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An improvement on the maximum likelihood reconstruction
of pedigrees from marker data

J Wang

Many methods have been proposed to reconstruct the pedigree of a sample of individuals from their multilocus marker
genotypes. These methods, like those in other fields of statistical inferences, may suffer from both type I (falsely related) and
type II (falsely unrelated) errors. In sibship reconstruction, type I errors come from the spurious fusion of two or more small
sibships into a single sibship, and type II errors originate from the spurious splitting of a large sibship into two or more
small sibships. In this study I investigate the tendencies of both types of errors made by the likelihood methods in sibship
reconstruction, using both analytical and simulation approaches. I propose an improvement on the likelihood methods to reduce
sibship splitting, and thus type II errors by downscaling the number of inferred siblings sharing the same genotype at a locus.
Simulations are then conducted to compare the accuracy of the original and improved likelihood methods in sibship
reconstruction of a large sample of individuals in full-sib families of the same small size, the same large size and highly
variable sizes, using a variable number of loci with a variable number of alleles per locus. The methods were also applied to the
analysis of a salmon data set. I show that my scaling scheme prevents effectively the splitting of large sibships, and reduces
type II errors greatly with little increase in type I errors. As a result, it improves the overall accuracy of sibship assignments,
except when sibships are expected to be uniformly small or marker information is unrealistically scarce.
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INTRODUCTION

Pedigrees delineate the genealogical relationships of individuals and
are invaluable in many research fields such as molecular ecology,
conservation biology, forensics and human medicine (see reviews of
Blouin, 2003; Pemberton, 2008; Jones and Wang, 2010). When
breeding records are unavailable, incomplete or unreliable, the
pedigree of a sample of individuals can be reconstructed solely from
the genetic marker data of the individuals, using a number of
statistical methods. These methods are invariably based on Mendel’s
laws of inheritance, but differ greatly in the statistical treatment of the
marker data (Wang, 2012). The simplest methods calculate the
likelihoods of different candidate relationships for a pair (for example,
Marshall et al., 1998; Epstein et al., 2000; McPeek and Sun, 2000) or
trio (for example, Sieberts et al., 2002) of individuals, and choose the
relationship with the maximum likelihood as the estimate. They are
simple to implement and capable of modeling linkage among
markers and inferring multiple types of relationships. However, these
pairwise or triowise methods fail to use the valuable marker
information efficiently. Any relatives of the focal dyad or trio provide
vital information (Wang, 2007) about the relationship of the dyad or
trio, but are simply ignored in the estimation procedure. Further-
more, the inferred pairwise or triowise relationships may be incom-
patible when they are assembled for an entire sample of individuals
(Wang, 2012).
More sophisticated methods infer the relationships of all

individuals in a sample simultaneously to use the marker infor-
mation efficiently. This is feasible for sibship inference in a

one-generation sample (for example, Painter, 1997; Smith et al.,
2001; Thomas and Hill, 2000, 2002; Wang, 2004; Butler et al., 2004;
Konovalov et al., 2004; Berger-Wolf et al., 2007; Almudevar and
Anderson, 2012), and for both sibship and parentage assignments
in a two-generation sample (for example Emery et al., 2001; Wang
and Santure, 2009; Wang, 2012). These methods also vary vastly in
how marker information is used statistically in the inference
procedure. Some depend on the exclusion rules derived from
Mendelian segregation law (for example, Butler et al., 2004;
Konovalov et al., 2004; Berger-Wolf et al., 2007), some rely on
the likelihood (for example, Painter, 1997; Thomas and Hill, 2000;
Emery et al., 2001; Wang, 2004) or its surrogate such as the
pairwise likelihood score (for example, Smith et al., 2001; Wang,
2012) of the entire sample of individuals, while others screen
feasible sibship assignments by exclusions and then choose the best
assignment based on a score that is part of a likelihood function
(for example, Almudevar and Anderson, 2012).
In general, exclusion based methods are simpler and computa-

tionally more efficient than likelihood based methods. However,
they are powerless for a sample containing numerous small sibships
and do not apply to lowly polymorphic markers such as single-
nucleotide polymorphisms and restriction fragment length poly-
morphisms. They also have difficulties in dealing with genotyping
errors of data, in estimating multiple relationships, such as full and
half sibships and parentage (Wang, 2012), and in utilizing known
relationships (for example, maternity) and prior information (for
example, sibship size distribution). Likelihood methods are
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flexible, robust, accurate and apply to various markers (for
example, dominant and codominant markers with two or more
alleles, with or without genotyping errors). However, they are
computationally demanding, especially in the case of polygamy of
both sexes and markers suffering from genotyping errors (Wang
and Santure, 2009; Wang, 2012).
All methods in reconstructing pedigrees from marker data are

