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Optimum design of family structure and allocation
of resources in association mapping with lines from
multiple crosses

W Liu1,2, HP Maurer2, JC Reif2, AE Melchinger3, HF Utz3, MR Tucker4, N Ranc5, G Della Porta6

and T Würschum2

Family mapping is based on multiple segregating families and is becoming increasingly popular because of its advantages over
population mapping. Athough much progress has been made recently, the optimum design and allocation of resources for
family mapping remains unclear. Here, we addressed these issues using a simulation study, resample model averaging and
cross-validation approaches. Our results show that in family mapping, the predictive power and the accuracy of quatitative trait
loci (QTL) detection depend greatly on the population size and phenotyping intensity. With small population sizes or few test
environments, QTL results become unreliable and are hampered by a large bias in the estimation of the proportion of genotypic
variance explained by the detected QTL. In addition, we observed that even though good results can be achieved with low
marker densities, no plateau is reached with our full marker complement. This suggests that higher quality results could be
achieved with greater marker densities or sequence data, which will be available in the near future for many species.
Heredity (2013) 110, 71–79; doi:10.1038/hdy.2012.63; published online 10 October 2012

INTRODUCTION

Family mapping refers to association mapping in lines derived from
multiple biparental crosses (Myles et al., 2009) and is a powerful
genomic tool to dissect the genetic architecture of quantitative traits
(Yu et al., 2008; Buckler et al., 2009). It is based on the analysis of
multiple segregating families, typically from connected crosses.
Compared with association mapping in a diverse panel of lines
(population mapping), the more balanced allele frequencies in family
mapping can facilitate a higher quantitative trait loci (QTL) detection
power and reduce the confounding effects of genetic relatedness
(McMullen et al., 2009). In addition, family mapping holds the
promise that the identified QTL are more stable than the QTL
detected in biparental populations, which are often not transferable
from one population to another (Holland, 2007). Family mapping
has been applied not only to natural populations (Wu et al., 2002;
Kover et al., 2009) but also to populations from plant breeding
programs in different crop species (for example, Reif et al., 2010; Liu
et al., 2011).
A recent comparison between biometric models available for family

mapping indicated that they differ substantially with regard to their
QTL detection power, correction for family structure and their use of
the available linkage disequilibrium (LD) (Würschum et al., 2012).
Even though different family mapping studies are available, it remains
unclear which model is most appropriate for the analysis of family
mapping data sets.

For MAS programs to be superior to field evaluation and classical
phenotypic selection, QTL positions and effects must be estimated
with high precision and the proportion of genotypic variance
explained by the QTL must be high. In linkage mapping, it has been
shown through simulation studies (Beavis 1998) and experimental
data (Utz et al., 2000; Schön et al., 2004), that the QTL effects and the
proportion of explained genotypic variance are often overestimated,
leading to an excessively optimistic assessment of MAS. This effect is
strongly influenced by the size of the mapping population, with
smaller populations showing a much larger reduction in the amount
of genotypic variance explained by the QTL in an independent test set
(TS). The reasons for this inflated estimation of explained genotypic
variance include epistatic and environmental (G� E) interactions,
and that QTL detection and estimation of their effects are performed
in the same population. Different approaches have been suggested to
obtain unbiased estimates of QTL effects. The cross-validation
approach, applied by Schön et al. (2004), also appears appropriate
for family mapping to obtain more realistic estimates of the genotypic
variance explained by the detected QTL (Würschum et al., 2012).
To date, however, no study has evaluated the bias in the estimation

of QTL effects and the precision of QTL prediction in family mapping
approaches. In addition, fundamental questions remain when plan-
ning family mapping experiments, and these relate to the optimum
design of family structure and the allocation of resources. In this
study, we used complementary simulation and experimental
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approaches to address these questions. In detail, our objectives were
to (1) investigate the optimum allocation of resources in family
mapping by computer simulations, (2) evaluate the precision of QTL
position estimates and the predictive power of QTL identified by
family mapping based on experimental data of a large maize
population (930 lines evaluated in six environments), (3) investigate
the optimum allocation of resources by using an array of genotypic
and environmental subpopulations derived from the full data set, (4)
assess the performance of data sets that are either balanced or
unbalanced with regard to family size or the parental contribution
to the mapping population and (5) analyze the effect of the applied
marker density on family mapping.

