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Inferring contemporary dispersal processes in plant
metapopulations: comparison of direct and indirect
estimates of dispersal for the annual species Crepis sancta

A Dornier and P-O Cheptou

Analyzing population dynamics in changing habitats is a prerequisite for population dynamics forecasting. The recent
development of metapopulation modeling allows the estimation of dispersal kernels based on the colonization pattern but the
accuracy of these estimates compared with direct estimates of the seed dispersal kernel has rarely been assessed. In this study,
we used recent genetic methods based on parentage analysis (spatially explicit mating models) to estimate seed and pollen
dispersal kernels as well as seed and pollen immigration in fragmented urban populations of the plant species Crepis sancta
with contrasting patch dynamics. Using two independent networks, we documented substantial seed immigration and a highly
restricted dispersal kernel. Moreover, immigration heterogeneity among networks was consistent with previously reported
metapopulation dynamics, showing that colonization was mainly due to external colonization in the first network (propagule
rain) and local colonization in the second network. We concluded that the differences in urban patch dynamics are mainly due
to seed immigration heterogeneity, highlighting the importance of external population source in the spatio-temporal dynamics of
plants in a fragmented landscape. The results show that indirect and direct methods were qualitatively consistent, providing a
proper interpretation of indirect estimates. This study provides attempts to link genetic and demographic methods and show
that patch occupancy models may provide simple methods for analyzing population dynamics in heterogeneous landscapes in
the context of global change.
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INTRODUCTION

Since 1970s, plant population dynamics modeling has become a
major area of research in plant biology (Jeltsch et al., 2008). While
first investigations were based on the paradigm of stable populations
(Harper, 1977), the rise of spatial population ecology (MacArthur and
Wilson, 1967; Gadgil, 1971) has laid the foundations for analyzing
plant dynamics in heterogeneous environments better adapted to
plant dynamics in natural habitats. Taking habitat heterogeneity into
account is also central to forecast population dynamics in the context
of global change. In line with this, the metapopulation concept
considers that species are maintained at the regional scale through a
balance between colonization and extinction of local populations
(Levins, 1969). Over the last three decades, metapopulation dynamics
has been influential in spatially structured habitats with major
influences on the demographic, genetic and evolutionary processes
of species (Hanski and Gaggiotti, 2004). In this context, the Levins
model provides the conditions required for the maintenance of a
viable metapopulation and the occupancy rate at equilibrium as a
function of colonization and extinction (Levins, 1969). Analyzing
metapopulation dynamics in natural populations requires studying
patterns of extinct and patterns of colonization. Historically, genetic
methods using population structure have been studied to infer
colonization. This method allowed contrasting colonization patterns

(migrant pool vs propagule pool; Slatkin, 1977) to be sorted out,
thanks to the link between the fixation index (FST) and the age of
populations (see Giles and Goudet, 1997 for an empirical study). Such
methods considers migration-drift equilibrium and are restricted to
simple colonization scenarios. More recently, the development of
stochastic patch occupancy models (hereafter SPOMs) coupled with
an appropriate statistical framework provides powerful and flexible
tools to estimate colonization from simple patch dynamic data and
the geographical localization of suitable habitat (Etienne et al., 2004).
These models allow joint estimation of colonization and extinction
from simple presence/absence of data. In the spatially realistic Levins
model (Hanski and Ovaskainen, 2000), Patch colonization hinges on
patch connectivity, that is, the contribution of all occupied patches
weighted by the dispersal kernel, supposedly decreasing with distance
(Moilanen and Nieminen, 2002). Some studies, mainly in animals,
have reported that colonization is constrained by limited dispersal
(Hanski, 1994; see Verheyen et al., 2004 in plants) and have confirmed
that SPOMs provide powerful tools to infer the dispersal of kernel in
spatially structured habitats.
However, phenomenological dispersal kernels estimated in meta-