statistical and thus could suffer from both type I (falsely related) and
type II (falsely unrelated) errors, where the error types are defined
with unrelated as the null hypothetical relationship. In principle,
exclusion based methods should have few type II errors, if the
markers follow Mendelian segregation law and have no typing errors
and mutations. The exclusion rules are inherently sufficient for
exclusion, but insufficient for nonexclusion in sibship or parentage
analyses. Although a set of individuals can be confidently excluded
from a full sibship if their genotypes conform to any of the exclusion
rules (for example, displaying more than four alleles or more than two
types of homozygotes) at any locus, they cannot be assigned to a full
sibship with confidence. For example, m individuals with the same
genotype AA and n individuals with the same genotype BB at a
diploid codominant locus are always compatible with, and thus non-
excludable from, a full sibship, because the mþ n genotypes can be
generated by a pair of parents with the same genotype AB. However,
the likelihood that these mþ n individuals are full siblings relative to
the likelihood that they come from two distinctive full-sib families
(one with m individuals of genotype AA, and the other with n
individuals of genotype BB) diminishes rapidly with an increasing
value of mþ n. For another example, any two unrelated individuals
will never be excluded from a full-sib family, and any three or more
unrelated individuals will never be excluded from a single full-sib
family for a marker with two alleles. While unrelated individuals
identified by exclusion methods are highly likely to be true in
the absence of mutations and mistypings, related individuals
(for example, siblings) inferred by exclusion methods may actually
be unrelated. In contrast, likelihood methods may suffer from both
type I and type II errors. It thus seems as if likelihood methods are
less accurate than exclusion methods, but in fact the opposite is true.
Any robust and accurate statistical inference framework must have
intrinsically a delicate balance between the occurrences of type I and
II errors. If a statistical framework is inherently more prone to one
type of errors than to the other, then its power or/and application
scope must be quite limited. Indeed exclusion based methods for
sibship reconstruction perform well only in the special case of a
sample containing few small sibships and containing highly poly-
morphic codominant markers without genotyping errors and
mutations.
Despite the popularity of likelihood methods in pedigree recon-

struction, surprisingly little work has been done to investigate their
frequencies of type I (for exclusion methods, see Almudevar and
Field, 1999; Wang, 2007) and II errors, and the factors affecting these
frequencies. Such work helps in improving the likelihood methodo-
logy and aids in optimizing the experimental design of a practical
pedigree analysis. In a likelihood sibship analysis, unrelated indivi-
duals may be inferred as siblings (type I error, sibship fusion) and
siblings may be inferred as unrelated (type II error, sibship split). The
latter was reported by several simulation studies (for example,
Thomas and Hill, 2000; Butler et al., 2004), but was regarded as
unimportant when marker information is sufficient (Wang, 2004;
Wang and Santure, 2009). Recently, Almudevar and Anderson (2012)
indicated that the splitting of a large sibship is an inherent property of
the maximum likelihood methods, and derived a formula to predict

the amount of marker information required to prevent sibship
splitting.
In this study, I will formally investigate the frequencies of type I and

II errors of likelihood methods in sibship reconstruction by both
analytical treatment and simulations. I will then propose an improve-
ment on the likelihood methods to reduce sibship splitting by scaling
down the number of inferred siblings with an identical genotype at a
locus used in likelihood calculations. Simulations are then conducted
to compare the accuracy of the original and improved likelihood
methods for reconstructing the sibship of a large sample of
individuals coming from many small full-sib families, a few very
large full-sib families and a mixture of small and large full-sib
families. The methods were also applied to the analysis of a salmon
data set. I showed that my scaling scheme reduces effectively the
splitting of large sibships, reduces type II errors with little increase in
type I errors, and improves the overall accuracy of sibship assign-
ments except when marker information is very scarce and family sizes
are uniformly small.

FREQUENCY OF TYPE I ERRORS

Multiple small sibships, such as singletons, might be spuriously fused
by likelihood methods because they have by chance similar genotypes
compatible with a single sibship. The rate of these errors increases
with a decrease in marker information, and an increase in the
proportion of small sibships in a sample. A fusion may involve true
sibships of various sizes, but occurs most often between two
singletons. Therefore I will focus on calculating the frequency of
fusing two unrelated individuals into a single full-sib family to
indicate the tendency of type I errors. Such an error occurs when
the two individuals has a higher likelihood as full siblings than the
likelihood as unrelated.
Let’s consider a marker with n codominant alleles, Ai for i¼ 1,

2, y, n, in a population under Hardy–Weinberg equilibrium. There
are seven types of pairs of genotypes (ignoring order) as listed in
Table 1. The probability of observing each pair under the null (H0:
unrelated, UR) and alternative (H1: full-sibs, FS) hypothesis are the
likelihood of UR, L0, and the likelihood of FS, L1, respectively. Given
the frequency pi for Ai in the population, L0 and L1 can be derived for
each pair of unrelated genotypes drawn at random from the
population (Table 1). Fusion occurs when L14L0, which is always
true for pairs of identical genotypes {AiAi, AiAi} and {AiAj, AiAj}. It is
also true for pairs of similar genotypes sharing one or more alleles,
which are {AiAi, AiAj} and {AiAj, AiAk} (where jai and kai, j) when
the shared allele Ai has a small frequency of pi o1/3 and pi o1/6,
respectively. Denoting the sets of alleles with frequencies smaller than

Table 1 Likelihoods for pairs of individuals

Dyad L0 L1 (L14L0)?

{ii,ii} p4
i

1
4p

2
i ð1þpi Þ2 Yes

{ii,ij} 2p3
i pj

1
2p

2
i ð1þpi Þpj Yes, pi o 1

3

{ii,jj} p2
i p

2
j

1
2p

2
i p

2
j No

{ii,jk} 2p2
i pj pk

1
2p

2
i pjpk No

{ij,ij} 4p2
i p

2
j

1
2pipj ð1þpi þ pj þ2pipj Þ Yes

{ij,ik} 4p2
i pj pk

1
2pið1þ2piÞpjpk Yes, pi o 1

6

{ij,kl} 4pipjpkpl pipjpkpl No

The first column lists allele indexes in a genotype dyad, where jai, ka{i,j} and la{i,j,k}. The
second and third columns give the likelihood that the two individuals are unrelated (L0) and
full siblings (L1), respectively. The last column indicates whether L14L0 or not, and the
conditions for L14L0 if any.
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1/3 and 1/6 by C and O, respectively, I obtain the fusion probability
by summing the frequencies of dyads that have L14L0,