MATERIALS AND METHODS
Simulation study
For the simulation study considering the optimum allocation of resources, a

random-mating population of infinite size was simulated using the software

package Plabsoft (Maurer et al., 2008). This population was used to generate

an infinite population of doubled haploid (DH) lines from which the parents

were randomly sampled. Three different scenarios concerning LD in the base

population were simulated. Adjacent loci were either simulated to be in linkage

equilibrium (no LD) or in high or low LD (the decay of LD with genetic map

distance for the high and low LD scenario is shown in Supplementary Figure

S1). Loci on different chromosomes were in linkage equilibrium in all three

scenarios. Each genotype possessed two chromosomes with 150 cM length that

had a marker every cM with allele frequencies of 0.5. In the middle of one of

these chromosomes, a QTL was simulated that in the population of DH

parental lines explained 5% of the genotypic variance, whereas the remaining

genotypic variance was equally contributed by QTL on 100 background

chromosomes with allele frequencies of 0.5.

A total budget of 10 000 plot equivalents was assumed. This restricted

budget was used for (1) developing and genotyping of DH lines (three plot

equivalents per DH) and (2) field testing (one plot per DH and test

environment). The number of replications per environment was set to one.

In studies without an upper limit for test environments, this has recently been

shown to maximize the heritability in plant breeding programs (Longin et al.,

2007). The costs for each scenario were thus: N� (3� plotsþ Env� plots),

where N refers to the number of lines and Env to the number of test

environments. Genotypes were randomly sampled from the base population

and converted into DH lines to generate the parents. The parents (3–15) were

crossed in two popular mating designs, a diallel (DIA) design or a single round

robin (SRR) design, to generate the DH mapping populations. Family sizes

were determined by the total budget and ranged from 666 (3 parents, 2

environments) to 39 (15 parents, 14 environments) for SRR and from 666

(3 parents, 2 environments) to 5 (15 parents, 14 environments) for DIA. The

ratio of the variance components for genotype, genotype by location and

residual was assumed to be 1:2:2. The threshold for QTL detection was

Po0.001 and the second chromosome without QTL was used to estimate the

false-positive rate. A total of 300 runs, corresponding to 300 data sets, were

conducted for each combination of parents and locations (test environments).

Plant materials, field experiments and molecular markers
The analyses are based on the population described in Liu et al. (2011). Nine

elite inbred lines originating from the stiff stalk heterotic group were used as

parents and crossed in an incomplete DIA design. In total, 11 segregating

families were generated by single seed descent until the F3 generation or in vivo

DH induction (Supplementary Figure S2). The 930 genotypes (292 F3 and 638

DH lines) were crossed to a tester, which was an elite inbred line from the

opposite European heterotic pool. All plant materials used in this study are

proprietary to Syngenta Seeds SAS, chemin de l’Hobit, Saint-Sauveur, France.

The 930 testcross progenies were evaluated in unreplicated trials in six

environments in 2007. Two-row plots (8.2m2) were machine planted (5.5–7.0

plantsm–2). Data were recorded for grain yield (Mgha�1, adjusted to 155 g kg–1

of grain moisture) and for grain moisture (content in g kg–1 at harvest stage).

The 930 genotypes were fingerprinted following standard protocols with 425

single-nucleotide polymorphism (SNP) markers. These markers were ran-

domly distributed across the genome with an average marker distance of

2.8 cM and a maximum gap between adjacent markers of 23 cM. Map

positions of all markers were based on the integrated linkage map of Liu

et al. (2011) with a total map length of 1207 cM.