population models is based on occupancy patterns at equilibrium and
does not necessarily represent the mechanistic dispersal of propagules
inferred from direct measurements. Firstly, the inference of dispersal
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kernels in SPOMs requires that patches be not too isolated to allow
the possibility of stable balance between colonization and extinction
nor too connected to prevent full metapopulation occupancy.
Secondly, dispersal kernels in SPOMs can depart from dispersal
processes when massive colonization from large source populations
outside the focal metapopulation occurs (Bacles et al., 2006). Inferring
dispersal in such a situation would not allow the detection of limited
dispersal even if limited dispersal occurs, a situation referred to as the
‘propagule rain model’ (Gotelli, 1991; Dornier et al., 2011). Thirdly,
colonization from dormant individuals generates false colonization or
pseudo-colonization, which potentially biases dispersal estimates. The
problem of pseudo-colonization has been considered a major limita-
tion in the application of the metapopulation approach to plants
(Freckleton and Watkinson, 2002).
Finally, the statistical methods used to estimate SPOM para-

meters require the metapopulation to be at equilibrium, and
deviation from this assumption may generate bias in parameter
estimates (Moilanen, 2000). This suggests that indirect colonization
estimated from metapopulation models does not necessarily match
the dispersal process. To what extent colonization estimated in
SPOMs are robust estimates of dispersal processes or not remains
an open question in plant ecology. Confronting SPOMs estimates to
direct dispersal process in a metapopulation should help to clarify
this point.
Direct methods of estimating dispersal allow the dispersal kernel to

be estimated by relaxing the metapopulation assumptions (for
example, equilibrium) mentioned above. In animals, the capture–
mark–recapture framework allows dispersal to be estimated in a
metapopulation context (Bennetts et al., 2001). This approach
involves marking many individuals, which means that the technique
is often restricted to specific animal species (for example, birds or
mammals). In plants, seed traps located at various distances from an
identified source provide direct seed dispersal estimates (Bullock
et al., 2006) but this method is restricted to a single or a few sources
only. Moreover, effective colonization encompasses various processes,
from seed production to seed germination and seedling survival
(Nathan and Muller-Landau, 2000), which cannot be captured by
seed movement only. In this respect, parentage analysis based on
highly polymorphic genetic markers (for example, microsatellites)
provides a powerful method for direct dispersal estimates. Such
analysis allows the joint estimate of seed and pollen dispersal kernels
when the geographical position of potential parents and offspring is
recorded (for example, Bacles et al., 2006; see also Ashley, (2010) for a
review). While previous methods performed parentage analysis and
dispersal kernel estimates sequentially, recent methods allow joint
parentage analysis and dispersal kernel estimation, which significantly
improves statistical performance (Hadfield et al., 2006). The spatially
explicit mating model (hereafter, SEMM) allows seed and pollen
immigration rates from an unknown source to be estimated within a
unique statistical framework and seed and pollen kernel dispersal
(including self-fertilization) from viable established seedlings and
potential parents to be fitted (Burczyk et al., 2006; Oddou-Muratorio
and Klein, 2008). This method based on viable seedlings provides
effective dispersal estimates that include all processes acting between
dispersal and recruitment. The method requires substantial sampling
effort of potential parents coupled with an elevated recapture rate of
seedlings/offspring. To our knowledge, it has mainly been used for
trees (Burczyk et al., 2006; Oddou-Muratorio and Klein, 2008). Yet,
inferring metapopulation processes requires rapid turnover of popu-
lations within a few years, which can be found in short-lived species.
However, large population sizes (that is, high number of individual

genotyping) in such species is a major methodological limit to
parentage analysis.
In this study, we used SEMM to estimate dispersal for the annual

plant Crepis sancta in urban patches distributed regularly at the feet of
ornamental trees in an urban environment. In this highly fragmented
habitat, the species Crepis sancta (Asteraceae) survives, thanks to a
colonization–extinction balance, in patches in which the local
population rarely exceeds 40 individuals. The small population sizes
allowed us to exhaustively sample adult individuals in the metapo-
pulation over two generations. The study metapopulation comprised
two set of several hundred, for which contrasting metapopulation
dynamics have been documented (Dornier et al., 2011). More
specifically, we used SEMM (1) to estimate pollen and seed dispersal
kernels in plant metapopulation (2) to estimate gene flow external to
the study metapopulation systems (3) to compare direct dispersal
kernel estimates (SEMM) to indirect colonization kernel estimates
(SPOM) in the two contrasting metapopulation dynamics. The results
demonstrate that direct methods are partly consistent with SPOM
inference, and we discuss the discrepancy between the two
approaches.

