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ORIGINAL ARTICLE

Theoretical framework of population genetics with somatic
mutations taken into account: application to copy number

variations in humans

K Ezawa! and H Innan!?

Traditionally, population genetics focuses on the dynamics of frequencies of alleles acquired by mutations on germ-lines,
because only such mutations are heritable. Typical genotyping experiments, however, use DNA from some somatic tissues such
as blood, which harbors somatic mutations at the current generation in addition to germ-line mutations accumulated since the
most recent common ancestor of the sample. This common practice may sometimes cause erroneous interpretations of
polymorphism data, unless we properly understand the role of somatic mutations in population genetics. We here introduce a
very basic theoretical framework of population genetics with somatic mutations taken into account. It is easy to imagine that
somatic mutations at the current generation simply add individual-specific variations, as errors in mutation detection do. Our
theory quantifies this increment under various conditions. We find that the major contribution of somatic mutations plus errors
is to very rare variants, particularly to singletons. The relative contribution is markedly large when mutations are deleterious.
Because negative selection also increases rare variants, it is important to distinguish the roles of these mutually confounding
factors when we interpret the data, even after correcting for demography. We apply this theory to human copy number variations
(CNVs), for which the composite effect of somatic mutations and errors may not be negligible. Using genome-wide CNV data,
we demonstrate how the joint action of the two factors, selection and somatic mutations plus errors, shapes the observed

pattern of polymorphism.
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INTRODUCTION

Population genetics explicitly focuses on mutations in germ-line cells,
because only such germ-line mutations can be inherited through
generations and should be observed in polymorphism data. Strictly
speaking, however, this logic does not hold unless the polymorphism
data are directly obtained from zygotes that initiate the individuals’
development. In practice, it is quite common that surveys of genetic
variation are carried out by using DNA extracted from somatic tissues
such as blood, particularly for higher eukaryotes such as large animals
and plants. In such a case, the polymorphism data should reflect both
germ-line mutations accumulated since the most recent common
ancestor and somatic mutations that occurred in the current
generation. It has been believed that the relative contribution of the
latter should be negligible, therefore no much attention has been paid
to somatic mutations in population genetics. However, there seem to
be cases where the effect of somatic mutations is not negligibly small.
The purpose of this work is to theoretically explore the effect of
somatic mutations on the pattern of polymorphism. We particularly
focus on copy number variations (CNVs) as a case where the relative
contribution of somatic mutations could be potentially large.

A great deal of attention has been paid to CNVs because of their
potential impact on important phenotypes. It is now widely accepted
that gene duplication is one of the major driving forces of genome
evolution, because duplicated genes provide raw materials for genetic

innovation (for example, Ohno, 1970 and Lynch, 2007). With the
advent of sequencing and genotyping technologies, enormous
amounts of data on CNVs have been generated and analyzed in
various species (for example, Redon et al., 2006; Maydan et al., 2007;
Emerson et al., 2008; Ossowski et al., 2008; Perry et al., 2008; She et al.,
2008; Conrad et al., 2010; and Mills et al, 2011), and the evolutionary
mechanisms behind the observed patterns of CNVs are getting
extensively discussed from the view point of population genetics.

A potential problem in analyzing the CNV data using the standard
population genetic theories could be a high rate of somatic mutations
causing CNVs. It has been suggested that there are CNVs within a
single individual, for example, between somatic cells from different
tissues and between somatic and germ-line cells (for example,
Piotrowski et al, 2008 and Mkrtchyan et al., 2010). Extensive copy
number differences (CNDs) between monozygotic (MZ) twins can be
another prominent example of such ‘somatic mosaicism’. By defini-
tion, MZ twins should share the same germ-line mutations inherited
from their parents. Thus, aside from experimental errors, CNDs
between MZ twins must have come solely from somatic mutations
after twinning. Recently, pairs of MZ twins discordant for some
phenotypes, especially disorders or diseases, have been frequently
examined for genetic differences, including CNDs, to identify genetic
causes of such phenotypes (for example, Bruder et al., 2008; Kimani
et al., 2009; Baranzini et al., 2010; Maiti et al., 2010; Sasaki et al., 2011;
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and Ehli et al.,, 2012). The results of these studies varied widely in the
number of CNDs identified, from zero (for example, Kimani et al.,
2009 and Baranzini et al., 2010) to over a dozen per pair (Maiti et al.,
2010). These results cannot be compared straightforwardly, because
they were obtained through experiments that differ in their genomic
coverage, resolution and/or criteria for validating detected CNV
candidates. All we can say at this point is that there is currently no
consensus on the rate of somatic CNV mutations; it could be
negligibly small, or large enough to invalidate the use of traditional
population genetics.

In such circumstances, it is all the more important to establish a
theoretical framework of population genetics that takes somatic muta-
tions into account, and to extensively examine the possible impacts of
somatic mutations on the CNV data over a wide range of parameters.
These are the main goals of this study. We will also demonstrate how
our theoretical framework can be applied to real data, using the
currently available data on human CNVs as examples. As the quality of
data for somatic mutations still keeps improving, in the near future our
theoretical framework will enable us to precisely evaluate the roles of
evolutionary mechanisms behind the observed pattern of CNVs,
including the exact contribution of somatic mutations to it.