Q1 ¼
Xn

i¼ 1

p4i þ
Xn

i¼ 1

i 2 C

Xn

j¼ 1

j 6¼ i

4p3i pj þ
Xn

i¼ 1

Xn

j¼ iþ 1

4p2i p
2
j

þ
Xn

i¼ 1

i 2 O

Xn

j¼ 1

j 6¼ i

Xn

k¼ jþ 1

k 6¼ i

8p2i pjpk

ð1Þ

In the case of equifrequent (pi¼ 1/n) alleles, (1) reduces to
Q1 ¼ð2n� 1Þ=n3; Q1 ¼ð6n� 5Þ=n3 and Q1¼ (4n2�6nþ 3)/n3

when n¼ 2–3, n¼ 4–6, and n46, respectively.
It is difficult to derive a simple expression of Q1 for multiple loci,

because the number of genotype combinations increases rapidly with
an increasing number of loci (L). Simulations are used instead to
obtain Q1 when L41. The results are shown in Figure 1a for L¼ 1–3
and L¼ 40, each locus having two alleles of variable frequencies. For
the case of L¼ 1, both simulated and analytical (calculated from (1))
Q1 values were obtained, which are almost identical and thus only the
analytical results were presented in Figure 1a for clarity. The first to
notice is that the relationship between allele frequency (P) and Q1 is
nonlinear and complicated, especially when P is intermediate. This is
because both the number of types and the frequencies of genotype
pairs having L14L0 vary with P. At P¼ 1/3, genotype pair {AiAi, AiAj}
has exactly L1¼ L0 with a frequency of 0.099. The abrupt changes in
Q1 at P¼ 1/3 and 2/3 are caused by this mating type. The curve of Q1

as a function of allele frequency becomes smooth only when
L becomes large.
Similarly, for the case of equifrequent alleles, Q1 does not decline

smoothly with an increasing number of alleles at a locus (Figure 1b).
A four allele and seven allele locus has a higher fusion probability
than a three allele and six allele locus, respectively. With an increasing
number of loci, however, the curve becomes smoother, Q1 becomes
smaller, and loci with more alleles always have smaller Q1 values. The
abrupt increases in Q1 at n¼ 4 and 7 for a single locus disappear
when L*1. When L¼ 10, for example, the Q1 values at n¼ 3, 4, 6 and
7 are 0.12, 0.08, 0.05 and 0.03, respectively.
It should be emphasized that, strictly speaking, the above results

apply to pairwise approaches to full-sib inference, where each pair of

individuals are analyzed in isolation. The Q1 value is usually higher
than that of a joint sibship analysis, in which all sampled individuals
are considered for sibship assignments jointly, as implemented in
Colony (Wang, 2004). This is understandable from a simple example.
Suppose three unrelated individuals X, Yand Z have genotypes {AiAj},
{AiAi} and {AjAj}, respectively at a locus with n¼ 4 equifrequent
alleles. With the pairwise approach, {(X, Y)} and {(X, Z)} will be
assigned full sibship, and {(Y), (Z)} will be assigned non-sibship
according to Table 1. This results in two errors out of three pairwise
relationships. In a joint sibship analysis, the five possible sibship
configurations are {(X, Y, Z)}, {(X, Y), (Z)}, {(X, Z), (Y)}, {(Y, Z),
(X)}, {(X), (Y), (Z)}, with log-likelihood values �7.62, �7.40,
�7.40, �9.01, �7.62. The maximum likelihood configuration is
{(X, Y), (Z)} or {(X, Z), (Y)}, each with a single error out of three
pairwise relationships. Joint sibship analysis uses marker information
more efficiently and as a result has a higher accuracy. It also avoids
conflict inferences typical of the pairwise approach.

FREQUENCY OF TYPE II ERRORS

A large sibship consisting of many siblings might be spuriously split
by the likelihood method when marker information in support of the
sibship is insufficient. The split happens when the likelihood of the
sibship is smaller than the product of the likelihoods of two or more
split sibships. For example, mating AiAi�AiAj may produce a sibship
consisting of two subsets of offspring. One subset has m1 genotypes
AiAi, and the other has m2 genotypes AiAj. When marker information
is insufficient (that is, both Ai and Aj are not rare) in support for a
large (m1þm2441) sibship, it might be split into two subsets, each
as a reconstructed sibship to result in a larger overall likelihood.
There is no doubt that likelihood methods for sibship recon-

struction have the risk of splitting large sibships. The questions are
how often these type II errors occur, how severe type II errors are
relative to type I errors, and what factors affect the rate of type II
errors. Large sibship splitting was noticed in both pairwise likelihood
(for example, Butler et al., 2004) and joint likelihood (for example,
Thomas and Hill, 2000) methods of sibship reconstruction.
Almudevar and Anderson (2012) made some simple analysis of the
splitting of large sibships, and pointed out that it is an inherent
problem of the likelihood method. They derived a criterion
p4L440.5m (where L is the number of loci, m is the true sibship
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Figure 1 Fusion probability as a function of the allele frequencies at 1 (thin line), 2 (thick line), 3 (very thick line) and 40 (broken line) biallelic loci (a),

and as a function of the number of equifrequent alleles at 1 (thin line), 2 (thick line), 3 (very thick line) and 10 (broken line) loci (b).
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size and P is the representative allele frequency) to predict sibship
splitting by likelihood methods.
It is difficult to derive an exact yet simple expression for the split

