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Combined linkage disequilibrium and linkage mapping:
Bayesian multilocus approach

P Pikkuhookana1,2,3,4 and MJ Sillanpää2,3,4

Quantitative trait loci (QTL) affecting the phenotype of interest can be detected using linkage analysis (LA), linkage
disequilibrium (LD) mapping or a combination of both (LDLA). The LA approach uses information from recombination events
within the observed pedigree and LD mapping from the historical recombinations within the unobserved pedigree. We propose
the Bayesian variable selection approach for combined LDLA analysis for single-nucleotide polymorphism (SNP) data. The novel
approach uses both sources of information simultaneously as is commonly done in plant and animal genetics, but it makes
fewer assumptions about population demography than previous LDLA methods. This differs from approaches in human genetics,
where LDLA methods use LA information conditional on LD information or the other way round. We argue that the multilocus
LDLA model is more powerful for the detection of phenotype–genotype associations than single-locus LDLA analysis. To
illustrate the performance of the Bayesian multilocus LDLA method, we analyzed simulation replicates based on real SNP
genotype data from small three-generational CEPH families and compared the results with commonly used quantitative
transmission disequilibrium test (QTDT). This paper is intended to be conceptual in the sense that it is not meant to be a
practical method for analyzing high-density SNP data, which is more common. Our aim was to test whether this approach can
function in principle.
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INTRODUCTION

There are two main approaches of finding susceptibility genes
(quantitative trait loci, QTL) that influence quantitative traits with
the aid of molecular markers. One is variance-component-based linkage
analysis (LA), where information comes from recombination events
occurring between markers within the pedigree (Blangero and Almasy,
1997; Almasy and Blangero, 1998). The other is linkage disequilibrium
(LD) mapping, also known as population-based association mapping,
which is based on historical recombination events (George and Elston,
1987; Lander and Schork, 1994). In both analyses, one is interested in
finding a signal due to close linkage between a marker and a QTL, but
they use different sources of information from the data. LA uses the
information that exists within families/pedigrees and follows co-
segregation of loci, which is broken down by recombination during
few generations of the collected pedigree. Association/LD mapping
requires a marker allele to be in considerable LD (viz., non-random
allelic association) with a QTL allele across the whole population. In
this case, the marker and QTL need to be closely linked in the same
chromosome in order for LD to persist after several generations.
LA works with known pedigrees and assumes that loci measured at

pedigree founders are in linkage equilibrium (i.e., requiring markers
to be unlinked). This assumption is often incorrect. LA also needs
extended pedigrees and large family size in fine mapping (Darvasi and
Soller, 1995). Even if pedigree or family size can be sometimes very
large (e.g., in plants), LA-based fine mapping has a low resolution
owing to the limited number of recombinants.

In association/LD mapping, the interest is in finding the statistical
association between marker loci and trait values. It relies on the
assumption that all alleles that affect the trait are inherited from a
single or very few common ancestor(s) (Terwilliger and Weiss, 1998).
This analysis needs dense markers in order to find the marker that is
very closely linked to the QTL. Another drawback of the association
analysis is that significant association may be due to population
stratification or other confounding factors rather than LD between a
considered marker and a near trait locus (Conti and Witte, 2003;
Marchini et al., 2004). Combining these two approaches (i.e., LD and
LA) into a single analysis, known as LDLA, yields statistically more
powerful and robust analysis because linkage information confirms
only real association signals (Hernández-Sánchez et al., 2009). In
addition, LDLA could improve the mapping resolution (Meuwissen
et al., 2002).
Variance-component-based LA uses locus-specific identity-by-des-

cent (IBD) matrix containing sole linkage information (George et al.,
2000). This approach has been generalized to LDLA analysis in animal
and plant genetics literature. Such variance-component-based LDLA
uses a similar model, where linkage and association information are
combined in a single IBD matrix (e.g., Meuwissen et al., 2002;
Hernández-Sánchez et al., 2009) by assuming that loci measured at
pedigree founders can be in LD (i.e., allowing markers to be linked).
This is very different from LDLA analyses of human genetics
literature, which use mainly quantitative transmission disequilibrium
test (QTDT)-based methods (Abecasis et al., 2000a; Ott et al., 2011)
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testing linkage conditional on LD or the other way round. The
overview of previous LDLA and LA methods for quantitative traits
has been presented in Table 1. See Ott et al. (2011) for a review of
LDLA methods.
Multilocus association analysis is presumably statistically more

powerful than single-locus association testing (Zhang et al., 2011)
and can reduce the upward bias of effect estimates (Allison et al.,
2002). Multiple testing problems can also be avoided when using
multilocus models (Kilpikari and Sillanpää, 2003). Note also
that Bayesian multilocus association models without a polygenic
term have been found to be more robust to the presence of family
and population structure than single-locus association models
(e.g., Pikkuhookana and Sillanpää, 2009; Kärkkäinen and
Sillanpää, 2012).
In addition to the benefits associated with multilocus model,