Phenotypic data analyses
All quantitative genetic parameters were estimated on the basis of the testcross

performance of the 930 maize lines. An analysis of variance was performed

based on the model: yij¼ mþGiþ Ejþ eij, where yij is the adjusted entry mean

of the ith maize line at the jth environment, m the intercept term, Gi is the

genetic effect of the ith maize line modeled as fixed effect, Ej the effect of the

jth environment and eij the error term including the genotype-by-environment

interaction effect. Both Gi and Ej were modeled as random effects to obtain

estimates of variance due to genotype (s2G) and variance of the residuals (s2e)
(confounded with genotype-by-environment interaction variance, s2G�E) as

described by Searle (1971, p. 475). Heritability (h2) on an entry-mean basis was

estimated as the ratio of genotypic to phenotypic variance according to

Hallauer and Miranda (1981): h2¼s2G/(s2Gþ s2e/E), where E refers to the

number of environments. In addition, best linear unbiased estimates across the

six environments were calculated for the 930 testcross progenies for both traits

with the model described above, except that Gi was modeled as fixed effect.

Association mapping
For QTL mapping, an additive genetic model was chosen for the testcross

progenies as described by Melchinger et al., (1998). The estimated best linear

unbiased estimates across locations were used for the family mapping analysis.

We used a multiple-regression approach that has previously been shown to

perform well in a model comparison for family mapping (Model A and Model

B from Würschum et al. (2012)). Briefly, the applied models included cofactors

(Model A) or cofactors and an additional family effect (Model B), and the

approach is based on a two-step procedure for QTL detection. In the first step,

cofactors were selected by stepwise multiple linear regression based on the

Schwarz Bayesian criterion (Schwarz, 1978). In the second step, we calculated a

P-value for the F-test with a full model (including SNP effect) versus a reduced

model (without SNP effect). Cofactor selection was performed using Proc

GLMSELECT implemented in the statistical software SAS (SAS Institute,

2008).

For the detection of main-effect QTL, a genome-wide scan for marker–trait

associations was conducted. We tested for significance with Po0.05 and

controlled for multiple testing by applying the Bonferroni–Holm procedure

(Holm, 1979). The total proportion of genotypic variance (pG) explained by

the detected QTL was calculated by fitting all QTL simultaneously in a linear

model to obtain R2
adj. The ratio pG¼R2

adj/h
2 yielded the proportion of

genotypic variance (Utz et al., 2000).

Cross-validation, resampling and RMA
To evaluate the QTL mapping results, a fivefold cross-validation approach

accounting for genotypic sampling was chosen (Utz et al., 2000; Schön et al.,

2004). The data set was subdivided into five genotypic samples without

replacement. To maintain the population structure and the relative contribu-

tion of the families to the data set, random genotypic sampling was carried out

separately within each family. Four of the five genotypic samples were used as

the estimation set (ES) for QTL detection, localization and estimation of their

genetic effects. The fifth genotypic sample remained as an independent sample

to form the test set (TS). This TS was used to validate the QTL results from the

ES and to obtain unbiased estimates of the genotypic variance explained by the

QTL. The random sampling of genotypes into ES and TS was repeated 600

times. QTL mapping was performed in the data set and in the ES, whereas the

TS was used to validate the results from the corresponding ES. The QTL effects

estimated in the ES were used for prediction in the TS and to obtain unbiased

R2adj between predicted and observed phenotypic values (Würschum et al.,

2012). The proportion of the genotypic variance of the detected QTL in the ES

(pG-ES) was compared with the proportion explained in the TS (pG-TS). The

bias was calculated as pG-ES�pG-TS, and the relative bias as 1�(pG-TS/pG-ES).
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Our resample model averaging (RMA) approach to reveal the QTL

frequency distributions (Utz et al., 2000) was similar to the subagging (80%)

described by Valdar et al. (2009). We used resampling without replacement as

described for cross-validation. In contrast to the study by Valdar et al. (2009),

we did not use forward selection to select the multiple QTL model, but used

QTL detection by Model B.

To analyze the effect of the marker density on family mapping, four different

sets of markers were generated: 100% (all 425 SNP markers), 80% (340 SNPs),

60% (255 SNPs), 40% (170 SNPs) and 20% (85 SNPs). These markers were

either sampled randomly (unbalanced) or to maintain the relative contribution

of each of the chromosomes (balanced).