The effects of somatic mutations are similar to those of errors in
mutation detection. Numerous studies have addressed the issue of
mutation detection errors, especially errors in single-nucleotide
polymorphism (SNP) calls using DNA reads via shotgun sequencing
or next-generation sequencing technologies (reviewed for example in
Pool et al., 2010; Nielsen et al., 2011; Hohenlohe et al., 2012; and Liu,
2012). General theoretical frameworks of sequencing errors have been
developed by many authors (for example, Johnson and Slatkin, 2006;
Lynch 2009; Emerson et al., 2010; Hohenlohe et al., 2010; Liu et al.,
2010; Martin et al, 2010; Keightley and Halligan, 2011; Kim et al,
2011; Li, 2011; Luca et al, 2011; and Nielsen et al., 2012), but they
usually involve many parameters and are not easy to obtain analytical
expressions. Some simplifications are needed to have informative
analytical results, such as estimations of the population mutation rate

[Stage 1] Population of
N (t) diploid individuals,
providing 2N (t) alleles

[Stage 2] Current
generation, consisting
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05, summary statistics and/or the derived allele frequency at each site
(for example, Achaz, 2008; Hellmann et al, 2008; Johnson and
Slatkin, 2008; Knudsen and Miyamoto, 2009; and Kofler et al., 2011).
These theories may be useful for point somatic mutations, whose rate
is somewhat comparable to that of germ-line mutations.

However, it is not straightforward to directly apply these theoretical
frameworks to somtatic mutations that occurs at a relatively high rate,
as may be the case with CNVs. Moreover, these theories somehow
specialize in errors of SNPs by assuming either that the error rate is
known exactly or that the forward and backward error rates are
identical. These assumptions are not likely satisfied in current
experiments to detect CNVs. Therefore, we here develop a new
framework that incoporates both forward and backward somtatic
mutations as well as both forward and backward detection errors. Our
theory can also accommodate general population genetic models,
which take account of demography, selection, and so on.

RESULTS

Model

We consider a simple situation where n haploid genomes are sampled
from a population with the current diploid population size N, =
N(0). We assume that the population size N(t) is given by a function
of ¢, time measured backward from the present. We first focus on a
single potentially variable locus (illustrated in Figure 1), then extend
the result to a set of independent loci scattered across the genome.
Two allelic states, wild type (W) and mutant (M), are allowed. Let 4G
and +© be the forward (from W to M) and backward (from M to W)
germ-line mutation rates per generation per haploid, respectively
(Figure 1, stage 1). Also, we assume that the DNA is sampled from a
particular somatic tissue, such as a blood sample or a buccal swab, of
each individual (Figure 2, stages 2—4). In such a situation, we expect
that the sampled DNA accumulates a small number of detectable
somatic mutations during cell cycles from the original zygote to the
sampled tissue. Let u5 and +5 denote the rates of such detectable
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of N(0) zygotes,
with the mutant allele
frequency x.

[Stage 3] Somatic y
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Somatic mutations
w - > M
%
v
Viability deficit:
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zygotes,
with the mutant allele
frequency x’.

Detection errors

[Stage 4] Sample of n somatic alleles, with m observed mutants (0<m< n).

Figure 1 Three-step framework to predict the AFS taking account of somatic mutations. Consider a diploid population with size N(t) at time ¢ (stage 1).
Black and red bars represent wild-type and mutant alleles, respectively. Time t=0 is defined as the present (stage 2), and the standard population genetics
can be applied to these zygotes at the current generation. Somatic mutations occur afterward (from stage 2 to stage 3), which, combined with errors in
mutation detection, will be reflected in the observed state of the sample (stage 4). See text for details.
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somatic mutations (per generation per haploid), forward and back-
ward, respectively (Figure 1, from stage 2 to stage 3).

Errors in the detection of mutations have effects quite similar to
those of somatic mutations (Figure 1, from stage 3 to stage 4). We
assume that the average fraction u of somatic DNA sequences with
the true wild-type allele is erroneously identified as mutants (that is,
false positives), and that the average fraction vE of true mutant
somatic sequences are erroneously identified as wild types (that is,
false negatives).

Selection can work at two levels. First, as the standard population
genetics considers, selection works on germ-line mutations, which
determines the number of offsprings in the next generation. For
this selection, let 1, 1 —hSsS and 1 —sC be the relative fitnesses of
individuals whose germ-line (or zygotic, to be more precise) genotypes
are WW, WM and MM, respectively.

In addition, selection can work on somatic mutations. In general, a
somatic mutation will not be passed on to descendants, but it
potentially affects the non-inheritable fitness, that is, the survival
probability and/or fertility that are relevant only to the individual
having the somatic mutation. Throughout this study, we will ignore
the fitness effects of somatic mutations, because the effects of somatic
mutations on viability are expected to be negligibly small if only
normal individuals are sampled. For example, in a population with
the effective size N, = 10000, even a somatic mutation whose fitness
effect is equivalent to that of a severely deleterious germ-line
mutation, say, 2NsC =200, can have 99% of wild-type viability.
Thus, as the population genetic theory predicts, the effect of selection
on a mutation is in general very limited (unless it is lethal or semi-
lethal) at the individual level, even though the effect will be enhanced
at the population level. This reasoning indicates that our assumption
is not unreasonable especially when we are interested in detectable
somatic mutations.

Basic theory

Under the above assumptions, we are interested in #1, the number of
haploids each with a CNV (that is, allele M) at the focal locus, out of
n sampled haploids. We here derive the probability distribution of 1,
which will provide an allelic frequency spectrum later. The derivation
involves three steps as illustrated in Figure 1:

(i) Predict the distribution ¢ (x) of the population frequency x of M
among zygotes in the current generation (t=0, stage 2 in Figure 1),
according to a standard population genetics theory, which takes
account of germ-line mutations alone (Figure 1, stage 1).

(i) Predict the frequency x' of M among the somatic chromosomes
to be sampled, conditional on x (Figure 1, stage 3). Then, predict the
frequency ¥’ of sequences that are observed to be of allele M in the
experiment, by taking the effect of detection errors into account
(Figure 1, stage 4).