there are several benefits in our LDLA model framework itself.
First, our LDLA model yields separate LA and LD signals in
addition to combined LDLA signal. In previous variance-compo-
nent-based LDLA analyses, in order to separate signal sources, one
needs to run extra LD and LA analyses. Second, our LDLA model is
free of assumptions about parameters of population model such as
effective population size, number of generations since base popula-
tion and known haplotypes for each individual unlike many
previous LDLA approaches (e.g., Meuwissen and Goddard, 2001;
Meuwissen et al., 2002; Gasbarra et al., 2009; Hernández-Sánchez
et al., 2009). For example, supplying strongly incorrect population
parameters in LDLA approaches based on the Wright–Fisher model
may be detrimental to LDLA (Hernández-Sánchez et al., 2009).
Finally, because our Bayesian LDLA model includes additive
genotype effects from multilocus association model and additive

linkage effects from variance-component-based LA model, most
properties of the original models still hold for this new LDLA
model. For example, LA-based IBD matrices needed in our LDLA
method can be estimated with existing packages, for example,
Merlin (Abecasis et al., 2002), SimWalk2 (Sobel and Lange, 1996),
Genehunter2 (Kruglyak et al., 1996), LOKI (Heath, 1997;
Thompson and Heath, 1999) or SOLAR (Almasy and Blangero,
1998). Moreover, the proposed Bayesian multilocus LDLA model
can provide a firm protection against confounding due to family
and population structure, because multilocus association model
part (see e.g., Kärkkäinen and Sillanpää, 2012) and LA model part
(by definition) are both robust to this problem.

MODELS AND METHODS
We assume that earlier LA or LD studies have already found genetic activity in

small chromosomal regions that suggest the presence of QTL (cf. Meuwissen

and Goddard, 2004; Cantor et al., 2005). Our LDLA approach is designed to be

used as a secondary approach to filter best SNPs (single-nucleotide poly-

morphisms) as putative QTLs from these regions. In our model, the term QTL

is used for the locus, which is associated or linked with actual trait locus, and

we consider that QTL exists only in positions where we have genotyped SNP

markers. Let us have n individuals from independent families with known

pedigrees and from the same population. Let NM be the number of preselected

sets of SNP loci, m ¼ ðm1;1;m1;2; :::;mn;NM
Þ SNP genotypes and y ¼

ðy1; :::; ynÞT the observed continuous phenotypes, where yi denotes continuous

phenotype of the ith individual. We summarize the genotypes as xi,j¼ �1,

when genotype is AA homozygote, xi,j¼ 0 for the heterozygote AB and xi;j ¼ 1

for the other homozygote. We follow the notation of Pikkuhookana and

Sillanpää (2009) and assume that NM is relatively small (a few hundreds at

most). A continuous phenotype yi is explained with genetic factors using the

Table 1 Overview of previous LA and LDLA methods

Paper Model Data needed Experimental design Estimation 1 locus/

multilocus

IBD matrix

Meuwissen and Goddard (2004) LDLA Haplotypes

No. of generations

Effective population size

General pedigree Bayes

MCMC

Multilocus Yes

Lund et al. (2003) LDLA Haplotypes Granddaughter design Classic

ML

1 or 2 locus Yes

Fulker et al. (1999) LDLA/

TDT

Dense map of diallelic markers

Sib-pairs with parental genotypes

Sib-pair Classic 1 locus No

George et al. (1999) TDT Pedigree General pedigree Classic 1 locus No

Hernández-Sánchez et al. (2009) LDLA Genotypes/haplotypes

Pedigree

No. of generations

Effective population

size

Any population structure Classic 1 locus Yes

Pérez-Enciso (2003) LDLA Haplotypes

Pedigree

General pedigree Bayes

MCMC

1 locus No

Abecasis et al. (2000b) TDT Genotypes Pedigree Classic 1 locus No

Farnir et al. (2002) LDLA Haplotypes Half sib Classic

EM

1 locus No

Göring and Terwilliger (2000) LDLA Genotypes Any population structure Classic 1 locus No

Lee and Van der Werf (2006) LDLA Haplotypes General pedigree Empirical Bayes/stochastic