probability even for a single equifrequent-allele locus. Part of the
difficulty comes from the many possible offspring genotype combina-
tions that must be considered for a large sibship produced by one or
two heterozygous parents. When both parents are homozygotes (see
Table 1), then all offspring will be of the same genotype, and split
does not occur regardless of m and allele frequencies. To gain some
insight into the sibship split problem, let us consider a sibship
consisting of m offspring produced by mating AiAi�AjAk at a locus
with n equifrequent alleles (P¼ 1/n). According to Mendelian
segregation law, the mating produces two possible offspring geno-
types, AiAj and AiAk, with the same probability of ½. Therefore, the
number of AiAj genotypes follows a binomial distribution, m1BB(m,
0.5). When m1¼ 0 or m with a probability of 0.5m�1, split does not
occur. When 0om1om, the sibship splits into a sibship of m1

genotypes AiAj and m2 genotypes AiAk, if the split likelihood,

L2 ¼
1

n8

Y2

i¼ 1

2þ 23� 2minðn� 2Þþ 22�mið2n� 1Þ
� �

is larger than the nonsplit likelihood,

L1 ¼
22� 2mð2m þ 2nÞ

n4

Both L1 and L2 can be obtained from the general sibship likelihood
function (for example, Wang, 2004; Equation (2) below) or more
conveniently from one of the polynomial functions for 14 feasible
full-sib genotype configurations (for example, Painter, 1997).
Figure 2a plots the ratio L1/L2 as a function of m, for different values
of m1 at a locus with n¼ 10 equifrequent alleles. As can be seen, split
is guaranteed to occur when m is large (X12); otherwise, it occurs if
m2 is much larger or smaller than m1.
The split probability for this type of mating can be obtained by

summing over the frequencies of all possible offspring genotype
combinations (with constraints m1, m2¼ 0–m and m1þm2¼m) that
have L1oL2 weighted by their occurrence probabilities. The resultant
expression is complicated and unenlightening, but some numerical
values calculated from it for a locus with n¼ 5, 10, 20 and 40
equifrequent alleles are shown in Figure 2b. At the same m value, split
probability decreases very rapidly with an increase in n or a decrease
in allele frequency (remember herein P¼ 1/n), as found by
Almudevar and Anderson (2012). At the same allele frequency (or
value of n), split probability increases rapidly with an increasing

sibship size, m. My derivation gives numerical results similar to
Almudevar and Anderson’s criterion p4L440.5m. For P¼ 1/n with
n¼ 5, 10, 20 and 40, for example, both methods predict that split
occurs with a probability of 1 for a sibship with m49, 13, 17, 21
offspring (Figure 2b), respectively. However, my method can also
calculate the n and m values that result in a split probability smaller
than 1.
Neither the above analysis nor Almudevar and Anderson’s criterion

is complete because, out of the seven possible matings listed in
Table 1, only one is considered. Different mating types will produce
sibships highly variable in the tendency of splitting up in marker
based reconstruction. Sibship from the two mating types in which
both parents are homozygotes (Table 1) will never be split, with a
probability of 1/n2 for a locus with n equifrequent alleles. However, as
a simple yet good approximation, the criterion is useful in delineating
the relationship among P, L and m for determining large sibship
splitting in the likelihood methods.

AN IMPROVED LIKELIHOOD METHOD

The above analyses on sibship fusion and splitting probabilities show
that both type I and type II errors are ‘inherent’ properties of the
likelihood methods. How often these errors occur depends on many
factors, the most important being marker information content and
the actual sibship size distribution. When most individuals have no
siblings in a sample, sibship fusion is more problematic than sibship
splitting. When the sample is dominated by a few very large sibships,
splitting and type II errors are more severe than fusion and type I
errors. However, irrespective of the actual sibship size distributions,
both types of errors should decrease rapidly with an increase in
marker information.
Both the above sibship splitting analysis and Almudevar and

Anderson’s criterion suggest that sibship splitting probability increases
rapidly with an increase in actual sibship size. Therefore, I propose to
reduce sibship splitting by scaling down the number of siblings
displaying the same genotype in likelihood calculations. The original
likelihood function for a pure full sibship with unknown parental
genotypes at a single locus of n alleles is

L FS j g;mð Þ¼ Pr g;m j FSð Þ

¼
Xn

w¼ 1

pw
Xn

x¼ 1

px
Xn

y¼ 1

py
Xn

z¼ 1

pz
Yd

i¼ 1

Pr gi j w; x ; y; zð Þmi

ð2Þ
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Figure 2 Likelihood ratio (L1/L2, left) and split probability (right) as a function of the number of siblings (m) produced by mating AiAi�AjAk at a locus.

(a) assumes a locus with 10 equifrequent alleles, where curve i (¼1–8) counting from the left (that is, starting at m¼ iþ1) refers to m1¼ i. (b) assumes a

locus with different numbers (n) of equifrequent alleles, where curve i counting from the left refers to n¼5, 10, 20, and 40, respectively.