(iii) Predict the probability distribution of m given n sampled
somatic haploids, by averaging the binomial distribution of n trials
with the success rate X"/ over the zygotic mutant frequency x (Figure 1,
stage 4).

To predict the zygotic allele frequency distribution, ¢(x), it is
required to specify the past demographic history of the population,
{N(t)}, the forward and backward germ-line mutation rates (1S and
¥5), and the selection parameters (s¢ and KC). We postpone this
problem until later, and we first formulate steps (ii) and (iii) by
assuming that ¢(x|Pg)=¢ (x|t = 0,{N(£)},uC,v5,s,kC) in the current
population (that is, at t =0 generation) is known. Henceforth, we will
use a short-hand notation, Poz(t:O,{N(t)},uG,vG,sG,hG), to repre-
sent this population genetic setting.

Heredity

The step (ii) first concerns how somatic mutations change the allele
frequency. Given the allele frequency x among zygotes and the rates of
detectable somatic mutations, 1 for forward and v5 for backward, the
population frequency of M at the sampling time is given by
¥ (uSS) = x(1 =) 4+ (1 —x)uS, assuming no selection on somatic
mutations. In addition, we incorporate the change in the frequency of
sequences observed to be mutants. Let x”/ denotes the expected
frequency of such ‘observed mutants. Using the error rates u® and
VE, it is given by:

K =X (1 =)+ (1= 2P = x(1 =) + (1 —x)u.

(1)
Here, 45 and +SF are the ‘composite rates’ of somatic mutations

and detection errors that give the net effect of forward (W to M) and

backward (M to W) changes, respectively. They are defined as:

SE =1 =B+ (1

u

— Ot =~ b+ b

VE = S =)+ (1= vSE = S 1k

2)

This approximation applies when uS, S, uf, vE << 1, which holds in
most practical cases. In simple experimental settings, we cannot
distinguish somatic mutations and errors. Thus, frequency changes by
somatic mutations and by detection errors are always combined
together and measured through the composite rates 45 and v°E,

The step (iii) is straightforward; the probability that m out of n
somatic haploids are observed to have allele M is given by the following
basic formula:

PSE[m | va (uSE7 VSE)a Tl]

1
= / dx ¢(x | Po)XPpa[m | n,x"]
J o

(n)x /0 dx{p(x | Po)x (x(1 —v"F)

+ (1= %)) x (a*E + (1 —x) (1 = )" ™). (3)

Here, Pg,[m|n,x"’] denotes a binomial probability, namely the
probability of m ‘successes’ out of n trials when the success rate is x
per trial.

Figure 2 illustrates an intuitive expectation from this theoretical
model. Inheritable germ-line mutations (red lightening bolts in stage
1 of panel a) are scattered across the genealogy, whereas detectable
somatic mutations (blue lightening bolts from stage 2 to stage 3)
occur only at the tip of the genealogy. Thus, each somatic mutation
should affect a single haploid, most likely resulting in a unique
mutant, that is, a singleton. Therefore, somatic mutations should
contribute mostly to the singleton class in the allele frequency
spectrum (AFS) (blue bar in panel b of Figure 2), whereas germ-
line mutations are distributed into wider frequency classes (red bars).
Because the n sampled haploids should be independently affected by
somatic mutations, the absolute contribution of somatic mutations
should amount roughly to nuS. These results are analogous to those
on sequencing errors, such as their absolute contribution (~nub),
which are derived, for example, by Achaz (2008), Hellmann et al.
(2008) and Knudsen and Miyamoto (2009).

However, the behavior of backward mutation is not very simple.
Below, we also explore the effect of backward mutations on the AFS
under a relatively simplified situation, that is, the infinite site model is
applied to germ-line mutations, but recurrent changes (including
backward ones) are allowed after stage 2 (that is, somatic mutations
and detection errors). The following results would enable more
insightful mathematical understanding on the joint effects of forward
and backward somatic mutations and errors.
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Figure 2 Schematic genealogy (a) and AFS (b) under a simple population
genetic model with somatic mutations. A possible genealogy among haploid
sequences is shown in (a). The stage numbers correspond to those in
Figure 1. A large oval at stage 2 is a zygotic (haploid) genome. At stage 3,
an open small oval and a red-shaded small oval are a somatic (haploid)
genome and a germ-line one, respectively. A blue open box appended with a
blue arrow (from stage 3 to stage 4) represents a sampled somatic tissue.
(b) An expected AFS from these mutations is shown.

AFS under the infinite site model
Equation (3) provides the basis of the following derivations. Obviously,
without somatic mutations or errors, that is, with uSE=1E=0,
Equation (3) is identical to the well-known formula of the AFS, which
only takes account of heritable germ-line mutations:
1
Po[m | Po,n] = (:‘n)x/ dx (x| Po)xx"(1—x)""". (4)
0
We refer to this AFS with no somatic mutation as the germ-line
AFS.
It is often very convenient to expand Equation (3) with respect

to the composite rates 45 and +°F, and express it in terms of the
germ-line AFS:

n
Psg[m | Po, (u™,v*F,s* = 0),n] =Y N(m | k; n,u™,v*)
k=0

><P0[k | 'Po,I’lL

with

N(m |k n,u vF)= (1)
0<i<m,

e itj=k

x(1— MSE)ﬂfm*J(VSE)](uSE)m*1(1 o 1/SE)I

min[k,m]

_ Z (:tn:ki)(i_()x(l_uSE)n7k7m+i(uSE)m7i(VSE>k7i(l_VSE)i.

i=max[0,k — (n —m)]

(5)
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If the composite rates are so small that nmuSt<<1 and m E<<1,
then the expansion could be approximated to the first order as:

~
~

PSE[m | P07 (MSE7 VSE7SS
SE

0), 1]
~ (1= (n—m)u’t —mv*)

xPo[m | Po,n]+ (n—m+1)ut
XPy[m—1 | Py, n] + (m+1) v

xPo[m+1 | Py, n] 4+ O((nuE, nvE)?). (6)

This mathematical treatment is particularly powerful if the germ-
line AFS is known either analytically or numerically. It also facilitates
the comparison between (3) and (4), and helps evaluate the
composite effect of somatic mutations and errors on the AFS. For
this purpose, we here define A[m|P,, uSE, v5E, n] as the relative
difference between (3) and (4):

o PSE[m ‘ P0> (uSE7 VSE)7 Yl}

Alm | Py, uSE,vE n
[ Po ] Po[m | Po, n]

~1. (7)

All computation through Equations (3-7) requires a germ-line
allele frequency distribution, ¢(x|P;), which is determined by a
specific set of population genetic parameters, P, defined above. In
general, numerical computation is possible for any kind of ¢(x|Py),
and there are some special cases where the formula can be analytically
given, either exactly or approximately. In the following, we will
examine a few such cases assuming the infinite-site model (Kimura,
1969), where the germ-line mutation rates are so small that recurrent
mutations are expected to be very rare. But we will allow recurrent
changes from the zygotic state to the observed somatic state, via
somatic mutations and/or detection errors. We also assume a
constant-size population. In this section, we will use a short-hand
notation, Pis = ({N(t) = N},uC(<<k),v¢ (<)), to represent
the setting appropriate for the infinite-site models with a constant
population size, N.

It should be noted that in the following, we consider m = {0, 1,
2, .., n—1} and ignore the frequency class m = n. In practice, under
the flux theory, once a derived allele is fixed, this fixed allele is
regarded as a ‘new’ ancestral state. That is, the frequency class m=n is
absorbed into the frequency class m =0 as soon as the mutant allele is
fixed.

Selectively neutral mutations. When all mutations are selectively
neutral, the equilibrium distribution ¢*(x|...) of the mutant allele
frequency x is given according to a flux theory (Kimura, 1969), which
was later formulated using the Poisson random field theory (Sawyer
and Hartl, 1992):

" (x| (Prs,s¢ = 0)) = 4NuG)—1C. (8)

Substituting this for ¢(x|Py) in Equation (4), we get:

Po[m | (Pis,s¢ = 0),n]

g

4NuS

- for m=1,...n—1,
1 — 4NuSxa, (n)

for m =0,

©)
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where a,(n) = ;7' % Substituting this for Py[...] in Equation (6)
and retaining up to the second leading terms, we get:

Pgg[m | (PIS,SG =0), (uSE,VSE),n]

M<1+"’7L_E1> for m=2,...n—1,
~ 4ANUC + nuSt for m=1,
1 —4NuSxa;(n) —nuE  for m = 0.

In terms of increments, this is translated as:

Alm | (Pis,s¢ = 0), u’F vF 1]

nuSE

~ 4Nu“
't

-1

This predicts that, if we exclusively consider selectively neutral
mutations, the expected increase in the frequency of singleton
mutants will be O(&) if uSE and uC are on the same order, and
the increments of other frequency classes (1>2) are much smaller,
given 4NuC << 1.

for m=1,

(11)

for m=2,...n—1.

Deleterious mutations. Deleterious mutations may be common,
especially when mutations occur in essential functional regions in
the genome. To simplify the analysis, we assume that the fitness effects
on germ-line mutants are additive, that is, WS=1/2. According to the
Poisson random field theory (Sawyer and Hartl, 1992), the equili-
brium distribution ¢*(x]...) of the frequency x of a deleterious germ-
line mutant is given as:

ONsT(1-x) 1 1
x(1—x)
Substituting this for ¢(x|...) in Equation (4), we get:
s%). 1]

= 4NuSx

¢ (x| (Prs,s)) = 4NuC x (12)

G
e2Ns" _ 1

Po[m | (P157
1 HNG . G
=y e —q X[€ Flmym = 2NST) — 1]

(13)
k—1oa+j

for m=1,.,n—1. Here, F(a,f;z) = > 2, [k, o | is the
confluent hypergeometric function. The probability Py[m=0|...]
can be obtained from the general formula:

n—1

Pm=0].]=1- Zpo[m

Substituting Equation (13) into Equation (6), the increment of the
spectrum of deleterious mutations is calculated, up to the first order

of 4’ and V5, as:
Gy ,SE SE 1 . nu’®
Alm =1 (Pis,s), u™, v, n] = Po[m =1 | (Prs,s5), n]
St n—1 AN g
TANC n eNCF(m = 1,n; —2NsG) —1 (14)
for m=1,
A[m | (7315, G), uE, ySE n]
e Sl 09
e e
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for m=2,...,n—2, and

Alm =n—1] (Prs,s%), u™ v n]

n—1eN"F(n—2,n; —2NsS) —1

~ | 1
n—2eNF(n—1,n; —2NsG) —1

} —(n— l)vSE
(16)

for m=n-—1.
In the strong selection regime, 2Ns% > 1, we can use the asymptotic

expansion:
—a—1
ﬂx(l_ M+) .
z

(17)

Flo,p; —z) ~ ———<Xz

Up to the leading terms of the expansion, we have:

4Nu®  n! L\
Po[m | (Pis,s%),n] ~ m (n—m)! x (ZNSG)

(18)

for m=1, ..,n —1. For m =0, we have

n—1

Py[m =0 (Pis,s),n] ~ 1—4Nu® XZ

1 m
() ~1
(ZNSG)

Substituting them for Py[...] in Equation (6) yields:

(19)

A[m =1 | (7)]5, 5G)7 uSE7 VSEv n}
SG# St SG%
~ form =1
_ G SE )
( nEmt ZNS) - form=2,..,n—1.
(20)
Equation (20) suggests that, if s$~0.1 (and uS~uSE), we will

observe a roughly 5% increase in the singleton frequency. This simple
approximation may roughly hold even with quite a large sS, say,

up to ~0.5.