For the optimum allocation of resources in family mapping, subsamples

from the full population (N¼ 930, E¼ 6) were drawn without replacement

representing (a) genotypic subsamples and (b) environmental subsamples.

Genotypic subsamples were always sampled with an equal percent contribution

of all families to ensure a similar population structure in the subsample as in

the reference population. All 12 possible combinations derived from sub-

samples with N¼ 930, 660, 440 and 220 individuals and E¼ 6, 4 and 2

environments were analyzed. The subsampling of genotypes and environments

was repeated 600 times to result in 600 different data sets per N–E

combination, except for the full data set (930, 6), where only one data set

exists. For each data set, the heritability, the localization of QTL and the

proportion of genotypic variance explained by these QTL were estimated, and

cross-validation was carried out as described above.

The balanced data set (n¼ 440) was obtained by genotypic subsampling.

The balancedFamily data set consisted of 11 families, each of which contained 40

individuals, resulting in a total population size of 440. The balancedParents data

set balanced the contribution of the parents to the population as much as

possible and also had a total population size of 440. In all, 600 runs of random

sampling of individuals from the families according to these criteria were

carried out to result in 600 balanced data sets each.

RESULTS

We performed a simulation study to evaluate the optimum allocation
of resources in a theoretical framework, varying the number of
parents from 3 to 15, and the number of test environments from 2 to
14. In addition, we compared two recently described biometrical
models for family mapping, Model A and Model B (Würschum et al.,
2012). The models differ in that both incorporate cofactors, but in
addition, Model B includes an effect for the segregating family. For the
DIA design, the optimum with regard to the QTL detection power was
very similar for both biometrical models, with 7 or 8 parents and two
test environments (Figure 1). For SRR, this optimum shifted towards
a higher number of parents with 10 for Model A and 13 for Model B.
The optimum number of test environments was always two, except for
SRR Model B, where the optimum was found for four test environ-
ments. For both designs, a higher power was observed for Model B.
The QTL detection power at the optima was 0.72 (Model A, DIA),
0.85 (Model B, DIA), 0.74 (Model A, SRR) and 0.82 (Model B, SRR).
A marked difference between the two biometrical models was

observed for the false-positive rate. Whereas Model B showed a very
low false-positive rate for all tested combinations of parental number
and test environments, Model A exhibited a high false-positive rate of
up to 0.8 in the combination optimizing the QTL detection power. In
addition, the simulation study revealed a dependency of the false-
positive rate on the extent of LD. Low LD in the base population, that
is, LD that decays after a short genetic map distance, increased the
false-positive rate as compared with long-ranging LD.
We also tested the two biometrical models on experimental data by

using the full data set with 930 individuals evaluated in six test
environments and genotyped with 425 SNP markers. The number of
detected QTL and the genotypic variance explained by these QTL was
comparable between the two models for grain yield, whereas for grain

moisture, Model A detected more QTL, which explained a much
higher proportion of the genotypic variance (pG) (Table 1). It must be
noted here that the two traits differ substantially with regard to the
ratio of within-family and among-family variance (Zhao et al., 2012).
Whereas the among-family variance for grain yield is negligible, it is
twice as high compared with the within-family variance for grain
moisture. When the detected QTL were analyzed separately within the
four largest families (A�D, A� E, A� F, E�B), we observed for
both traits that the two biometrical models were comparable or that
Model B was even slightly better, indicating that much of the pG of
Model A was due to among-family variance. We used a fivefold cross-
validation approach in which the effects of the QTL detected with the
full data set were estimated in the ES (80% of genotypes from each
family) to subsequently carry out a prediction in the TS (remaining
20% of genotypes). We observed that the relative bias (the relative
reduction in pG from the ES compared with the TS) was slightly
higher for Model A compared with Model B. Regarding the two traits,
the relative bias was higher for grain yield as compared with grain
moisture, which may be due to the lower heritability of the former
(Supplementary Table S1). This is in accordance with results from our
simulation study showing that Model A has a much higher false-
positive rate than Model B (Figure 1). Taken together, Model A
appears to possess an enhanced risk of detecting QTL due to among-
family variance and potentially a higher false-positive rate. For further
analyses using experimental data, we therefore focused on Model B.
The analysis of the experimental data from 930 genotypes evaluated