Improved sibship assignments
J Wang

168

Heredity



where g¼ (g1, g2, y, gd) are the d distinctive genotypes and m¼ (m1,
m2, y, md) are the counts of the d distinctive genotypes observed
among the inferred siblings, w and x index the alleles in one parent
and y and z index the alleles in the other parent. The probability of an
offspring genotype gi given parental alleles {w, x} and {y, z}, Pr(gi|w, x;
y, z), can be derived from Mendelian segregation law, with the
possibility of accommodating genotyping errors (Wang, 2004).
A sibship splits when mi is large and marker information in

support of the sibship is insufficient, as shown above. A solution to
the problem is to scale down mi to reduce sibship splitting and thus
the frequencies of type II errors. However, scaling down mi could
potentially promote the fusion of small sibships and increase the
frequency of type I errors. Other factors that affect both type I and II
errors and the scaling effects are the number of alleles (n) and the rate
of genotyping errors (e, the sum of allelic dropout rate and false allele
rate) at a locus. Having considered the known effects of n, e, and mi

on sibship fusion and splitting, and after extensive experimentation
on simulated and empirical data, I arrived at the scaling scheme

Mi ¼ m
q
i þ 1� d1;q

� �
1� d1;mi

� �
þ d1;mi

; ð3Þ

where q¼ (0.5þ 1/n)(1�2e)þ 2e with ep0.5, the Kronecker delta
d1;mi

¼ 1 and 0 whenm¼ 1 and mia1, respectively, and d1,q¼ 1 and 0
when q¼ 1 and qa1, respectively. Note that q is calculated from n,
which is the number of alleles at a locus observed in a sample of
individuals, and e, which is the mistyping rate estimated and supplied
by a researcher.
With this scaling scheme, mi at a locus with more alleles observed

in a sample of individuals (thus a lower average allele frequency and a
higher power for excluding false sibship in general) and with a lower
mistyping rate has a smaller q value and is more downscaled. The
minimum q value is 0.5 when n is big and e is small, which leads to
Mi ¼

ffiffiffiffiffi
mi

p þ 1 for mi41. The maximum q value is 1 when n¼ 2 or
e¼ 0.5, which leads toMi�mi (that is, no scaling). The reason that mi

at a less informative locus (small n or high e, or both) is less
downscaled is that the rate of type I errors is expected to be high for
such a locus, and any downscaling would make this problem worse.
This ad hoc scaling scheme is arrived at by balancing the frequencies
of both type I and type II errors, considering the locus specific
properties (e and n), which may affect these errors. The performance
of the scaling scheme was checked by numerous simulations under
various parameter combinations, some of which being shown below.
In all simulations, the scheme was shown to effectively reduce the
splitting of large sibships (if present) with little increase in the fusion
of small sibships (if present).
To understand how the scaling works to reduce sibship splitting, let

us consider a numerical example. Suppose a set of L¼ 10 micro-
satellites, each having 10 equifrequent alleles (p¼ 0.1), are used to
reconstruct the sibship of m¼ 200 full siblings contained in a sample
of individuals. This large sibship is highly likely to be split into two or
more sibships by the original likelihood method, because the splitting
criterion p4L440.5m is met, where p4L¼ 10�40 and 0.5m¼ 6.2� 10
�61. By applying the scaling scheme, we have q¼ 0.6, M¼mqþ 1
¼ 25, 0.5M¼ 3� 10�8 and the splitting criterion p4L440.5M is not
met (that is, p4Loo0.5M). As a result, this large sibship will be
reconstructed without splitting by the improved likelihood method.
With the scaling scheme, the likelihood of a sibship is still

calculated by (2), but mi should be replaced by Mi. Similarly, the
likelihood function for a more complicated pedigree (for example,
containing half-sib, full-sib and parent–offspring relationships)
(Wang and Santure, 2009) still applies, except mi is replaced by Mi.

SIMULATIONS

Simulations were conducted to compare the rates of type I and II
errors committed by the likelihood methods with and without the
scaling. Because the relative importance of type I and II errors
depends strongly on the distribution of actual sibship sizes in a
sample, I simulated samples with three very different family size
distributions.
I simulated a large sample containing many full-sib families of

highly variable sizes to challenge the methods. The sample contains
nine sets of full sibships, with set i (i¼ 1–9) having 29�i sibships, and
each sibship having 2i�1 offspring. The sample has thus a total
number of 2304 offspring distributed in 511 sibships, and contains
64256 full-sib dyads and 2 588 800 non-sib dyads. This kind of data
are highly challenging, because the presence of the many very small
sibships (for example, 256 sibships with each having just one offspring
and 128 sibships with each having only two offspring) means a high
potential of type I errors, and the presence of a few very large sibships
(for example, the largest sibship has 256 offspring) means also a high
chance of type II errors. The exclusion based sibship assignment
methods, for example, are guaranteed to fuse the 256 singletons into
128 or fewer sibships, no matter how many markers are used.
As two extremes, samples containing uniformly large or small

sibships are also possible in practice. Simulations were also conducted
to compare the accuracy of the likelihood method with and without
scaling in these two extreme cases. I simulated a sample containing 600
singletons, and a sample containing four large families, each family
consisting of 150 full siblings. For the first sample, sibship splitting or
type II errors are impossible, but sibship fusion or type I errors are
expected to be severe when marker information is scarce. For the second
sample, sibship fusion or type I errors should be rare, but sibship
splitting or type II errors are expected to be frequent except when
marker information is sufficiently high or the scaling scheme is applied.
Simulations considered different numbers of loci, different num-