Summary and implications. Figure 3 schematically summarizes the
theoretical results we obtained above. There are a couple of very clear
points. (1) First, whatever the germ-line AFS is, the major joint
increment of the singleton frequency due to somatic mutations and
errors is given by the forward composite rate, uSE, independent of
germ-line mutation rates. In all cases (from neutral to very
deleterious), the absolute contribution to the singleton class (that is,
=1) is nuSE, whereas those to the classes with m( > 1) mutants are
at most on the order of nuSE-Py[m —1|Pg,n] (see Supplementary
Note 2 in Supplementary Information 1). Thus, the major contribu-
tions of somatic mutations and errors are to the singleton class, and
the effect on other classes should be very small. (2) The relative
contributions of somatic mutations and errors would be larger as
selection is stronger against the mutant (M). This is obvious because
the major absolute contributions of somatic mutations and errors are
given by 5 alone while strong selection reduces the number of
polymorphic loci substantially. Indeed, the proportion of singletons
due to heritable mutations is 06 (=4NuS) when the mutation is
selectively neutral (Figure 3a), roughly 651/(2NsC) when it is strongly
deleterious (Figure 3b and c), nuC when it is completely sterilizing
(but not lethal at all), and 0 when it is lethal. (The latter two cases are
discussed in Supplementary Note 1.)
Although these conclusions were derived under the infinite-site
model for mathematical convenience, they should also hold under
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Figure 3 Composite contributions of somatic mutations and errors to allele
frequency spectra under various population genetic settings. It is assumed
that all mutations are neutral (sS=0, a), moderately deleterious (2/Ns% =30,
b) and strongly deleterious (2Ns¢=100, ¢). n=10, 06=4Nw€=0.001,
B =0, ’E=0.016%, SE=0 and h®=1/2 (that is, additive selection effect).
The red bars represent the spectra due purely to germ-line mutations, and
the blue bars represent the increments due to forward somatic mutations
and false positives. Mathematical formulas for the contributions to the
singleton class are shown on the right of two-headed arrows.

finite-site models as long as the population mutation rate is
sufficiently low that the majority of loci are monomorphic (see
Supplementary Note 1). They should also hold even when the
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population size in the past is not constant because changes in the
population size affect only the germ-line AFS but have no effect on
the contributions of somatic mutations and errors.

These theoretical results caution against a naive evaluation of
selection on CNVs using the AFS. It is known that both demography
and selection affect the AFS. Accordingly, a common approach to
evaluate selection on CNVs is to compare the spectrum of CNVs and
that of SNPs at synonymous sites, which should be less affected by
selection. It has been frequently demonstrated that the spectrum of
CNVs is more skewed toward low frequencies than that of synon-
ymous SNPs (for example, Emerson et al., 2008 and Conrad et al.,
2010). Because selection provides one possible and popular inter-
pretation of such a skew, the authors in the past large-scale analyses
tended to conclude that CNVs are on average selected against. They
further estimated selection parameters on CNVs from the allele
frequency spectra, but so far without taking the effect of somatic
mutations into account, although detection errors were somewhat
corrected. We would point out that this approach could overestimate
the effect of negative selection when the composite rate 45t is high
enough to substantially increase the low-frequency classes of alleles,
especially singletons. In the following, we will demonstrate this point
by using an example of human CNVs, for which the somatic
mutation rate may not necessarily be negligible. There, our theoretical
framework will also reveal that the composite backward rate (%) can
be disproportionally larger than the forward rate (u°F) in these
experiments.

Application to human CNV data

The theoretical framework developed so far is readily applicable to
real data. In the following, we will demonstrate it using two data sets
on CNVs in humans as examples. One is a data set of CNDs between
MZ twins (Maiti et al., 2010), which is used to estimate the composite
rates of somatic mutations and mutation detection errors relative to
the population-level diversity. With this estimate, we demonstrate
how much the expected AFS could deviate from the prediction of
traditional population genetics.

The other data set consists of three genome-wide allele frequency
spectra of CNVs in the European population by Conrad et al. (2010),
which are used for a maximum likelihood analysis to estimate the
relative impacts of negative selection vs somatic mutations and errors
on the allele frequency spectra, without prior information on the
composite rates.

Estimating composite rates from CNDs between MZ twins. One
potentially promising way to estimate the composite rates of
somatic mutations and detection errors would be to exploit genetic
differences between MZ twins, because such differences must have
caused solely by somatic mutations or detection errors on either of
the twins. While, as mentioned in Introduction, the rate of somatic
CNV mutations is a controversial problem at this moment, we here
use the data from Maiti et al. (2010). We use their data set because
it is the only one we know that genotyped both twins and their
parents, which allows us to distinguish forward and backward
composite rates. In addition, because the twins’ (and their
parents’) genomes are compared with a reference genome, we
can also estimate the population germ-line mutation rate 0Og
(=4N,u5).

With the data of Maiti et al. (2010), we were able to estimate
the forward composite rate relative to Og, as well as the absolute
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Figure 4 Contributions of germ-line mutations (red bars) and those of
somatic mutations and errors (blue bars) to AFS predicted with the
estimated composite rates for CNVs from the monozygotic twins. All
mutations are assumed to be neutral. See text for details.

backward rate, as

u /6% ~ 0.097and v ~ 0.13, (21)
as detailed in Supplementary Note 3 in Supplementary Information 1.