MATERIALS AND METHODS
The urban metapopulation system
The metapopulation system is composed of a set of favorable habitats

(hereafter called ‘patch’) of equal area (1–2m2) around ornamental trees

along a street pavement in a matrix of unsuitable habitat (concrete matrix) in

Montpellier city (southern France). Due to the lack of management by city

authorities, these patches harbor diverse plant communities of about 100 wild

species (frequent species include Poa annua L., Stellaria media L., Sonchus

oleraceus L., Senecio vulgaris L., Conyza spp. and Crepis sancta L.). The annual

plant Crepis sancta (Asteraceae) forms small transient populations in these

patches (rarely more than 40 individuals), contrasting with the large popula-

tions found in the countryside around Montpellier. C. sancta is an outcrossing

species pollinated mainly by bees, and reproduction begins in the early spring

(beginning of March) and lasts about 2 months. Fruits (achenes) are

dimorphic; achenes with a pappus (at the center of the capitulum) that are

able to disperse and achenes without a pappus (at the periphery of the

capitulum), which drop at the feet of plants (Imbert, 1999; Cheptou et al.,

2008). Germination occurs with autumn rainfall and the seedlings grow during

winter as a rosette. Imbert, (1999) demonstrated that neither of the seed types

exhibit dormancy in controlled conditions, and (Dornier et al., 2011) found no

evidence of a seed bank in C. sancta.

Patch networks
We chose two independent networks separated by 4 km within Montpellier, in

which contrasting metapopulation dynamics have previously been documen-

ted. The HM network (Henri Marès street) is a one-dimensional stretch of 96

patches of about 1–2m2 spaced 5–7m apart at the periphery of the city

(031510210 0E, 431370140 0N, 60m a.s.l.). The JC network (Jacques Cartier street)

is a four-column matrix of 81 patches of small area (1m2) spaced 5 or 10m

apart (within or between different lines), which occupies the city center

(031530350 0E, 431360250 0N, 60m a.s.l.). Within each network, all patches were

numbered and GPS-located. In a previous analysis using SPOM methodology,

Dornier et al., (2011) found that patch dynamics was governed mainly by

external processes (propagule rain model) in HM whereas a Levins-type

metapopulation model (with rescue effect) with limited colonization distance

was reported in the JC network. In the latter network, the negative exponential

kernel of the Levins model documented an average distance of colonization of

about 2m. On the basis of these contrasting scenarios, we hypothesized that

gene flow with external sources was higher in HM than in JC.

Genetic analysis
A fraction of leaf tissue was sampled at the end of the life cycle after seed

dispersal (on dead individuals) over 2 consecutive years from all individuals in
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both networks for genetic analyses (see Supplementary Figure A1). In 2006, we

sampled 725 individuals in HM and 103 in JC. In 2007, 271 and 180

individuals were sampled in the HM and JC networks, respectively. We

extracted DNA using the DNA 96 Plant Kit (Qiagen, Hilden, Germany) and

genotyped all individuals for seven microsatellites developed for this species

(Dubois et al., 2007). We scored genotypes using the sequencer ABI PRISM

3100 Genetic Analyzer and Genemapper software 4.0 (Applied Biosystem,

Waltham, MA, USA) for sizing alleles and checked the accuracy of genotyping

by hand.

Spatially explicit mating model
In order to analyze our data, we used a slightly modified model developed by

Burczyk et al. (2006). In our analysis all individuals within a network can be

encapsulated in a unique neighborhood (Oddou-Muratorio and Klein, 2008).

The neighborhood represents a hypothetical circle area, in which the focal

individual is at the center and individuals outside this area are considered as

emigrants belonging to the background population. In the infinite neighbor-

hood size used here, all individuals belonging to the studied metapopulation

are considered inside the neighborhood whereas all emigrants and unsampled/

missed individuals are considered outside the neighborhood (background

population). We consider that each juvenile is mothered either by an external

mother due to seed immigration with the probability ms or by a local female

with the probability (1�ms). When the mother is local, we consider three

sources for pollen: self-fertilization occurs with the probability s, or the pollen

belongs to an external father with the probability mp or to a local father with

the complementary probability (1�s�mp). Thus, the probability of observing

a seedling i with the genotype G is:

PðGiÞ¼msPðGi j BsÞþ ð1�msÞ
X
j

Cij sPðGi j Mij;MijÞ
�

þmpPðGi j Mij;BpÞþ ð1� s�mpÞ
X
k

FjkPðGi j Mij; FijkÞ
#
;

Where Mij and Fijk are the genotypes of the jth putative mother and the kth

putative father (crossed with the jth putative mother) of the offspring i,

respectively. PðGi j BsÞ represents the transition probability that an offspring i

comes from an external mother belonging to the background population.