bers of alleles per locus and different allele frequency distributions.
The allele frequency distribution at an n-allele locus was assumed to
be triangular, equal or highly skewed, with allele i (¼ 1, 2, y, n)
having a frequency of i/(n(nþ 1)/2), 1/n and 2i�1/(2n�1), respec-
tively. Note that, in the case of a locus having a large number of alleles
in a highly skewed frequency distribution, a large proportion of the
alleles will have very low frequencies in the population and will not be
observed in a sample of individuals except the sample is exceptionally
large and sibship sizes are small. For a given full-sib family, parental
genotypes were generated independently across loci and parents,
assuming Hardy–Weinberg equilibrium and linkage equilibrium.
Given the parental genotypes, each offspring multilocus genotype
was then generated, following Mendelian segregation law. The off-
spring genotype data were then subjected to sibship analyses, using
the default parameter settings in Colony program.
For each parameter combination, 50 replicate data sets were

simulated and analyzed. Accuracy was measured by the frequencies
that true full-sib dyads and non-sib dyads are correctly identified,
denoted by PFS and PNS, respectively. The total accuracy was
measured by the frequency that a dyad of any relationship is correctly
identified, denoted by PTS. These frequencies were calculated for each
replicate data set, and then averaged across replicates. The rates of
type I and II errors and the rate of any type of errors are thus
calculated by 1�PNS, 1�PFS and 1�PTS, respectively.

SIMULATION RESULTS

Simulation results showed that compared with no scaling, scaling of mi

slightly increased type I errors (note the very small scales of y axis for
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PNS), especially when a sample contains many small sibships (Figures 3
and 5) and marker information is scarce (that is, few loci and few
alleles per locus or a highly skewed allele frequency distribution). The
scaling scheme increased type I errors by about 5% in the extreme case
of all sampled individuals being in singletons and only four loci, each
having six alleles in a highly skewed frequency distribution, being used
in the estimation (Figure 5). However, it should be noticed that this
level of marker information is unrealistically too low nowadays in
practical sibship analyses. With 8 or more loci, little increase in type I
errors is incurred by the scaling scheme.
In contrast, the scaling scheme reduced dramatically type II errors

(note the large log scales of y axis for PFS) whenever a sample contains
a large sibship (Figures 3 and 4). To prevent the largest sibship
containing 256 offspring from splitting (that is, PFS¼ 1), 8 and 64
loci, each having n¼ 4–10 alleles, would be required when the scaling
scheme is and is not applied, respectively. While 8 loci are on the
lower limit, 64 loci are much above the higher limit of the range of
typical empirical data sets in most relationship analyses.
Considering both sibship fusion and split errors, the overall

accuracy is improved by the scaling scheme, except when sibships
are uniformly small so that sibship splitting is impossible (Figure 5)

and when marker information is too scarce (that is, when 4 loci, each
having 3–4 alleles in a triangular distribution or six alleles in a highly
skewed distribution, are used). Using a modest 8 loci, each having
eight alleles in a triangular distribution, the likelihood method with
scaling yields an overall accuracy of PTS¼ 0.999 for the very
challenging data set containing sibships of highly variable sizes
(Figure 3). In contrast, the likelihood method without scaling requires
64 loci to attain the same accuracy.

ANALYSIS OF AN EMPIRICAL DATA SET

A salmon data set (Herbinger et al., 1999) was also analyzed
comparatively by the likelihood methods with and without the
scaling. It comprises 759 fish in 12 full-sib families whose sizes are
8, 10, 31, 51, 54, 59, 64, 69, 75, 91, 107 and 140, respectively. Each
individual is genotyped at 4 microsatellite loci, which have 8, 10, 11
and 14 observed alleles in the sample. This data set was analyzed
repeatedly in testing previous methods (for example, Smith et al.,
2001; Butler et al., 2004; Berger-Wolf et al., 2007; Wang, 2012;
Almudevar and Anderson, 2012), and is ideal for demonstrating the
power of exclusion based methods because it has large family sizes,
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columns show PNS (upper), PFS (middle) and PTS (lower) when mi is not scaled and is scaled, respectively. In each graph, the lines counting from bottom

up refer to 3, 4, 5, 6, 8 and 10 alleles per locus in a triangular frequency distribution, respectively. Note both axes are in log scale.

Improved sibship assignments
J Wang

170

Heredity



contains no missing data and no apparent genotyping errors, and has
highly polymorphic codominant markers.
To check the convergence of the likelihood methods with and

without scaling, three replicate runs were initiated with different

random number seeds. The best log-likelihood values and numbers of
inferred full-sib dyads as a function of the number of iterates in the
simulated annealing algorithm employed in searching for the max-
imum likelihood configuration were shown in Figure 6.
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First, the likelihood maximization algorithm converges reliably for
this data set when mi is scaled. The three replicate runs render the
same best configuration, which is identical to the known true
configuration with the same maximum log-likelihood value of
�1537.18. In contrast, the three replicate runs yield different best
configurations with similar likelihood values when mi is not scaled.
The final best configurations of the three replicate runs without
scaling have partitioned the 759 fish into 21, 20 and 20 sibships,
with a log-likelihood value of �3618.36, �3627.87 and �3625.81,
respectively. All of these configurations are much better (in terms of
likelihood) than the true configuration, which has a log-likelihood
value of �3841.31. One of the replicate runs actually recovered the
true configuration at iterates of about 5� 109, but the true config-
uration was quickly abandoned and replaced by better configurations
with higher likelihood values. It is not surprising that the algorithm
does not converge reliably for this data set when mi is not scaled,
because the marker information is scarce and sibship sizes are large,
such that there exist numerous configurations with the same or very
similar likelihood values (see Figures 1 and 2).
Second, the scaling down of mi causes an increase in likelihood

values. However, absolute likelihood values are usually meaningless,
because they are determined by many factors, including the scaling
and the amount of data. More data (markers) always lead to a lower
likelihood. The more interesting and useful property of a likelihood
method is the relative likelihood values, which are used in likelihood
ratio tests for model selection and parameter estimation.
Third, all three replicates with scaling render the same maximal

likelihood configuration, which is identical to the known pedigree of
the sample. In contrast, the three replicates without scaling yield best
configurations that have 20–21 sibships. A close examination of the
best configurations showed that, while 8 of the 12 true sibships were
correctly and consistently reconstructed, 4 true sibships were split
differently among the three replicates. The largest sibship with 140
siblings were split into 3 clusters in all 3 replicates.
Fourth, the replicates with scaling run much fewer iterates