at six locations yielded estimates of heritability of 0.51 for grain yield
and 0.72 for grain moisture (Supplementary Table S1). We tested
different combinations of genotypes and/or test environments, and, as
might be expected according to quantitative genetics theory, observed
that the heritability was not affected by the size of the population, but
was strongly affected by the number of test environments.
To assess the precision and the reliability of the detected QTL, we

used a recently described RMA approach (Valdar et al., 2009). Most of
the QTL detected with the full data set were identified in more than
40% of the RMA runs (Figure 2). The RMA, however, also revealed
that some QTL detected with the full data set were only selected as
QTL in o20% of the runs (for example, grain moisture QTL on
chromosome 4). By contrast, the RMA also identified some QTL
positions that were not detected with the full data set, but were
identified in a high number of RMA runs (for example, grain yield
QTL on chromosome 7). We observed strong effects on the precision
of QTL detection for the 12 combinations of sample size and
phenotyping intensity. A reduction in either of the two parameters
led to a severely lower frequency of RMA runs in which the QTL was
detected. This effect was more pronounced for a reduction in sample
size than for a reduced number of test environments. For the
combination of 220 genotypes evaluated in two environments, the
frequency of RMA runs in which a QTL was identified was generally
below 10%, even for those QTL that were identified in the majority of
runs in the full data set.
The resampling approach revealed that for grain yield and for grain

moisture, the number of QTL detected in the ES decreased with both
a reduced number of genotypes and a reduction in test environments
(Supplementary Table S2). In addition, the proportion of genotypic
variance explained by the detected QTL in the ES and in the TS
decreased with a reduced number of genotypes (Figure 3 and
Supplementary Figure S3). The reduction in the number of test
environments led to a reduction in pG for grain yield but not for grain
moisture, whereas the bias in the estimation of pG was comparable for
all 12 combinations. The variation in pG estimates in the ES and in
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the TS increased when the number of genotypes or the number of test
environments were reduced (Supplementary Figure S4). This effect
was more pronounced for a reduction in the number of test
environments than for the reduced sample sizes. A similar result
was observed for the bias in pG estimates.
We next compared populations with 440 genotypes that were

either unbalanced, that is, each family size is decreased proportionally
relative to the full data set, or balanced. The balanced data sets
either had similar family sizes (balancedFamily) or the population was
more balanced with regard to the contribution of the 11 parents
(balancedParents). This comparison revealed that for both traits, the
unbalanced data set performed slightly better than the balanced data
sets with regard to the number of detected QTL (Supplementary Table
S2) as well as the pG (Figure 4).

We analyzed the full data set with reduced numbers of markers that
were either sampled randomly throughout the entire genome
(unbalanced) or sampled to maintain the representation of the
chromosomes as with the full marker complement (balanced). We
observed a reduction in the number of detected QTL with the
reduction in marker density (Table 2). With only 20% of the markers,
we still detected approximately half of the QTL identified with the full
marker set. No difference was observed between balanced and
unbalanced sampling of markers. Regarding the proportion of
genotypic variance explained by the detected QTL under different
marker densities, we observed an almost linear reduction of pG with
reduced marker density (Figure 5). As for the number of detected
QTL, however, the pG obtained with the lowest marker density (20%)
was still considerably high and in the TS amounted 84% and 69% of
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Figure 1 QTL detection power and false-positive rate of two biometric models for family mapping, Model A and Model B, assessed in a simulation study.

The simulation is based on a fixed budget, with varying numbers of parents and test environments. Results are shown for two mating designs, DIA and SRR,

and the false-positive rate for different levels (high, low, no) of LD. The dashed blue lines indicate the family size.
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that of the full marker density for grain yield and grain moisture,
respectively. We observed no strong differences in the variance of pG
for the different marker densities and no difference between the
balanced versus the unbalanced marker sets.