PðGi j Mij;MijÞ, PðGi j Mij;BpÞ and PðGi j Mij; FijkÞ represent the transient

probability that an offspring i with a Mj mother will receive pollen from (i) an

event of self-pollination, (ii) an external father belonging to the background

population or (iii) the kth father of the population. Bs and Bp represent the

genotypic composition of the background population and were considered as

equal (see Burczyk and Chybicki, 2004). Cij and Fjk represent the relative

reproductive success of the jth mother and the kth father, respectively, in which

we included the seed and pollen dispersal kernel.

Dispersal kernel
We estimated the seed dispersal kernel by considering the effect of the distance

between the mother and offspring withCij and the pollen dispersal kernel with

Fjk which includes the effect of the distance between the potential father and

potential mother. We estimated pollen dispersal and seed dispersal kernels

jointly. Thus, if rij represents the distance between offspring i and its mother j,

Cij ¼ f ðrijÞ/
Psh

h f ðrihÞ with f ðr�� Þ representing the seed dispersal kernel (see

below for details) and sh the number of mothers. Similarly,

Fjk ¼ gðrjkÞ/
Pzl

l gðrjlÞ where rjk is the distance between the kth father and

the jth mother, gðr��� Þ is the pollen dispersal kernel and zl is the number of

fathers of the metapopulation.

The dispersal kernel describes the probability that a seed (or pollen) will

arrive at a distance r from the source (Austerlitz and Smouse, 2001). We chose

the family of exponential power functions and seed or pollen dispersal kernel,

written as:

f ða; b; rÞ¼ b

2pa2Gð2=bÞ exp � r=að Þb
� �

where Grepresents the gamma function and b is the shape parameter affecting

the tail of the dispersal distribution (Austerlitz and Smouse, 2001; Oddou-

Muratorio and Klein, 2008). When b¼ 1, the exponential power function

converges toward the negative exponential function whereas curves with bo 1

are classified as fat-tailed and those with b4 1 as thin-tailed. a is the scale

parameter.

The average radial distance can be obtained from d¼ aGð3=bÞ=Gð2=bÞ
(Oddou-Muratorio and Klein, 2008) and the negative exponential function

from d¼ 2a (Austerlitz and Smouse, 2001).

Kernel distribution is a decreasing function of distance satisfyingR1
0 f ðrÞ2pr@r¼ 1. With a neighborhood size of N, we can consider that a

fraction a¼
RN
0 f ðrÞ2pr@r of dispersal events occurs inside the neighborhood

whereas the complementary fraction 1� a¼
R1
N f ðrÞ2pr@r occurs outside the

neighborhood (Goto et al., 2006). With an infinite neighborhood size, we

consider that N is half of the maximum distance between potential parents in a

patch network in order to ensure that all individuals are included in the

neighborhood. The fraction 1� a can be considered as the expected

immigration rate—of seed or pollen—if the dispersal kernel is the only

dispersal source (Goto et al., 2006). Comparison of these expected and

estimated rates (ms and mp) allows an estimate of all random processes (for

example, long-distance dispersal) that are not captured by the kernels (Goto

et al., 2006).