EM

Multilocus Yes

Yi and Xu (2000) LA Genotypes General pedigree Bayes Multilocus Yes

George et al. (2000) LA Genotypes General pedigree Classic 1 locus Yes

Lange et al. (2013) LDLA Pedigree General pedigree Classic 1 locus No

Abbreviations: LDLA, linkage disequilibrium linkage analysis; MCMC, Markov Chain Monte Carlo methods; TDT, transmission disequilibrium test.
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following linear LDLA model

yi ¼ mþ
XNM

j¼1

ILj b
L
i;j þ IAj b

A
j xi;j

� �
þ ei; ð1Þ

where m is the population intercept and ei � Nð0; s20Þ is a normally

distributed residual term with mean zero and variance s20. Here, b
L
i;j is the

additive coefficient for the linkage effect of marker j. It is an element in

multivariate normally distributed effect vector (over individuals i) with mean ~0

(vector of zeroes) and covariance matrix �js2Lj, that is,

bLj j �j; s2Lj � MVNð~0;�js2LjÞ. The additive coefficient for the association

effect of marker j is bAj . The linkage and association indicators for marker j are

ILj and IAj , respectively, whose value 1 corresponds to the inclusion, and value 0

to the exclusion of the effect in the model. With restriction ILj ¼ 0 for all j,

model (1) corresponds to common multilocus association model. In addition,

when restricting IAj ¼ 0 for all j, model (1) reduces to a typical multilocus

variance component-based LA model. Association indicators can be collected

to a vector IA ¼ ðIA1 ; IA2 ; :::; IANM
Þ and unknown association effects to matrix bA

whose diagonal elements are bA1 ;b
A
2 ; :::; b

A
NM

and zero elsewhere. Similarly,

bLj ¼ ðbLj;1; :::;bLj;nÞ, j ¼ 1; :::;NM is the vector of additive (random) genetic

effects due to jth putative QTL with LA covariance �js2Lj. Here, �j is the

additive IBD matrix of the putative QTL based on LA information. We use

Merlin (Abecasis et al., 2002), which uses information from multiple marker

loci simultaneously, to estimate multipoint IBD probabilities (p0, p1, p2) at

each SNP position for each pair of individuals. However, one can use any

package for estimating IBD probabilities, such as LOKI or SOLAR (for a review

of common methods, see Mao and Xu, 2005). We can calculate the expected

values of elements of the additive IBD matrix using these probabilities as

EðIBDÞ ¼ ðp1�1þ p2�2Þ=2, where p1 is the probability that individuals share
one allele IBD and p2 is the probability that individuals share both alleles IBD.

The genotypic data of the jth SNP marker can be written as vector

xj ¼ ðxj;1; xj;2; :::; xj;nÞ, where j ¼ 1; :::;NM , and further as matrix

X ¼ ðx1; x2; :::; xNM
ÞT . The incidence matrix Z that associates additive linkage

effects with phenotypic observations is identified here as an identity matrix

Z¼ I. Matrix Z may also be other than identity matrix for example in cases

where there are individuals in pedigree which have no phenotypic values. Now,

we can rewrite the linear LDLA-model (1) as

y ¼ mþ
XNM

j¼1

ILj Zb
L
j þ IAbAXþ e: ð2Þ

To simplify calculations, Mrode and Thompson (1989) and Waldmann et al.

(2008) applied transformation for covariance (additive genetic relationship)

matrix to obtain prior independence structure for transformed variables. The

former standardized variance into 1, whereas the latter restored variance in its

original scale. Following the similar principle, we introduced transformation

for locus-specific IBD matrices. With transformations Fj ¼ Zj�
1
2

j and

gj ¼ �
� 1

2

j bLj , model (2) can be rewritten as

y ¼ mþ
XNM

j¼1

ILj Fjgj þ
XNM

j¼1

IAj b
A
j xj þ e: ð3Þ

With this transformation, we obtain gj j s2Lj � MVNð~0; Is2LjÞ when

j ¼ 1; :::;NM . The construction of square-root matrices is shown in

Appendix 1.

HIERARCHICAL MODEL

Prior distributions
In Bayesian analysis, one specifies prior distributions for the unknown
parameters. For association effects, a prior was assigned as
pðbA j s2AÞ ¼

QNM

j¼1 pðb
A
j j s2AjÞ. The functional form of pðbAj j s2AjÞ is

normal density with mean zero and effect-specific variance s2Aj. For
the effect-specific variances, Jeffreys’ prior was assigned as
pðs2AjÞ / 1/s2Aj. The same shrinkage-based variable selection as
described in Pikkuhookana and Sillanpää (2009) is used here to find
sparse trait-associated sets of SNPs. This is a double-shrinkage model

with two sources of sparseness (indicator-variables and effect
shrinkage). Thus, P IAð Þ ¼

QNM

j¼1 PðIAj Þ and P ILð Þ ¼
QNM

j¼1 PðILj Þ.
Here, P IA ¼ 1ð Þ represents prior probability of the indicator
being one and has been selected to be small. For the effect-
specific variances of linkage effects, a Jeffreys’ prior was assigned
as pðs2LjÞ / 1/s2Lj. For the transformed linkage effects, a
prior was assigned as pðg j s2LÞ ¼

QNM

j¼1 pðgj j s2LjÞ, where

pðgj j s2LjÞ ¼ 1
.
ðð2pÞn=2 j Is2Lj j 1=2Þexp � 1

2g
0
jðIs2LjÞ

� 1gj
h i

. Prior for

m is pðmÞ / 1 and prior density for s20 ¼ varðeiÞ is pðs20Þ / 1
�
s20.