(B3.7� 108 vs B9.8� 108) and took much less time (B35 vs
B76 minutes) to finish than the replicates without scaling. This is
again due to the numerous configurations with the same or similar
likelihood when mi is not scaled, which cause difficulties for the
algorithm to climb to the global maximum likelihood configuration.
Sibship splitting is expected to be frequent when the likelihood

method without scaling mi is applied to a sample containing large
sibships but little marker information, like the salmon data set. In
such a situation, the simulated annealing algorithm has difficulty of
convergence, as reflected by the large variation between replicate runs

in likelihood values (see Figure 6). The difficulty comes from the
existence of many tied configurations with very similar or identical
likelihood values, which form many deep valleys in the likelihood
landscape for the algorithm to traverse. The previous implementation
of the simulated annealing algorithm in Colony program did not
allow for extensive searches, to save computational time, for the
maximum likelihood configurations. The algorithm is now improved,
making adaptive searches depending on the difficulty of the data. A
quick search is implemented for an easy data set, which has a lot of
marker information and thus a simple likelihood landscape, while an
extensive search is executed for a difficult data set, which has little
marker information and thus a potentially complicated likelihood
landscape with many peaks of the same or similar height.
To understand the impact of scaling on sibship splitting, I consider

in detail the numerical example provided by the largest sibship of the
salmon data set that has 140 siblings. This sibship can be split into
two sibships, one having a single genotype and the other having the
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Figure 6 The inferred numbers of sib dyads (left) and log-likelihood values (right) as a function of the number of iterates (x axis) in simulated annealing for
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Table 2 Log likelihoods of split against nonsplit sibships for the

largest sibship (140 siblings) in the salmon data set, calculated with

and without scaling

Splitting Scaling (no split

L0¼ �356.1)

No scaling (no split

L0¼ �703.3)

Locus Sibship sizes L1 L2 Lt L1 L2 Lt

1 78, 62 �210.3 �181.0 �391.3 �349.9 �281.8 �631.7

2 34, 106 �111.4 �288.2 �399.6 �142.0 �538.4 �680.4

2 40, 100 �124.4 �276.9 �401.3 �165.3 �509.3 �674.6

2 38, 102 �119.7 �280.5 �400.2 �157.0 �519.0 �676.0

2 28, 112 �101.7 �299.3 �401.0 �122.6 �567.5 �690.1

3 33, 107 �104.9 �290.2 �395.1 �138.7 �543.2 �681.9

3 34, 106 �105.5 �288.3 �393.8 �142.3 �537.7 �680.0

3 34, 106 �108.2 �288.6 �396.8 �144.4 �538.4 �682.8

3 39, 101 �117.0 �279.2 �396.3 �162.3 �514.1 �676.5

4 47, 93 �133.3 �264.0 �397.3 �186.5 �475.3 �661.8

4 39, 101 �121.5 �278.7 �400.2 �160.5 �514.1 �674.6

4 25, 115 �98.1 �304.9 �403.0 �114.0 �582.0 �696.0

4 29, 111 �104.0 �297.3 �401.2 �126.1 �562.6 �688.8

The actual sibship of 140 offspring was split into two, the first containing individuals sharing a
single genotype and the second containing the rest of the 140 individuals, at each of the four
loci. The sizes of the first and second split sibships are listed in column 2, the log-likelihood
values of the first and second split sibships are listed in columns 3 and 4 with scaling, and
columns 6 and 7 without scaling. The total log likelihoods of the two split sibships, Lt, are
listed in columns 5 and 8, with and without scaling respectively. The corresponding log
likelihoods of the actual nonsplit sibship, L0, are listed in the column heads.
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rest of the genotypes at a locus, in a total of 13 possible ways
(Table 2). Of course, many more partitions that have potentially a
high likelihood are possible when the sibship is allowed to be split
into three or more sibships, and when splitting is on other criteria of
genotype combinations. Using the allele frequencies calculated from
the entire data set, I calculated the log likelihood of the actual sibship
of the 140 offspring (L0) and the log likelihoods of each split sibship
(L1 and L2) and their sum (Lt), with and without scaling mi (Table 2).
As can be seen, any sibship splitting always results in a big drop
(LtoL0) and a big increase (Lt4L0) in log likelihood when scaling is
applied and not applied, respectively. These likelihood changes due to
splitting mean that the likelihood methods will reconstruct this
sibship completely without splitting when the scaling scheme is
applied, but will split it into two or more sibshsips when the scaling
scheme is not applied.