Parameter estimate
We obtained maximum likelihood estimates for seed and pollen immigration

rates (ms and mp), selfing rate (s) and kernel parameters (asand bs for seed

dispersal kernel; apand bpfor pollen dispersal kernel) by maximizing the log-

likelihood function:

Lðms;mp; s; as; bs; ap; bpÞ¼
Y
i¼ 1

PðGiÞ

We used the maximum likelihood framework and fitted parameters with a

quasi-Newton-algorithm implemented with Mathematica (see Oddou-

Muratorio and Klein, 2008 for details). We constructed three different dispersal

models with a combination of negative exponential and exponential power

dispersal curves for seed and pollen dispersal. The simplest model considers a

negative exponential function for seed and pollen kernels (one parameter per

kernel) whereas the more complex model integrates the exponential power

function for each dispersal kernel (two parameters per kernel). We also

considered a mixed scenario with a negative exponential function for the

pollen and an exponential power function for the seed dispersal kernel. We

subsequently chose the best model using the Likelihood Ratio Test. As SPOMs

estimated from SPOMSIM (Moilanen, 2004) only estimate negative exponen-

tial kernels, we used negative exponential kernels for seed dispersal in order to

compare direct genetic estimates from SEMM and indirect estimates from

SPOMs. This analysis was performed for both metapopulations.

Data quality diagnostic
In neutral alleles, null alleles correspond to the absence of expression of specific

allelic forms. Because null alleles induce errors in individual genotype

identification, they are are commonly recognized as an important bias in

parentage analysis. We thus estimated the frequency of null alleles using the

EM algorithm (Dempster et al., 1977) implemented by default in genepop

(Rousset, 2008). Then, in order to test the robustness of our analysis to the

presence of the null allele, we performed a new analysis by changing

systematically homozygous genotypes (for example, XX) into heterozygous

genotypes using a common null allele (XN, N being a null allele) for loci

experiencing the substantial occurrence of null alleles (40.1). This method

allowed us to consider the potential bias due to null alleles without drastically

reducing the accuracy of the estimate in our data set (Oddou-Muratorio et al.,

2009). We compared estimates in the initial and modified data set (XN data set

hereafter) in order to control for the effect of null alleles. We also removed

markers with a high frequency of null alleles to obtain two data sets of six loci

(that is, by removing either one or the other locus with high null allele

frequency) and one data set of five loci (the two alleles presenting the highest

null alleles frequency were removed from the subset). A comparison between

the global data set (seven loci) and the ‘quality diagnostic’ data sets (XN,

6- and 5-loci data sets) allowed us to test the robustness of our results against

the quality of genetic markers.
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RESULTS

Molecular markers
Microsatellite markers presented high levels of polymorphism (from 4
to 49 alleles per locus) and provided a powerful situation for
parentage analysis with a probability of exclusion (Chakraborty
et al., 1988) close to 1 (prob of exclusion¼ 0.99). Null alleles were
present at substantial frequencies for different markers (see
Supplementary Table A1). For the JC network, comparison of results
from the global data set and ‘quality diagnostic’ data sets (as well as
the XN data set with six or five loci) showed that immigration rates
were overestimated when using the global data set (see below for
details). For the HM network, we failed to fit the model with the data
set controlling for null alleles (XN data set) and the five-loci data set
and our ability to check the influence of data quality was restricted
to the use of the two data sets with six loci. For these data sets, we
found relatively good congruence with the global data set (see
Supplementary Table A2). As our aim was to compare the two patch
networks, we decided to use the global data set. However, we should
keep in mind that the global data set may upwardly bias the
immigration rate but that such bias is likely to be similar for the
two patch networks. Concerning the dispersal kernel, we observed
good congruence in the fitted values between the global and other
data sets with the exception of the five-loci dataset, for which the
results showed substantial incongruence (see Supplementary Table
A2) for the JC network. The seed dispersal kernel showed good
congruence between the different data sets for the HM network (see
Supplementary Table A2).

SEMM parameters
Using the global data set, the best model that we selected
(pchisqo0.05) in the JC network combined an exponential power
function for seed dispersal (bo1) and an exponential function (b
fixed to 1) for pollen (Table 1). However, due to the divergence of
algorithms for models integrating at least one exponential power
function, we succeeded in obtaining results only for the negative
exponential model in the HM network (Table 1). The estimated seed
immigration rates (0.59 for JC and 0.71 for HM, see Table 1) and
pollen immigration rates (0.71 and 0.84 for JC and HM, respectively,
Table 1) were high. As previously noted, these rates were over-
estimated because the mean seed immigration in the ‘quality
diagnostic’ data sets (XN, six and five loci) was 0.43 (min–max:
0.38–0.51) for the JC network. For the HM network, estimates were
obtained for the two six loci data sets only thus limiting the
diagnostic. This comparison revealed good congruence between the
global data set and the two six-loci data sets (mean of 0.693, with