Implementational details are provided in Appendix 1.

Missing data model
In the current simulation study, it is assumed that no phenotypic data
are missing. Note that SNP data come to our analysis in two forms:
(1) as IBD matrices to the LA model and (2) as coded SNP genotypes
to the LD model. Thus, it is natural that in the linkage part of the
model the method that is used to estimate multipoint IBD prob-
abilities (e.g., Merlin) also handles in its own way the missing values
in genotype data (contributing to the linkage signal). In the
association part of the model, missing values are handled as random
variables via Bayesian inference following Pikkuhookana and
Sillanpää (2009). In this process, the genotypic values of
the individuals’ parents are accounted for. The joint probability
distribution of the marker j over individuals is given by

pðmjÞ ¼
Q

i2Founders pðmi;jÞ
Q

i2non
Founders

pðmi;j j mm;j;mf ;jÞ, where mj ¼

ðm1;j; :::;mn;jÞt is the genotype pattern at marker j. Transmission

probabilities follow the Mendelian rules of inheritance. In our genotype
data contributing to the association part of the model, we omit the
recombination aspect in handling of missing values. However, linkage
between markers has been taken into account in estimating IBD
probabilities. Thus, the the prior density function of the genetic data is

pðmÞ /
YNM

j¼1

Y
i2Founders

pðmi;jÞ
Y

i2non
Founders

pðmi;j j mm;jmf ;jÞ

0
B@

1
CA

More details have been provided in the Appendix 1.

Posterior distributions
Posterior distributions pðy j dataÞ for the parameters y are derived
from the likelihood of the data pðdata j yÞ and the prior distributions
pðyÞ (Gelman et al., 2004). From Bayes formula, we obtain the joint
posterior density of parameters from likelihood of the data and the
prior distributions as pðy j dataÞ / p data j yð ÞpðyÞ. Here, y repre-
sents all unknown parameters and data represents the given data
including phenotypes, genotypes and given IBD matrices. The
posterior distributions are estimated using Markov Chain Monte
Carlo (MCMC) methods.

EXAMPLES

Data
We use the same genotype data sample of 15 CEPH families as in our
previous study (Pikkuhookana and Sillanpää, 2009). Data were edited
to remove 5 individuals with missing genotypes for all markers. This
was done to minimize the influence of missing data on the simulation
of the phenotype and analysis of the association part of the model.
Thus, the number of individuals in our data was 205. Our quality
control criteria for choosing markers in the study was Hardy–
Weinberg equilibrium, minor allele frequency larger than 5% and
only a single missing genotype at a marker. Hardy–Weinberg
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equilibrium was tested with w2-test (Balding, 2006) with a P-value
threshold of 0.001. We collected 22 SNP markers that fulfilled all the
criteria from chromosome 1 (Table 2). Our selection criteria differ
from typical cases of few SNP markers such that we concentrated on
markers with few missing genotypes rather than certain small areas.
Genotypes that were missing in CEPH database were also missing in
our analysis.

Simulated data replicates
To assess average performance of the methods and exclude the
influence of sampling variation in the analysis results, we simulated
25 replicated phenotypic data sets conditionally on the genotypic data
of selected CEPH families. We used WinBUGS 1.4.3 software to
simulate data (Spiegelhalter et al.,1999; Lunn et al., 2000). Simulated
QTL positions, with influence on the phenotypic value, were placed
on a few such markers that had no missing genotypes. This way, we
avoided making any changes on existing linkage patterns in the
genotype data that would have an effect on phenotype. Genotypic
effects were simulated on the locus between markers 4 and 5 and were
(�4, 1, 6) for genotypes (AA, Aa, aa), respectively, and on marker 16
they were (0, 7, 14) for genotypes (BB, Bb, bb), respectively. Simulated
QTL between markers 4 and 5 had a smaller effect on phenotype, and
that particular marker was removed from the data before the LDLA
analysis. Thus, this QTL is expected to be hard to identify with any
mapping methods. Simulated heritability of the data replicates varied
from 0.418 to 0.584 with a mean value of 0.503. Moreover, the mean
QTL heritability of the left QTL was B0.064 and that of the right
QTL was B0.305, while the remainder was due to the polygenes. All
replicated data sets were analyzed with both our Bayesian LDLA
model and quantitative transmission disequilibrium test (Abecasis
et al., 2000a, b).
In addition, we simulated other sets of 25 data replicates. Here, the

