent selection pressures on the investigated quantitative
traits (Petit and Hampe, 2006; Figure 1 and Supplementary Figure
S2), or QTL-by-environment interactions. On one hand, if QTL-by-
environment interactions are present, admixture mapping can be an
attractive approach for studying the genetics of species differences
in situ (i.e. exactly where selection and speciation take place), and
might provide more meaningful estimates of QTL effects than
those obtained under unrealistic artificial growth conditions
(Erickson et al., 2004). On the other hand, environment-associated
population structure combined with environmentally influenced
plasticity of phenotypic traits may result in false-positive QTLs.
Including appropriate environmental covariates into the linear
model (e.g. see Hoggart et al., 2003) or complementary multisite
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common garden experiments would thus be desirable for future
studies.
From a purely practical point of view, environment-dependent

intraspecific variation in phenotypes causes statistical and conceptual
issues when pooling data across hybrid zones, or across spatially
separated localities of large ‘mosaic’ hybrid zones. For example, the
southwest–northeast gradient for PETL and LFAREA in P. alba
(Figure 1) results in a locality-dependent sign shift for regression
slopes. This sign shift cannot be accounted for by the simple one-way
analysis of variance approach that we have applied in this study. Using
more sophisticated methods such as mixed-effect models would be
desirable but would require larger sample sizes. Further, if phenotypes
result from the combined effect of several genes and the environment,
similar phenotypes may not necessarily result from similar genotypes
(Tanksley, 1993; Kearsey and Farquhar, 1998). Thus, by pooling
data across localities, power will only increase if the same QTL
alleles are segregating in all pooled populations, but will decrease
otherwise (Tanksley, 1993; Kearsey and Farquhar, 1998). This may
account for the smaller amount of phenotypic variation explained by
genotypic data from pooled populations compared with the Italian
mapping population only. QTL studies indicate that environment
dependence can result in few overlapping QTLs between localities,
although major QTLs tend to be more strongly conserved (Tanksley,
1993). Genetic regions that were identified in both the pooled
(Supplementary Figure S6) and the Italian data set (Figure 3 and
Supplementary Figure S4) can be considered as good candidates
for loci involved in species differences that are conserved among
localities, and may thus represent important QTLs for species
divergence. By contrast, geographically variable QTL expression,
and thus little overlap between localities, is anticipated for this
outcrossing forest tree, where large amounts of standing genetic
variation can be the source for local adaptation (Petit and Hampe,
2006; de Carvalho et al., 2010).

Genetic architecture of phenotypic traits
Direction and magnitude of effects. The genetic architecture of the
studied traits appears to be complex and comprises mixtures of
positive and negative effects (except LFSHAP; Table 3, Figure 2b and
Supplementary Figure S3b). The bias of detected QTL effects into a
single direction for PETL, LFSHAP and PETXM suggests that
directional selection has been acting during species divergence for
these traits (Orr, 1998), but would require a greater density of markers
to be tested explicitly. For the remaining traits, QTLs with comple-
mentary positive and negative factors were detected, a feature
expected for older taxa that are subjected to stabilizing selection over
long divergence times (Orr, 2001). Complementary gene action will
facilitate the maintenance of ‘cryptic’ variation, which can be the
source for rapid adaptive response to changing environments (Barrett
and Schluter, 2008). QTL effect sizes in terms of percent species
difference were highly variable and often exceeded 100% if comple-
mentary factors were involved, consistent with previous findings in
wild, annual sunflowers (Lexer et al., 2005b).
The amounts of phenotypic variation explained by single QTL and

by the final multivariate regression models, as well as the number of
detected QTLs per trait, are in line with other QTL mapping studies
in plants (Kearsey and Farquhar, 1998; Lynch and Walsh, 1998).
Moreover, the total amount of phenotypic variation explained
(13.5–38.7%) is similar to other admixture mapping studies
(11.0–45.0%, Malek et al., 2012; 4.9–24.1%, Gompert et al., 2013;
their ‘admixed-naı̈ve’ (AN) analysis with individuals from five
admixed populations). By considering the relatively low genomic

coverage of our marker panel compared with the levels of LD
(Figure 5a), the large effect sizes found by our study may be surprising
but can be explained mainly by three factors. First, small sample sizes
can lead to overestimation of QTL effects (see below). Second, effect
sizes are likely to be larger in interspecific compared with intraspecific
studies (Lexer et al., 2005b). Third, the underlying genetic architecture
of the studied traits might involve many QTLs (see above), of
which only a subset could be identified with our low marker density
and sample size. If these QTLs are genetically associated in hybrids
(e.g. because of epistasis; Lexer et al., 2010; Lindtke et al., 2012),
combined effect sizes from several QTLs in different parts of the
genome might be detected by a single (surrogate) marker locus, even
though block sizes are small. Our results suggest that much of the
genetic contribution on phenotype could be explained by the set of
identified candidate QTLs rather than a diffuse genome-wide effect, as
the genome-wide control parameter Q did not reach high importance
for most traits (Table 3).