min–max: 0.692–0.694, see Supplementary Table A2). In the global
data set, these substantial overestimated immigration rates decreased
the ability to fit the pollen dispersal curve because local mating was
scarce.
Using the global data set, the best models showed that seed

dispersal was highly restricted in the two networks (Table 1). We
fitted a leptokurtic function (b¼ 0.53) with an average radial
dispersal distance of 12.6m for the JC network whereas the
exponential function fitted in the HM network led to an average
radial dispersal distance of 1.53m (see Table 1 and Figure 1). The
choice of data set used to estimate parameters slightly affected the
seed dispersal kernels with congruent average dispersal distance
between different data sets (see Supplementary Table A2). Using
kernel dispersal in order to theoretically estimate the expected
immigration rate if the seed dispersal kernel was the only source of
immigrants (Goto et al., 2006), we estimated that a very small fraction
of seeds was expected to come from outside the neighborhood
(1–2%) in the two networks. The pollen dispersal kernels that we
estimated indicated a low mean dispersal distance (o10m) and very
low selfing rate in the two networks (Table 1).

Direct genetic vs indirect demographic dispersal curve estimates
As the SPOMs estimated from SPOMSIM (Moilanen, 2004) only
reported negative exponential kernel estimates, we reported negative
exponential kernels although this model did not provide the best
fit for the genetic data set. For the JC network, SEMM gave a mean
dispersal distance of 0.367m under a negative dispersal kernel
whereas SPOM gave a mean dispersal distance of 2.2m (Dornier
et al., 2011; see Table 2). We synthesized all dispersal curves for the JC
network in Figure 1. For the HM network, SPOM inference found no
evidence of restricted dispersal and showed that the propagule rain
model was the best model for explaining patch dynamics. While
SPOM inference could be interpreted as a flat kernel with a constant
probability of colonization for all patches, SEMM revealed a highly
restricted dispersal kernel, although this was slightly higher than the
JC estimates (negative exponential).

DISCUSSION

In this study, we used recent SEMM to estimate seed and pollen
immigration rates as well as dispersal curves in two different patch
networks of the annual plant C. sancta in an urban landscape. While a
previous study documented contrasting patch dynamics among the
two patch networks (Dornier et al., 2011), this study aimed to
describe the underlying mechanisms of these contrasting metapopu-
lation dynamics. The two patch networks revealed limited dispersal.

Table 1 Parameter estimates of the best-fitted seedling neighborhood model

Seed dispersal Pollen dispersal LnL pchisqJC

ms as bs dists(m) mp ap bp distp(m) s

Expseed/Exppollen 0.606 0.188 1a 0.376 0.698 0.640 1a 1.28 0.071 �3551.45 -

Powseed/Exppollen 0.581 0.859 0.532 12.60 0.718 4.186 1a 8.37 0.066 �3548.65 0.0179

Powseed/Powpollen 0.527 0.863 0.527 13.14 0.721 0.680 1.084 1.18 0.065 �3548.18 0.332

HM

Expseed/Exppollen 0.715 0.764 1a 1.528 0.840 0.711 1a 1.422 0.061 �6071.21 -

Dispersal models: Expseed/Exppollen: Negative exponential on seed and pollen. Powseed/Exppollen: Exponential power on seed and negative exponential on pollen. Powseed/Powpollen: Exponential power
on seed and pollen.
aFixed parameter. ms and mp are the seed and pollen immigration rate, respectively, as and bs represent the scale and the shape parameter of the seed dispersal kernel and ap and bp the scale
and the shape parameter of the pollen dispersal kernel. dists(m) and distp(m) are the average radial seed and pollen dispersal distance (in m). s is the self-fertilization rate. LnL is the log-likehood
of the model and pchisq is the result of Log Likelihood Ratio Test between two models of two successive lines. The significant value (Po0.05) is indicated in bold.
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Nevertheless, the analysis revealed substantial external migration,
which was higher in the HM network than in the JC network. Our
combined approach allowed us to link genetically estimated dispersal
with patch dynamics and to assess the congruence between demo-
graphic and genetic methods of dispersal estimation.