phenotypic value was simulated using the same QTL positions as in a
previous experiment. The stronger genotypic effect (�10, 1, 12)

was simulated in the locus between markers 4 and 5 for genotypes
(AA, Aa, aa), respectively. Similarly as before, this locus was not
included in the data that were used in the analysis. The weaker
genotypic effect (0, 3, 6) was simulated on marker 16 for genotypes
(BB, Bb, bb), respectively. Thus, the mean QTL heritability of the left
QTL was B0.308 and that of the right QTL was B0.056, whereas
overall heritability remained on the same range as in earlier replicated
data sets. In the content that follows, we will refer to the above
experiments as scenario A (major QTL at position 16) and scenario B
(minor QTL at position 16).

Analyses
We analyzed our replicated data sets with the proposed method
(Bayesian LDLA) using WinBUGS 1.4.3 for parameter estimation. We
used MCMC chain of length 10 000, with burn-in 1000 and thinning
of 10; that is, we discarded the first 1000 MCMC samples from the
chain and only every 10th MCMC sample was stored and used for
estimation. Convergence was assessed by visual inspection of trace
plots of different parameters. We summarized our results as the mean
posterior occupancy probabilities for SNP j, PðIj ¼ 1 j dataÞ, obtained
by averaging occupancy probability estimates over 25 replicates.
Posterior occupancy probability (or simply QTL-probability) can be
calculated as a fraction of MCMC samples where different combina-
tions of linkage and association indicators equal to one. For
association PðIAj ¼ 1 j dataÞ, for linkage PðILj ¼ 1 j dataÞ, for linkage
in presence of association PðIAj ¼ 1 and ILj ¼ 1 j dataÞ and for
linkage or association PðIAj ¼ 1 or ILj ¼ 1 j dataÞ. Posterior occu-
pancy probability indicates posterior probability that the correspond-
ing SNP effect is included in the model. Mean posterior occupancy
probability provides information about average performance. We also
calculated Bayes Factor (BF) of association as

BFAj ¼
P IAj ¼ 1 j data
� �

=P IAj ¼ 0 j data
� �

PðIAj ¼ 1Þ=PðIAj ¼ 0Þ

for each marker j (see Kass and Raftery, 1995). Bayes factor of
linkage, that of linkage and association, as well as BF of linkage or
association ( BFLj , BF

A\L
j and BFA[Lj ) are calculated in a similar

principle. Bayes factor is a useful statistic because the Bayes factor
scale is independent of prior odds. The following categories have
been suggested for Bayes factors according to the strength of evidence
provided by data in favor of ‘QTL presence’ as opposed to ‘no QTL’
(see Jeffreys, 1961). The first class is evidence ‘not worth more than
bare mention’ when BF is between 1 and 3. The second class is
‘substantial’ evidence with BF between 3 and 10. The third class is
‘strong’ evidence with BF between 10 and 100. The final class is
‘decisive’ evidence with BF above 100. Before MCMC analysis, we
first used the Merlin software to estimate IBD matrices for each loci.
Three families had one missing founder. As Merlin demands both
founders at each family to be present, the missing founder can be
created or the existing one removed. We decided to remove the
existing founders in these families. Thus, in the linkage part of the
model, the number of individuals in the data is three less than that in
the association part of the model.
For comparison of the Bayesian LDLA analyses of the current

simulated data replicates, we also analyzed the same data with the
QTDT program (Abecasis et al., 2000a, b). The QTDT performs
LDLA analysis as a joint analysis of means and covariance matrices by
using a maximum likelihood and a common association model for
pedigree data. The same estimated IBD matrices were used in QTDT

Table 2 An overview of selected SNP markers

SNP locus NCBI Entrez link location cM

1 rs594535 4502

2 rs874515 23 752

3 rs726344 33 106

4 rs760594 33 231

QTL rs1566599 37 481

5 rs905111 37 488

6 rs926830 40 495

7 rs1003323 55 233

8 rs927612 58 007

9 rs556161 61 097

10 rs976574 62 399

11 rs1551331 77 591

12 rs15864 110 094

13 rs930548 112 309

14 rs876694 157 413

15 rs744168 166 361

16-QTL rs764180 170 067

17 rs725164 170 114

18 rs726427 182 932

19 rs489472 192 344

20 rs1125953 196 235

21 rs1001737 232 484

The name of the SNP on the CEPH database and location on centiMorgans.
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as in the Bayesian LDLA analyses with WinBUGS. Three different
models analyzed with QTDT included (1) testing the presence of
association, (2) testing linkage and (3) testing linkage while simulta-
neously considering association.
To understand better how our Bayesian LDLA model works, we

analyzed the same replicated data sets (scenario A) also with multi-
locus association model (with restriction ILj ¼ 0 for all j in model 1)
and with multilocus variance component-based LA model (with
restriction IAj ¼ 0 for all j in model 1). Details of MCMC estimation
and the posterior summaries used were identical as above for Bayesian
LDLA analysis.