It should be noted that the study of Maiti et al. (2010) provides a
virtual ‘upper-extreme’ of the extent of CNDs between twins among
such studies conducted so far (see Introduction). Therefore, the
potential impact of somatic mutations estimated in this subsection
should be interpreted as an upper-bound.

By using an independent estimate of 0, we can compare the
forward and backward composite rates, 5% and vSE. Using the
data of Conrad et al. (2010), we estimated the genome-wide
proportion of segregating CNV loci as 0.024 (see Supplementary
Note 4 for detail). Because this is based on the data of sample size
40, we can roughly estimate 0C as 0.024/(1+1/2+ --- +1/
39) ~5.6 x 10 =3 according to Watterson (1975). Thus, we have
a broad estimate of 45 as 0.097 x 5.6 x 10 73~ 5.4 x 10 ~#, which
is only ~1/250 of vSF (~0.13). One possible explanation of this
large discrepancy is that at least vSF (and perhaps also #5F) may be
mostly due to errors in the array experiments of Maiti et al.
(2010). This estimate of the backward composite rate seems to be
too large if somatic mutations are its major source; vEx0.13 is
even higher than the exceptionally high mutation rates (~10 %)
that some disease-associated structural variants are known to
have (see for example Lupski, 2007). High error rates of array
experiments have also been pointed out, for example, by Emerson
et al. (2008).

It would be intriguing to demonstrate how the estimated total
amount of somatic mutations and errors can potentially affect the
AFS. To be realistic, we first construct a presumable spectrum for
selectively neutral germ-line CNVs among 40 European haploids
via the Poisson Random Field theory (for example, Sawyer and
Hartl, 1992 and Williamson ef al., 2005) implemented in the
‘prfreq’ program (Boyko et al., 2008). The demography of the
population was modeled by the ‘bottleneck + 2-step recovery’
model with the parameters provided in Table S1 of Boyko et al.
(2008). The demographic parameters were inferred by Boyko
et al. (2008) using ca. 8700 synonymous SNPs among 20
European-Americans. The obtained spectrum is shown by red
bars in Figure 4.
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Onto this spectrum, we added the composite effect of CNV
somatic mutations and errors (as estimated above) according to the
full expansion formula in Equation 5. The result is shown by blue bars
in Figure 4. It demonstrates that there could be a substantial increase
in the singleton class, while there are very little contributions to the
other frequency classes. This result indicates that the composite effect
of somatic CNV mutations and errors on population genetic analysis
may not be negligible, provided that the forward composite rate in
the spectrum analysis is indeed as high as that estimated from the
data of Maiti et al. (2010). Thus, as mentioned earlier, neglecting
somatic mutations and errors could potentially make us to mis-
interpret a substantial excess of singletons as evidence for selection
against CNVs.

It is important to point out that there is a major difference in how
the two factors (selection and somatic mutations plus errors) affect
the AFS, although both cause skews toward rare frequency classes. As
our theory shows, somatic mutations and errors affect primarily the
singleton class, whereas the effect of selection can be observed in all
frequency classes. Based on this difference, in the next section, we
attempt to distinguish these two mutually confounding factors using
the spectrum data alone.

Selection vs somatic mutations plus errors inferred from the AFS. In
the previous section, we estimated the composite rates of CNV
somatic mutations and errors, which enabled us to understand
their impact on the AFS. Thus, when we have some prior
information on the composite rates (for example, by twins data),
it is straightforward to predict its effect on population genetic
analysis. However, composite rates predicted from one experi-
ment may not apply to other experiments particularly because of
potentially large heterogeneity in error rates. Moreover, for many
non-model species, such prior estimates of composite rates may
not be available at all. In such situations, it would be more
powerful if we can distinguish between the composite effect of
somatic mutations and errors and the effect of selection using the
spectrum data alone.

We here use a likelihood approach to estimate the composite rates
and selection parameters simultaneously from the AFS. (The compu-
tational procedures are detailed in Supplementary Note 4.) It is
assumed that the expected spectrum of neutral germ-line mutations
(with no somatic mutation) is known but that the composite rates are
unknown. We obtain such a presumably ‘neutral’ spectrum under the
demographic model inferred from synonymous SNPs by the ‘prfreq’
program (Boyko et al., 2008), as already described in the previous
subsection.

As an observed frequency spectrum, we use the exonic CNV data
with n=40 haploids of an European origin, which were kindly
provided by Conrad et al. (2010) (see also Figure 2.28 in their
Supplementary Notes). The white bars in Figure 5a show this
observed spectrum, which is denoted by (nS, ..., n5>), where 1™
(k=1,..., B) is the observed number of CNV loci in the kth bin
consisting of one or more of the allele frequency classes, each of which
is defined by a particular number of mutants in the sample. Here, we
define B=16 bins out of n—1=39 allele frequency classes, as
indicated by the labels under the horizontal line in Figure 5. Such a
practice is quite common in y? goodness-of-fit tests in which some
allele frequency classes have very few (or zero) entries, as in the
present case. We first check how a neutral model (demography taken
into account) with no effects of selection, somatic mutations, or
errors can explain the observed frequency spectrum by using a
likelihood approach. A log-likelihood function of the observed
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Figure 5 Model fitting to the AFS data of exonic CNVs (a) and intergenic CNVs (b) in humans. The observed spectrum is shown by the white bars. The
colored bars show the best-fit spectra under the four models. The color code is red, the model with neutral germ-line mutation only; green, the model with
selection; blue, the model with somatic mutations (plus errors); orange, the model with both selection and somatic mutations (plus errors). Demography is

taken into account in all four models (see text for details).

spectrum is given by

In P[(nS™, ...;ng™) | (p7%, .., p5")]
B

= Const. + Znibsx In(p;®). (22)
=1

Here, piXP (k=1,...,B) is the theoretical expectation of the propor-

tion of the kth bin, which is normalized so that 3¢, p® = 1. pi® is
computed from Equation (3) by assuming that the CNV regions are
unlinked to each other and that all loci have identical mutation rates
and selection parameters.