Gene action. The identified QTLs showed varying modes of gene
action, with a characteristic trend of P. alba alleles being dominant or
overdominant (b2/b140; Table 3). These estimates for gene action
may involve a large error, particularly if b1 is close to zero. However,
the observed trend still holds when considering calculations for
|b1|40.3 only. The finding is consistent with the observation that
the investigated Populus hybrids tend to be more similar in
morphology and habitat type to P. alba than to P. tremula. Floras
and morphometric studies have often assigned hybrids as backcrosses
towards P. alba (e.g. Adler et al., 1994; Lexer et al., 2009), whereas
recent molecular genetic work has shown that hybrids are genetically
intermediate between P. alba and P. tremula (Lexer et al., 2010;
Lindtke et al., 2012). This discrepancy between phenotype and
genotype might be partially explained by dominance effects of alleles
originating from P. alba. Similar processes may be at work in
interspecific hybrid zones of other groups of taxa with character
conflicts involving phenotypic and genotypic data (Lexer et al., 2009).
Many of the candidate QTLs appear to be over- or under-

dominantly expressed (b2/b141, or o�1; Table 3). Even though
there is some evidence that the genetic basis actually involves pseudo-
overdominance (Erickson et al., 2004), this pattern is commonly
observed for interspecific hybrids (Rieseberg et al., 1999a), and
represents a source for new genetic variation that can potentially
lead to the evolution of novel lineages (Nolte and Tautz, 2010).

Colocalization of QTLs. For phenotypically correlated traits such as
PETL, LFAREA and PTRAT, a similar set of candidate QTLs was
detected for the Italian data set, although this association was less
pronounced for the pooled data (Table 3, Figure 3 and Supplementary
Figure S6). This colocalization of QTLs suggests the presence of
pleiotropy (e.g. through involvement in plant growth or other devel-
opmental constraints) or tight linkage of causal QTLs for these traits, at
least in Italy. Interestingly, colocalization of petiole length and leaf area
has been detected by a classical QTL mapping study using a pair of
related Populus species (Rae et al., 2006). Pleiotropy or close linkage
between QTLs for PETL, LFAREA and PTRAT is conceivable, as it
would facilitate a coordinated response to selection on complex
phenotypes (Lynch and Walsh, 1998). For example, it is very likely
that an optimal fluttering physiology of leaves, a trait typical for P.
tremula, will only be achieved by coordination between certain petiole
and leaf blade characteristics.

Statistical issues. Admixture mapping likely suffers from similar
statistical bias as classical QTL mapping studies, thus we might have
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missed QTLs because of (1) low coverage resulting in insufficient
linkage between causal QTLs and marker loci; (2) small sample size
implying low resolution of QTLs of small effect, and overestimation
of QTL effect sizes (Beavis effect; Beavis, 1998). By contrast, using
natural populations rather than line crosses cultured under controlled
environmental conditions will increase noise on phenotype expression
and will thus diminish effect sizes.
The applied stepwise model selection approach appears to be a

convenient procedure to distinguish distinct QTLs that are physically
linked (Broman and Speed, 2002). Although we have not tested the
exhaustive search algorithm on simulated data because of its high
computational demand, its performance should exceed that of the
stepwise selection procedure (Whittingham et al., 2006). For the
Italian data set, results obtained by the stepwise and exhaustive search
algorithm were very similar for some of the studied traits, for
example, PETL, LFAREA and PETXA (Supplementary Table S5).

CONCLUSIONS AND FUTURE DIRECTIONS

By applying admixture mapping to natural hybrid zones of Populus, we
have identified several candidate QTLs controlling ecologically impor-
tant trait differences, including their effect sizes and modes of gene
action. The genetic architecture of the investigated leaf traits appears to
be complex, which might be attributed to the advanced stage of
divergence of the examined species pair. High levels of intraspecific
genetic and phenotypic variation inherent in natural populations as
seen here in Populus spp., as well as QTL-by-environment interactions,
represent a potential obstacle to admixture mapping. Improving sample
sizes will facilitate the detection of genetic variants that represent
important species differences, but this strongly relies on the availability
of recombinant hybrids in nature. By jointly interpreting the results
from four hybrid zones and numerical simulations, we have demon-
strated the feasibility of admixture mapping of quantitative phenotypic
trait differences in (non-human) natural hybrid zones. Future studies
should consider enhancing genome coverage to increase mapping
resolution, for example, by using genotyping-by-sequencing approaches.
For Populus, this work is currently in progress and may enable
validation of QTLs that were identified in this study. The results of
this study indicate the potential to achieve high-resolution mapping
even for species with long generation times. This demonstrates the
potential of admixture mapping over classical QTL studies in unlocking
the considerable amounts of variation present in long-lived, outcrossing
species.
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