RESULTS

Bayesian LDLA analysis with replicated data sets
To assess the average performance of the Bayesian LDLA analysis, the
results were averaged over 25 replicated data sets (Figure 1).

Scenario A. The LD model of Bayesian LDLA on average detected
the simulated stronger QTL at position 16 accurately (top left,
Figure 1). In the same analysis, the simulated weaker QTL on the
left (QTL between markers 4 and 5) did not show on average almost
any association signal at its genomic region. When inspecting the
average linkage signal provided by the LA model of Bayesian LDLA
(second left, Figure 1), posterior occupancy probabilities were slightly
higher in a correct region around the simulated weaker QTL on the
left. The average combined linkage or association signal from Bayesian
LDLA analysis was very strong at the correct QTL position 16,
whereas the simulated weaker QTL on the left, at region between
position 4 and 5, showed only a minor peak in this combined analysis
(bottom left, Figure 1). Again, the average combined linkage and
association signal from Bayesian LDLA analysis was very strong at
correct QTL position 16, whereas that of the simulated weaker QTL
on the left was only modest (third left, Figure 1).

Scenario B. Here, the LD model of the Bayesian LDLA captured the
weaker QTL at position 16 very well (top right, Figure 1). As in
scenario A, the left QTL showed no association signal. LA model of
Bayesian LDLA found the left QTL region (between markers 4 and 5)
quite well (second right, Figure 1). It also showed a small peak at
position 16. When inspecting combined signals of linkage or
association (bottom right, Figure 1), both QTL regions stand out,
even if there are elevated levels of QTL probabilities on every position.
The combined signal of linkage and association (third right, Figure 1)
shows similar results as the combined signal of linkage or association.

Scenarios A and B. To assess sensitivity of Bayes factor thresholds to
judge QTLs, the number of replicated Bayesian LDLA analyses
exceeding the given BF threshold by using two hypothetical BF levels
1 and 1.5 was illustrated (Figure 2). Almost none (three or less) of the
replicated Bayesian LDLA analyses exceeded the BF threshold of 3 in
the vicinity of the weaker QTL on the left (scenario A). Thus, we
argue that the BF threshold of substantial evidence 3 is too strict for
the weakest QTL in these data. This may be partially due to the fact
that indicators act as an additional source of shrinkage and may
induce a downward bias on the resulting BFs (Sillanpää et al., 2012).
On the other hand, when inspecting Figure 2, the BF threshold of 1.5
seems to protect against false positives while still maintaining real
combined LDLA signals around the simulated QTL on the left
(especially on panels on bottom, Figure 2). In the figure, BF threshold
of 1.0 seems to suffer from false positives, and the QTL evidence is
not so clear either.

QTDT analysis
The QTDT program can be used to test the presence of association,
linkage or both association and linkage simultaneously. Interpretation
of the combined QTDT analysis differs from the Bayesian LDLA
analysis presented here. Although the Bayesian combined linkage and
association method can separate or combine two sources of signals
freely (as was shown in Figure 1), signal detection in QTDT is based
on comparing separate analyses of association, linkage and linkage
given association (Figure 3). If the QTDT signal of linkage given
association seems to disappear (as in bottom left, Figure 3) compared
with the signal of the linkage model (middle left, Figure 3) or of the
association model (top left, Figure 3), the QTDT signal can be
interpreted as the signal of true QTL (Fulker et al., 1999).
To assess the sensitivity of P-values to judge QTLs, the number of

replicated QTDT analyses exceeding the given threshold of P-values
0.05 and 0.1 was illustrated (Figure 3).

Scenario A. In the analyses of replicated data, the use of the QTDT
model on average detected the simulated stronger QTL at position 16
accurately, with averaged P-values varying from 0:2�10� 8 to
0:2�10� 19. The weaker simulated QTL on the left (in region between
markers 4 and 5) was not detected with QTDT too well. Figure 3
clearly illustrates that there is practically no hope to detect the weaker
simulated QTL on the left using QTDT. Linkage test found significant
P-values only twice in marker 3 (P-values 0.084 and 0.094) and
marker 4 (P-values 0.083 and 0.095) and once in marker 5 (P-value
0.067) of the 25 replicated data sets.