In the neutral model with the demography estimated from
synonymous SNPs, it is straightforward to calculate the expected
spectrum with no somatic mutation or error (red bars in Figure 5a).
The fit is not very good, as the theoretical spectrum has much fewer
singletons and much more loci with k>2 than the observation. The
poor fit is also indicated by an extremely small goodness-of-fit P-value

(=5.9% 1079, The result therefore suggests potential roles of
selection and/or the composite effect of somatic mutations and errors.

Next, we include selection in the theoretical model. It somewhat
improves the fit to the observation, but the spectrum with the
maximum likelihood still deviates from the observation in the same
directions as the purely germ-line neutral spectrum does (green bars
in Figure 5a), and the goodness-of-fit P-value remains quite small
(= 1.3 x 10~ 1), although significantly improved in comparison with
the basic neutral model with P=5.9 x 107", Note that a larger
P-value (or, equivalently, a smaller ;(2) indicates a better fit. The
improvement is highly significant (P=5.4 x 10 3%, likelihood
ratio test).

In contrast, when the composite effect of somatic mutations and
errors is added to the neutral germ-line CNV model, the fit to the
observation is dramatically improved. The theoretical spectrum with
the maximum likelihood is almost indistinguishable from the
observation (blue bars in Figure 5a), and the goodness-of-fit P-value
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(=1.6x107% becomes much larger (P=2.0x 10~%, likelihood
ratio test).

Finally, we add both selection and the composite effect of somatic
mutations and errors to the purely germ-line neutral model. This case
fits the observation best (the goodness-of-fit P-value = 5.3 x 10 ~> and
P=1.1 x 10~ for a likelihood ratio test) as shown by orange bars in
Figure 5a, although the neutral CNV model with somatic mutations
and errors explains the data almost equally well. A synopsis of these
results, including the maximum-likelihood (ML) estimates of para-
meters, are given as Table S1 in Supplementary Information 2.

The same analyses are also applied to the data for intergenic CNVs
and intronic CNVs from the identical sample of 20 Europeans
(Conrad et al., 2010). We again found that the model incorporating
both selection and somatic mutations plus errors best explains the
observations (Table S1, Figure 5b and Supplementary Figure S11 in
Supplementary Information 2). However, in contrast with the exonic
data, incorporating selection alone fitted intronic and intergenic data
better than incorporating only somatic mutations and errors did. This
might be against intuition, but can be explained by our theory. If
selection works against CNVs (as in the exonic case), then the relative
contributions of somatic mutations and errors to rare allele frequen-
cies are large. In such cases, their effect should stand out in our ML
analysis.

Through this model-fitting approach by maximizing the log-
likelihood function, Equation (22), there are two major points to
make. First, the inclusion of somatic mutations plus errors drastically
reduced the magnitude of the estimates of selection coefficient y
(= —Neys©) for exonic CNVs, from yypp= —24.3 for the purely
germ-line model with selection to yyg= —9.2 for the model with
both selection and somatic mutations plus errors. Indeed, the former
model is nested in the latter, and the likelihood ratio test (of 2 degrees
of freedom) favors the latter with a P-value of 1.1 x 10~!8. The
coefficient y reduced also for intronic and intergenic CNVs although
the reduction was not so significant. Thus, ignoring somatic muta-
tions likely causes an overestimation of the role of negative selection
in the analysis of the AFS.

Second, the maximum likelihood estimates (MLEs) of the forward
composite rate were in general much smaller than the rates estimated
using the CNDs between twins in the previous section, whereas the
estimates of backward composite rate v°F were roughly in agreement.
The MLE of the ratio #5%/60C for the full model (with both selection
and somatic mutations plus errors) was 0.079, 0.0071 and 0.0042 for
exonic, intronic and intergenic CNVs, respectively. Thus, except for
the exonic CNVs, the ratio was much smaller than the estimate of
0.097 via the analysis of CNDs between twins. This may be because:
(1) most of the data of Conrad et al. (2010) are deletions whereas the
majority of CNDs between twins identified by Maiti et al. (2010) are
duplications; (2) the CNDs collected by Maiti et al (2010) are
somewhat biased toward deleterious ones (maybe due to coding
regions of genes with potential association with diseases, much larger
CNV sizes compared with those in Conrad et al, 2010, and so on);
and/or (3) the array-based experimental data by Maiti et al. (2010)
may contain a higher proportion of false positives than that by
Conrad et al. (2010).

It is straightforward to understand the difference in u5%/0C between
exonic and non-exonic regions. Exonic CNVs are much more likely
very deleterious and eliminated from the population quickly, so that
they do not contribute much to the germ-line allele frequency
distribution. This effectively reduces the rate u® of observable
germ-line CNVs, and thus ends up in the reduction of 05 (=4Nu°).
In contrast, the effect of selection against somatic mutations should
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be negligible and that against errors should be none, so that such an
effective reduction in the mutation rate is not expected for uSE.
Combined together, these two contrasting effects result in a large
uSE/0S ratio for exonic CNVs.