Immigration rates in plant metapopulations
Immigration rates estimated from SEMM were surprisingly high
despite a highly restricted kernel from which less than 2% of long-
distance dispersal is theoretically expected (Goto et al., 2006). The
difference between theoretical predictions from the dispersal kernel
and fitted values suggests that random processes and/or methodolo-
gical bias have generated these substantial immigration rates (Goto
et al., 2006). Methodological problems include human error, pro-
blems during PCR procedures and errors during genotyping that are
commonly reported in genetic studies and are known to lead to
overestimates of immigration rate (Pompanon et al., 2005). In our
study, we controlled for the presence of null alleles using the XN data

set for the JC network and our results suggested that immigration rate
was indeed inflated by the presence of null alleles. Although such
results were not obtained for the HM network, it is likely that the
presence of null alleles biased estimates in the same way for the two
networks, given the absence of significant genetic structure among
the networks (Dornier and Cheptou, 2012). Although changing the
genetic data set for JC was found to affect immigration, the
immigration rate remained relatively high and was unlikely to be
due to human error or marker quality.
Assumptions regarding the genetic frequencies of the background

population in the SEMM can induce a slight overestimation of
immigration (Burczyk and Chybicki, 2004) whereas missing indivi-
duals are known to increase immigration when the actual parents are
not sampled (Oddou-Muratorio and Klein, 2008). Although sampling
effort was a priori exhaustive in this study, we cannot rule out the
possibility that potential parents were missed in 2006 or that missing
data in our data set led to an overestimation of immigration rate.
However, although these different biases could combine to generate
substantial false immigration, these methodological problems are not
expected to produce bias on the fit of dispersal curves but only
decrease the statistical power of the fit of the dispersal kernel.
Importantly, the difference between the two networks cannot be
explained only by methodological bias and such a difference suggests
contrasting ecological processes.
From an ecological point of view, immigration rates are influenced

by two contrasting random factors: long-distance dispersal and
germination of the seed bank. Dornier et al. (2011) previously
reported the absence of a substantial seed bank in C. sancta after
analyzing soil samples from the same urban patches. Thus, pseudo-
colonization can be excluded as a bias in the immigration estimates.
The immigration rate may reflect spatial dispersal processes and in
particular those from unknown sources. C. sancta produces many
seeds with a pappus that provides high potential dispersal ability.
Substantial immigration from an unknown source was previously
considered as rare but recent studies using parentage analysis have
found such seed immigration in trees (Ashley, 2010), with a record of
50–70% in fragmented populations of Fraxinus excelsior (Bacles et al.,
2006). Such data remain rare in annual plants but our study
documented high seed immigration rates that differed between the
two networks.

Seed and pollen dispersal kernels
Dispersal kernels were found to be limited with a maximum mean
distance of a few meters in both networks. Shorter-distance seed
dispersal was found in the HM network but this finding could reflect
the different kernel function used in the selected models. Indeed, we
were only able to fit a negative exponential function for HM whereas
an exponential power function provided the best fit for the JC
network. Indeed, comparison of the negative exponential functions
showed more congruent estimates between the two networks. This is
consistent with a previous study that documented similar phenotypic
dispersal traits (estimated using the ratio of non dispersing to
dispersing seeds) in the two networks (Cheptou et al., 2008). Thus,
although specific geographical processes are likely to affect seed
dispersal differently, we suggest that the low statistical performance
for the HM network is the main reason why the best model differed
among the two metapopulations.
The substantial seed and pollen immigration rates estimated in the

two patch networks limited the ability to fit a pollen dispersal curve
and further investigations are required to obtain more robust results.
Thus, the dispersal kernels for pollen must be considered with

Figure 1 Cumulative frequency distribution of seed dispersal curve as a

function of distance. Continuous and dotted black lines represent seed

dispersal curve fitted with the best model in the JC and HM networks,

respectively. Continuous gray line is the seed dispersal kernel for a negative

exponential model for the JC network whereas the dotted gray line is the

curve predicted by metapopulation modeling in the same network (Dornier

et al., 2011).