Scenario B. QTL at position 16 seems to be found on average
correctly by association test in QTDT, even if the QTL heritability at
that position is smaller in this scenario. Averaged P-values vary from
0.06 to 0:4�10� 6. The minor QTL at position 16 was not detected by
linkage test or subsequent QTDT test of linkage given association
(right, Figure 3). Linkage test in QTDT found on average elevated
signals around the correct region of major QTL on the left, although
this region is quite wide (from SNP 1 to SNP 10). Because this major
QTL region on the left showed no signal in the association test, this
QTL cannot be detected by QTDT test of linkage given association
either.

Restricted analyses
Results of the restricted analyses of scenario A data sets are shown in
Figure 4. Multilocus association analysis found correct QTL at
position 16 (left, Figure 4). No association signal of the weaker
QTL between positions 4 and 5 can be found. Unlike LDLA analyses,
multilocus variance component-based LA analysis showed linkage
signal around position 16 (right, Figure 4). As a drawback, LA
analysis suffers from a false positive at position 20, and its signal at
the region of the weaker QTL did not seem to be significantly higher
than the general signal level.

DISCUSSION

Owing to the limited number of recombination events, LA seems
to find QTL regions fine, but it does not separate true QTL from
correlated markers. On the other hand, population-based association
analysis has a high resolution, but without including LA it tends to
give false positives owing to structured data. Thus, we have proposed
a conceptual approach of combining LA and LD methods into
the Bayesian multilocus LDLA framework. Previous variance compo-
nent-based LDLA methods developed in plant and animal genetics
literature (Table 1) are relying to a certain extent on known
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Figure 1 Mean posterior occupancy probabilities for SNPs obtained from Bayesian LDLA analysis by averaging QTL-probability estimates over 25 replicated

data sets in scenario A (left) and in scenario B (right). Index of SNPs on x-axis and average QTL probabilities on y-axis calculated from indicator variables

in the MCMC sample for association (top panel), linkage (second panel), linkage and association (third panel), linkage or association (bottom panel). Note

that y-axis scales in panels depend on prior occupancy probabilities. In cases where QTL probability exceeds the upper limit of the y-axis, its value is

presented in the bottom of each column of the bar chart.
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Figure 2 Number of Bayesian LDLA analyses where BF exceeds a given threshold. Index of SNPs on the x-axis and the number of analyses where BF

exceeds values 1 and 1.5 on the y-axis. Scenario A is shown on the left and scenario B on the right. The first panel shows results from association analysis

and the second panel from linkage analysis. The third panel shows results when either linkage or association signal is found in the model, and the case

when both association and linkage signals are found simultaneously in the model is in the fourth panel.
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haplotypes, which are costly/expensive to collect, and/or they need
assumptions about population demography (Hernández-Sánchez
et al., 2009). Similar to LDLA approaches of human genetics,
our method makes fewer such assumptions than previous methods
developed in plant and animal genetics literature (Table 1), and it
takes advantage of existing packages on IBD estimation. Combining
LA and LD methods together provides more accurate analysis.
Combined analysis using QTDT can find true simulated position
of QTL, whereas sole association and LA gives less accurate results.
The weaker-simulated QTL (scenario A) on the left (in region
between markers 4 and 5) was not found at all with QTDT.

In addition, Bayesian LDLA had difficulties in finding that QTL,
but it showed at least a weak signal. The other simulated QTL was
found with Bayesian LDLA with probability one. Poor identification
of the smaller effect QTL may be due to the fact that the simulated
effect on that QTL was much weaker than the effect of the other QTL.
Our Bayesian LDLA outperformed QTDT in replicated simulation
analysis of scenario A. It showed better power to identify also the
smaller effect QTL. In scenario B, QTDT showed either clear linkage
signal or clear association signal for each QTL but not both signals for
the same QTL. Thus, QTDT test of linkage given association could
not detect the QTLs similarly as Bayesian LDLA analysis.

Figure 3 The number of QTDT analyses with significant P-values where P-value exceeds the given values of P-value threshold for significant result of 0.05

and 0.1. Scenario A is shown on the left and scenario B on the right. The panels contain results from sole association analysis (top), sole linkage analysis

(middle) and combined association and linkage analysis (bottom).
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The interesting difference between these two models was that the
region showing linkage signal around major QTL (between positions
4 and 5) was few SNP markers wider in QTDT than in Bayesian
LDLA analysis.
Restricted analyses of scenario A give hint of the reason why