Throughout our ML analyses, we used a particular demographic
model, that is, the ‘bottleneck + 2 step recovery’ model by Boyko et al.
(2008). To examine the possible effects of this choice of the
demographic model, we repeated our analyses using their second
best-fit model, namely the ‘bottleneck’ model by Boyko et al. (2008),
and confirmed that the conclusions remain unchanged even under
the latter demographic model (data not shown).

DISCUSSION

Traditional population genetic theories deal exclusively with muta-
tions accumulated through generations of germ-lines down to zygotes
of the current generation, whereas in experiments genotypes are
commonly determined from somatic cells. Whether such a common
practice causes any problem or not depends crucially on how much
somatic mutations can impact population genetic data. To the best of
our knowledge, this study is the first to theoretically formulate and
systematically quantify such effects of somatic mutations in popula-
tion genetics. The impact of somatic mutations on polymorphism
data is straightforward; it adds extra mutations that occurred at the
current generation. Such mutations should be individual specific, so
that most of them should be observed as singletons or very rare
variants. In this sense, the effects of somatic mutations are almost
indistinguishable from those of errors in mutation detection. The
composite effect of these two factors is clearly quantified by our
theoretical framework. As our theory (see also Figure 3) demon-
strates, the major contributions of somatic mutations and errors are
to the singleton class, and their contributions to other frequency
classes are very small.

This effect is similar to that of negative selection, one of the major
factors to increase rare variants. A major difference is that somatic
mutations and errors result almost solely in singletons, while negative
selection leaves other rare variant classes as well, particularly when the
selection is weak or moderate. This is because negative selection
decreases the absolute level of polymorphism; the reduction is
remarkable especially for common variants. As a side effect of this
more reduced polymorphism by stronger negative selection, the
relative composite contribution of somatic mutations and errors
becomes larger as shown in Figure 3. This holds regardless of how the
germ-line AFS is shaped by the joint action of demography and
selection.

In this work, we demonstrated practical aspects of our theory by
applying it to human CNV data as examples. We estimated quite high
composite rates of somatic mutations and detection errors, uSE and
vSE, from the data of Maiti et al. (2010), which suggested the potential
importance of considering their effects on population genetic
analyses. A notable example should be analyses based on the allele
frequency spectra, from which the role of selection is commonly
argued. We introduced an ML approach to distinguish between their
effects using the allele frequency spectra, and found both have
significant roles to increase rare CNVs in human. It should be noted
that several authors suggested conventional analyses while excluding
singletons, because sequencing errors impact the singleton class most
remarkably (for example, Achaz, 2008; Hellmann et al., 2008; and
Knudsen and Miyamoto, 2009). Although reasonable for SNP data,
this simple method may not fully exclude the composite effect of
somatic mutations and errors on CNV data, because the composite



backward rate vSF of CNVs may be quite large as we estimated in this
article.

A limitation of the selection model we used is that it assumes a
constant selective pressure for all CNVs. There should be a substantial
variation in selection intensity especially on exonic CNVs; some must
be very deleterious while others may be close to neutral. In such a
situation, the expected spectrum should be a mixture of spectra that
are highly skewed toward rare variants and near neutral spectra.
Indeed, a large fraction of exonic CNVs in the data of Conrad et al.
(2010) should be very deleterious given that a majority of their CNVs
are deletions, which should have stronger impacts on phenotypes
than duplications do. Therefore, a model with both highly deleterious
germ-line mutations and almost neutral ones would also fit the AFS
of human exonic CNVs almost as well as our models with somatic
mutations do. To confirm this idea, we used a germ-line mutation
model where a proportion (p.,) of loci are selectively neutral and the
remaining ones share a single selection coefficient (y), and we fitted
the model to the observed AFS of exonic CNVs under the ML
criterion. The MLEs of the parameters were pp.,=0.092 and
7= —438, and the goodness-of-fit test gave y>=49.7 and P=3.4
% 1078, which are only slightly better than the values for the neutral
model with somatic mutations plus errors (Supplementary Table S1).
It is indicated that more sophisticated models would be helpful to
fully understand the joint roles of selection and somatic mutations
plus errors, especially when more data become available.

In our theoretical framework, it is very difficult to distinguish the
effect of somatic mutations and that of mutation detection errors.
Discrimination between these two factors may be possible experi-
mentally. If the detection errors occur randomly, then they may be
identified by repeating the genotyping experiments many times on the
same locus from the same sampled tissue. In the multiple rounds of
experiments, somatic mutations (as well as heritable mutations) will
be detected consistently but errors will be detected at most only a few
times, thus errors could be filtered out. In any case, improved
knowledge of the rates of somatic mutations and detection errors
will enhance our understanding on the mechanisms to maintain
CNVs in a population.

Although we used the CNV data for humans, our theoretical
framework can be applied to any species as long as sampled DNA
accumulates detectable somatic mutations. Exceptions include small
organisms such as Drosophila, whose DNA is typically extracted from
the entire body rather than a certain tissue. In such a case, the effect
of somatic mutations on polymorphism data is minimized, because a
mutation on a certain somatic lineage would be diluted by other body
parts lacking the mutation, weakening the signal to an undetectable
level. This prediction is consistent with Emerson et al. (2008), who
reported a relatively small estimate of selection coefficient against
CNVs in Drosophila. This may be partly because the selection
intensity was not overestimated so greatly due to the less effect of
somatic mutations. Another implication of our theory is that the
small estimate may be due to the population size of Drosophila, which
is much larger than that of humans. Because the total contribution of
somatic mutations and errors is ca. nuSE and that of germ-line
mutations is somewhat proportional to 05=4N,u" (see Figure 3 and
the summary of our theoretical results), the relative contribution of
somatic mutations is small if the population size is large. Thus,
neither somatic mutations nor detection errors would cause a serious
overestimation of the selection coefficient on fly CNVs.
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