DISCUSSION

Simulation study
Simulation studies have recently been used to address questions with
regard to the optimum design of family mapping studies (Verhoeven
et al., 2006; Stich et al., 2007; Stich 2009). In our study, the DIA and
SRR designs were comparable with regard to the QTL detection
power. An optimum family mapping design should maximize the
number of parents included in the study to sample a high allelic
diversity and to enable a high mapping resolution due to a lower LD
generated by the sampling of the parents. These considerations
support the finding of Verhoeven et al. (2006) and suggest SRR as
a promising design for family mapping.
The quality of family mapping experiments is not solely deter-

mined by the QTL detection power, but also by the false-positive rate.
Yu et al. (2008) observed that for two traits of different complexity,
the QTL detection power and the false-positive rate did not reach a
plateau even for a total population size of 5000 individuals in the
maize nested association mapping design. As expected, both para-
meters also greatly depended on the heritability, and thus on the
complexity of the trait as well as on the phenotyping intensity. Stich
(2009) did not control for population structure in his analyses, but
this correction has been shown to be essential to control false-positive
QTL, even in family mapping (Verhoeven et al., 2006; Würschum
et al., 2012). Our simulation study confirmed this and clearly showed
that the model without correction for population structure (Model A)
exhibited a much higher false-positive rate (Figure 1). The inter-
pretation of the observed false-positive rate (approximately 0.8) is
that inB80% of the runs, a QTL is detected on a chromosome where
no QTL is located. In addition, we observed a strong effect of the LD
in the base population from which the parents are sampled on the
false-positive rate. The false-positive rate increased with decreasing
LD, that is, LD that decays within a shorter distance. A possible
explanation for this observation is that with low LD, there are more
independent tests for associations with the trait than with high LD. In

the most extreme case of no LD, each marker represents an
independent test, and consequently the probability of one of them
being falsely detected as QTL increases. We thus note that low LD is
desirable as it enables a high mapping resolution, but it can also
increase the rate of false-positive QTL.
Stich et al. (2010) also investigated the optimum allocation of

resources with a fixed budget and found that the QTL detection
power reached a plateau with 4–7 test environments. By contrast, our
results mostly show a plateau for the optima for QTL detection power
in 2–4 test environments (Figure 1), which corresponds to the
phenotyping intensity commonly applied in breeding programs for
first GCA tests (Longin et al., 2007). This illustrates that with the
assumptions underlying our simulation study, a sufficient heritability
can be achieved with few test environments and it is more
advantageous to direct resources towards increasing population size,
rather than towards additional test environments.
For Model B, the optimum number of parents was found to be 7

and 13 for the DIA and the SRR design, respectively. Interestingly,
both optima were found for a combination with family sizes of
around 100 individuals, even though the model is not nested and
family size should consequently be of no relevance. The reason may
be that with a certain number of parents, an optimum is reached with
regard to the probability of a QTL segregating in families, and thus of
informative individuals in the population. The rather low number of
parental lines observed here as optimum is likely due to the fact that
we simulated only two QTL alleles and a high probability of the QTL
segregating in some families is reached already with fewer parents.
It must be noted that this is likely dependent on the QTL allele
frequency, as for rare alleles this optimum shifts towards a higher
number of parents (unpublished results).
The examples mentioned above clearly show that simulation

studies are a valuable tool, but have certain restrictions in that the
assumed scenarios underlying these studies are difficult to chose and
do not always reflect reality. This is especially true when considering
that experimental data are often unbalanced and do not strictly
adhere to the theoretically defined mating designs evaluated in
simulation studies (Würschum, 2012). Another simplified assumption
of simulation studies is that QTL effects are similar in different
families. Thus, simulation approaches must be complemented by the
analysis of experimental data.