Table 2 Comparison of mean dispersal kernel between demographic

and genetic methods

SPOM estimated

SEMM estimated

Dispersal function Exponential Exponential Exponential power

Estimated parameter a¼0.45 a¼0.180 a¼0.859, b¼0.532

Average radial distance (m) 2.22 0.360 12.60

Abbreviations: SPOM, stochastic patch occupancy models; SEMM, spatially explicit mating
model.
SPOM estimated: dispersal kernel estimated using metapopulation modeling with
f ða; rÞ ¼ expð� arÞ (Dornier et al., 2011) with a, the scale parameter. SEEM estimated:
dispersal kernel estimated in the current study with f ða; b; rÞ¼ b

2pa2Gð2=bÞ exp � r=að Þb
� �

.
Estimated parameter: a is the scale of the kernel and b the shape of the parameter (b is fixed
to 1 in exponential function). Average radial dispersal distance (in m) estimated from seed
dispersal kernel.
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caution. Finally, the low selfing rates found in the two networks are
congruent with those obtained in the same populations based on
multilocus heterozygosity (Dornier and Cheptou, 2012).

Genetic vs demographic dispersal in plant metapopulations
The combined analysis of patch dynamics estimated using the
SPOMSIM software (Dornier et al., 2011) and SEMM allows us to
analyze links between the dispersal kernel and colonization pattern in
fragmented plant populations. The central question is whether
heterogeneous external immigration among networks coupled with
relatively homogeneous seed dispersal estimated by SEMM is con-
sistent with the metapopulation dynamics inferred in SPOMs.
In HM, the absence of limited colonization inferred from presence/

absence data (SPOM) is consistent with the high seed immigration
rates inferred from SEMM even in the presence of the restricted seed
dispersal kernel found in our analysis. The results suggest that
substantial seed immigration from an unknown source population
is the main driver of the patch dynamics in this network and thus
cancels the limited colonization in SPOM. However, the seed
immigration rates obtained using SEMM (0.71) may be overestimated
compared with the colonization rate fitted using SPOMS (Dornier
et al., 2011). It is important to note that a large population was found
very close to the HM network and may be the potential source
population of seed immigration that influenced the patch dynamics.
Further investigations are required to investigate the actual influence
of this potential source on metapopulation dynamics.
In the JC network, SEMM reported a substantial, although lower

than in the HM network, immigration rate (38 or 59% according to
the data set) coupled with a restricted dispersal kernel whereas SPOM
found the Spatially Realistic Levins Models to be the best model. The
two approaches are congruent and indicate that lower external
migration coupled with a restricted seed dispersal kernel generate
local colonization as inferred from SPOMs. In this network, the seed
dispersal kernel appears to be the main driver of patch dynamics.
Again, due to the relatively high seed immigration rate estimated
using the XN data set (38%), it is likely that this network is driven by
a combination of metapopulation scenarios whereby colonization is
due to both seed immigration and local seed dispersal. The develop-
ment of metapopulation models integrating these two colonization
components would increase our understanding and prediction of
patch dynamics in a highly fragmented landscape.
The presence of substantial immigration in a Levins metapopula-

tion model opens interesting perspectives on the influence of dispersal
and connectivity on demographic and genetic processes (Lowe and
Allendorf, 2010). Genetic connectivity is classically estimated using
FST (Lowe and Allendorf, 2010) but in the JC network, FST could
reflect a mix of immigration and limited dispersal, which would lead
to overestimating genetic connectivity (see also Waples and Gaggiotti,
2006). In this respect, a theoretical prediction of genetic structure and
isolation by distance in a metapopulation confronted with local
restricted dispersal and substantial immigration is required in order
to better understand how connectivity influences genetic and demo-
graphic processes (Lowe and Allendorf, 2010).

CONCLUSION

By confronting genetic estimates of dispersal from SEMM and
estimates of colonization from SPOMs in plant metapopulation,
our study allows to better understand how congruent both estimates
are. Although direct estimates (SEMM) allow quantifying dispersal
kernels and external immigration, we showed that colonization
estimates from indirect methods (SPOM) were, at least qualitatively,

consistent with direct estimates. Importantly, we clearly showed that
information from indirect colonization encompasses various pro-
cesses and must not be interpreted as a dispersal process only. Because
patch occupancy models do not integrate local demography, such
methods may provide manageable tools for analyzing population
dynamics in spatially and temporally heterogeneous landscapes in the
context of global change.
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