DISCUSSION

Sibship reconstruction from genotype data is a difficult statistical
inference problem. It is much more challenging than the now widely
applied parentage analyses for a number of reasons. First, the problem
of inferring sibship is inherently more difficult than inferring
parentage. While a parent–offspring dyad must always share at least
one allele identical in state (IIS) at each locus, a full-sib dyad may
share 2, 1 or 0 allele IIS at a locus, and these sharing patterns vary
greatly among loci due to Mendelian segregation and depending on
allele frequencies. This much more variation in allele sharing patterns
makes it particularly difficult and error prone to identify siblings from
other candidate relationships. This is especially so when closely
competing relationships, such as half sibship, are also included in
the candidate relationships. Second, a sibship analysis has many more
configurations to consider than a parentage analysis. Although an
offspring has either 0, 1, or 2 parents included in the candidate
parents, it may have 0 to N�1 siblings, where N is the sample size. In
fact, the number of possible sibship configurations is a Bell number,
which increases faster than exponential with N. Enumerating all
possible sibship configurations is feasible only when N is very small,
say No10. Otherwise, one has to resort to a Monte Carlo searching
algorithm, such as simulated annealing to construct and consider just
a small fraction of the configurations, which have relatively high
likelihood values.
Because of its difficulty and complexity, sibship inference has

potentially a high risk of statistical errors of both types. Non-siblings
might be mistaken as siblings (type I errors), because they happen to
have similar genotypes congruent with a sibship. This problem
deteriorates rapidly with a decrease in marker information, as shown
in Figure 1, an increase in sample size and an increase in the
frequency of small sibships. Exclusion based methods are especially
prone to type I errors. Any two unrelated diploid individuals, for
example, are always compatible with, and thus not excludable from, a
full sibship. The advantages of the likelihood methods are that they
control this type of errors more effectively by employing Mendelian
segregation law quantitatively rather than just qualitatively (Wang,
2012), and they have the option to use a prior to further reduce
errors. A prior can be constructed and integrated into the likelihood
framework to reduce type I errors (Almudevar and Anderson, 2012),
as is implemented in the program Colony. However, it is difficult to
conceive a good prior that favours both small and large sibships to
minimize both type I and type II errors in all situations. This is not a
problem in situations, in which sibships are known to be uniformly
either small (such as in species of low fecundity) or large (such as in
some experimental systems involving highly fecund species), but is

problematic for a sample with both small and large sibships, as
considered in my simulations. Irrespective of the actual sibship size
distributions, however, an increase in marker information always
improves sibship assignments by reducing both type I and II errors.
True siblings might be mistaken as non-siblings (type II errors),

because their genotypes, albeit compatible with a full sibship, are
dissimilar enough to justify a split of the sibship based on likelihood
values. This problem was analyzed recently by Almudevar and
Anderson (2012). They showed that likelihood methods tend to split
large sibships, and derived a criterion to predict the occurrences of
splitting. My analytical and simulation results confirm their con-
clusion in general. As shown in this study, scaling down the number
of siblings displaying the same single locus genotype used in
likelihood calculations can effectively reduce type II errors without
causing a substantial increase in type I errors. The overall accuracy
considering both types of errors is improved by this scaling, except
when a sample contains many very small sibships or marker
information is extremely (and unrealistically) scarce.
It is worth noting that the scaling scheme is an ad hoc rule obtained

by considering the known effects on type I and II errors of factors,
such as sibship size, marker polymorphism and mistyping rate, and
by extensive experimentations using simulations. In developing this
scaling scheme, many more simulations considering many more
parameter combinations (for example, mistyping rate) were con-
ducted than those presented in this paper. All these simulations yield
the same conclusion presented in this study. However, the scaling
scheme is by no means the best scheme applicable optimally to all
situations, and there may be room for improvement. It is also worth
mentioning that the scaling scheme reduces, not eliminates, the
splitting of large sibships. In theory, the improved likelihood method
still has the risk of splitting a sibship if it is sufficiently large relative to
the amount of marker information. However, I would argue that, with
the typical marker information now used in sibship analyses, no
sibship should be split by the improved likelihood method except
when the actual sibship is exceptionally large. Using a set of
10 markers, each having 10 equifrequent alleles, for example,
the improved likelihood should not split a sibship as large as
2000 siblings. In most practical situations, the more worrying
problem is sibship fusion (type I errors) rather than sibship splitting
(type II errors).
In this study, I focused on the simple case of full sibship analysis.

The results and conclusions are, however, applicable to the more
complicated cases involving half sibship and parentage assignments
(Wang and Santure, 2009) as is verified by simulations not shown in
this paper. Full sibship assignments are an integral component of the
more complicated analyses, and any improvement in full sibship
assignments helps in the inference of other relationships. For example,
when a large full sibship is split, parentage assignments for this sibship
cannot be completely correct. On the other hand, the presence and
assignment of parentage help to reduce sibship splitting. The scaling
scheme can therefore improve indirectly the inference of other
relationships (half sibship and parentage) by reducing the splitting
of large full sibships (data not shown).
My simulations demonstrate that the likelihood methods are

powerful, robust and accurate in reconstructing sibships. This is true
even for a large sample (2304 individuals) containing many small
(singletons) and a few very large (256 siblings) sibships, which were
reconstructed with few errors using a realistic number of 8–16
markers (Figure 3) when the scaling scheme is applied. A real data
set may be much more complicated than my simulations. It may
contains, for example, genotyping errors and half sibships and some
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background relationships (for example, cousins), which are assumed
absent by the current sibship analysis (likelihood or exclusion based)
methods. These are, however, challenges common to all sibship
reconstruction methods, and necessitate more marker data than
indicated by my simulations to achieve satisfactorily accurate results.
The scaling scheme described in this study has now been

implemented in the program Colony, downloadable from http://
www.zsl.org/science/research-projects/software/colony,1154,AR.html.
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