Predictive power and accuracy of QTL
We used experimental data from 930 genotypes evaluated in six test
environments and applied a fivefold cross-validation to assess the
predictive power of the detected QTL. Applying Model B, we
observed that the relative bias was 21.8% for grain yield and 11.8%
for grain moisture (Table 1). Thus, family mapping appears to possess
a good predictive power and is not hampered by a large bias in pG
estimates. The unbiased estimate of the proportion of genotypic
variance explained by the detected QTL (pG-TS) was approximately
25% for both traits, which is promising for such complex traits and
comparable to other studies in maize (Schön et al., 2004). It must be
noted, however, that the QTL due to among-family variance detected
for grain moisture with Model A were verified by the cross-validation
approach. Thus, these QTL, which are prone to an enhanced false-
positive rate, can only be avoided by the choice of an appropriate
biometrical model, for example, Model B.
As a measure of the precision of the QTL position estimates, we

performed an RMA approach (Valdar et al., 2009). Most of the QTL
detected with the full data set were supported by their identification
as QTL in a high number of the RMA runs (Figure 2). Some QTL

Table 1 Fivefold cross-validation in family mapping with the full data

set (930 individuals)

Parameter Grain yield Grain moisture

Model A Model B Model A Model B

QTLDS 6 6 17 10

pG-DS 40.8 44.1 71.9 27.4

pG-A�D 35.0 45.3 63.0 61.6

pG-A�E 31.1 30.8 33.1 33.7

pG-A�F 35.3 35.0 23.9 38.7

pG-E�B 8.8 8.8 14.0 22.0

pG-ES 48.4 34.7 68.7 27.1

pG-TS 35.9 26.2 57.1 23.2

Bias 12.5 8.5 11.7 4.0

Relative bias 25.8 24.5 16.9 14.4

Number of detected QTL (QTLDS) from two biometric models, proportion of genotypic variance
(in percent) explained by the detected QTL across all families in the data set (pG-DS) and within
the four largest single families (pG-A�D, pG-A�E, pG-A� F, pG-E�B). Proportion of genotypic
variance averaged over estimation sets (pG-ES) and averaged over test sets (pG-TS). Bias and
relative bias (%) in the estimation of pG.
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were, however, only identified in few RMA runs and are therefore less
reliable, whereas other QTL not detected with the full data set could
be identified by this approach. The QTL positions were well defined,
confirming the high mapping resolution of association mapping in
multiple families.
For the 12 combinations of sample size and test environments, the

RMA approach revealed a strong effect of both parameters. The
reduction in sample size resulted in particularly low accuracy of QTL

detection (Figure 2). For 220 genotypes, no QTL was consistently
detected for grain yield. The same trend was observed for grain
moisture even though less pronounced, which may be attributed to
the higher heritability of this trait or the underlying genetic
architecture. Thus, despite the fact that QTL were detected in these
data sets, these results appear unreliable. In conclusion, for family
mapping to produce reliable results, a high heritability must be
achieved by using a substantial number of test environments and the
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population must have a certain minimum size. The RMA approach
can serve as a good indicator for the quality of the obtained mapping
results.

Effect of sample size and phenotyping intensity
In contrast to simulation studies, research projects and breeding
programs are faced with a fixed total budget and the goal is to invest
that budget optimally. Whereas the complexity of the trait is given,
the following parameters can be varied: (1) population size; (2)
phenotyping intensity; and (3) genotyping intensity. To assess the
former two parameters, we subdivided the full data set into 12
numerical combinations of genotypes and test environments. We
observed that the heritability was strongly affected by the number of
test environments, but not by the population size (Supplementary
Table S1). According to quantitative genetics theory and previous
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Table 2 Average number of QTL (90% quantiles within parenthesis)

detected in the full data set (930 genotypes) with different marker

densities for grain yield and grain moisture

Marker density

20% 20%* 40% 40%* 60% 60%* 80% 80%* 100%

Grain yield

QTL 4.0 4.0 4.6 4.5 5.2 5.2 5.7 5.8 6

(2; 6) (3; 6) (3; 6) (3; 6) (3; 7) (3; 7) (4; 7) (4; 7) (—)

Grain moisture

QTL 5.3 5.4 6.5 6.5 6.9 7.0 7.4 7.4 10

(3; 8) (3; 8) (4; 9) (4; 9) (5; 10) (5; 10) (5; 11) (5; 11) (—)