Bayesian LDLA model found no linkage signal at position 16 (second
left, Figure 1). It seems that this is a consequence of including various
kinds of genetic (LA and LD) effects simultaneously to the model and
performing Bayesian variable selection to them jointly. Similar
behavior has been seen earlier by Bhattacharjee et al. (2008) and
Pikkuhookana and Sillanpää (2009), where SNP marker information
and gene expression information were considered jointly in the
model, and the stronger information type alone explained most of
the variation in the genomic region. In Bayesian LDLA model with
scenario A data, the association signal is so strong that it leaves
nothing to be explained for linkage signal (second left, Figure 1). The
above kind of ‘winner takes it all’ phenomenon is suggested by
analyzing the same data with Bayesian LDLA model, where associa-
tion indicators are restricted to zero (with restriction IAj ¼ 0 for all j).
Here, one can see clear elevated levels of linkage signal around QTL
position 16 (right panel, Figure 4) as in QTDT.
Our results are in agreement with previous observations that

simultaneous modeling of the association and linkage gives more
accurate results than modeling them separately. Generally, analyzing
data with the LDLA model does not suffer from spurious associations
due to population demography and relatedness, which are the main
difficulties of the LD model. This is because LA is robust to structured
data and gives good control for the LD part of the model (Sillanpää,
2011). Earlier studies (Pikkuhookana and Sillanpää, 2009; Kärkkäinen
and Sillanpää, 2012) have shown that the multilocus association
model seems to be robust to cryptic relatedness, and thus our
Bayesian multilocus LDLA method introduces robustness on each
part of the model.
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APPENDIX 1

Handling of the missing values of genotypic data in the associa-
tion part of the model is given here. We assumed Mendelian
transmission, uniform allele frequencies and that genotypes are
missing at random (Rubin, 1976). Note that assuming missing
data mechanism to be random in TDT is known to be a poor
choice, as it tends to inflate linkage signals (e.g., Allen et al., 2003;
Nicodemus et al., 2007). However, because the new Bayesian
LDLA model has been constructed from two separate (LD and LA)
models and assuming random missing data mechanism is not a
problem in either of them, most properties of the original models
still hold for this new LDLA model. In the WinBUGS software, we
created two artificial individuals who are parents of all founders.
These individuals are heterozygotes in all their markers allowing
missing founder genotypes to have all possible allele combina-
tions. Owing to total probability, the genotypes of the founders
are dependent on the genotypes of the rest of the pedigree,
creating both downward and upward dependencies.
Construction of diagonalizing transformations for the IBD

matrices:
Singular value decomposition on symmetric matrix A is

A ¼ USU 0, where U is the orthonormal matrix (U 0U ¼ I and
det(U)¼ 1) and S is the diagonal matrix (S ¼ diag(s1; s2; :::; sn)).

Required square-root matrix is achieved by equation A
1
2 ¼ US

1
2U 0 and

inverse square-root matrix by A� 1
2 ¼ US� 1

2U 0.
Jeffreys’ improper prior pðs2j Þ / 1/s2j is used to induce sparseness

into our model (Xu, 2003). Jeffreys’ prior equals Inv-Gamma(0,0)
prior, which is also improper (Yi and Xu, 2008). Assuming Inv-
Gamma(0,0) prior for effect-specific variance components is a special
case of scale mixture parameterization of Student’s t-distribution,
which is assumed marginally for bAj (Tipping, 2001). WinBUGS
program does not allow the use of improper priors, and thus we
approximated the improper prior with a proper one. One solution is
to use Inv-Gamma(a,b) prior with a and b close to zero. We have
earlier found that this leads to numerical instability producing ‘trap
messages’ in WinBUGS (Pikkuhookana and Sillanpää, 2009). Let t ¼
1=s2 be the precision parameter. We used transformation f ¼ logðtÞ
for the precision parameters. Prior pðtÞ / 1=t leads to flat prior for
pðfÞ ¼ pðtÞj @t@f j / 1

t t ¼ 1 (see Gelman et al. 2004, p. 65). Flat prior
is also improper, but when we restrict it to some finite range, it will
become a proper prior. Flat prior for m is also improper, and we
approximate that with flat normal density with zero mean and large
variance. With small modifications, our quantitative model can be
used for binary phenotype. Logistic regression (see e.g. Hosmer and
Lemeshow, 1989) is a good tool for modeling binary traits.
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360

Heredity

http://www.genetics.ucla.edu/software/download?file=172
http://www.genetics.ucla.edu/software/download?file=172

	Combined linkage disequilibrium and linkage mapping: Bayesian multilocus approach
	Introduction
	Models and methods
	Hierarchical model
	Prior distributions
	Missing data model
	Posterior distributions

	Examples
	Data
	Simulated data replicates
	Analyses

	Results
	Bayesian LDLA analysis with replicated data sets
	Scenario A
	Scenario B
	Scenarios A and B

	QTDT analysis
	Scenario A
	Scenario B

	Restricted analyses

	Discussion
	Electronic-database information
	Acknowledgements
	References
	Appendix 1