The asterisk indicates the balanced sampling of markers.
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studies (Beavis, 1994; Utz and Melchinger, 1994; Falconer and
Mackay, 1996), a higher heritability will warrant a higher QTL
detection power. In accordance with these expectations, we observed
that the number of detected QTL decreased strongly with decreasing
heritability (Supplementary Table S2). In addition, we also detected
fewer QTL with decreasing population sizes even though heritability
was similar. This indicates that besides heritability, population size is a
critical parameter affecting QTL detection power and that small
mapping populations can maintain a high heritability, but never-
theless possess a reduced QTL detection power. This is in line with
theoretical considerations suggesting that in linkage mapping, QTL
detection power can be improved by allocating resources to more
genotypes as compared with fewer genotypes with more replications
(Knapp and Bridges, 1990).
The estimation of pG in the ES and in the TS in 600 cross-

validation runs for the 12 combinations of sample size and number of
test environments revealed a decrease in the predictive power for
smaller population sizes (Figure 3). For grain yield, pG also decreased
with less test environments, whereas this had no effect on grain
moisture. This may be due to a smaller genotype-by-environment
interaction component for grain moisture or to the different genetic
architecture of the two traits. For grain moisture, QTL with strong
effect may be detected irrespective of the number of test environments

(Figure 2), maintaining a high pG. Notably, when considering current
costs for phenotyping and genotyping (Supplementary Figure S3), a
reduction in the number of test environments affected pG for grain
yield to a similar extent as the reduction in population size (Figure 3).
For both traits, the variation in pG estimates in the ES and in the TS,
as well as the bias, were more strongly affected by the reduction in the
number of test environments than by the sample size (Supplementary
Figure S4). The much larger variation in pG estimates for fewer
environments is also due to the variation in heritability estimates. As
the bias can be compared for all combinations, the relative bias was
stronger for the combinations with less genotypes or less environ-
ments. Taken together, our results show that the considerations
proposed from the analysis of biparental populations (Schön et al.,
2004) are also valid for populations based on multiple families.
Population size and robust phenotyping are key factors for successful
family mapping studies.

Composition of the family mapping population
We also investigated the effect of balanced and unbalanced popula-
tions based on a family mapping population with 440 genotypes.
These analyses showed that, with regard to the cross-validated
proportion of genotypic variance, the unbalanced data set performed
slightly better than either the balancedFamily or the balancedParents data
sets. This was surprising, as intuitively we expected the balanced data
sets to perform better. This did not appear to be caused by different
heritability levels, as these were comparable for the three data sets
despite differences in the heritability of the individual families (Liu
et al., 2011). We employed the RMA approach to assess which QTL
were frequently detected in the unbalanced and in the balancedFamily

data sets (Supplementary Figure S5). This revealed differences in the
frequency distributions for some of the major QTL compared with
the full data set. The unbalanced set was sampled to maintain the
relative contribution of each family as in the full data set. Conse-
quently, large families contribute more to the unbalanced set than the
balanced set, and thus provide a higher QTL detection power for QTL
segregating in these large families. Consistent with this, we observed
that QTL more frequently detected in the unbalanced data set did
indeed segregate in the large families (Supplementary Table S3). By
contrast, QTL that were more frequently detected in the balanced data
set did not segregate in the large families, but mainly in the smaller
families. These will be under-represented in the unbalanced data set,
whereas their contribution to the population is increased in the
balanced data set. This effect is likely also responsible for the slight
differences between the balancedFamily and the balancedParents data sets
observed for both traits. Taken together, the QTL detection power in
family mapping can be improved by increasing the allele frequencies,
which is achieved by maximizing the number of informative
individuals, that is, individuals from segregating families. It may thus
be advantageous to compile an unbalanced family mapping popula-
tion if this increases the proportion of families segregating for
candidate QTL. This, however, requires prior knowledge that can be
taken into consideration when QTL mapping experiments are
planned. Without such prior knowledge, the best strategy is to
balance the family mapping population with regard to the parental
allele frequencies.

Influence of marker density
Association mapping in multiple segregating families is based on LD,
and a high marker density is therefore expected to be crucial for the
QTL detection power (Liu et al., 2012). We varied the marker density
from 100% (425 SNPs) to 20% (85 SNPs), which corresponds to an
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average marker density of 2.8 and 14.2 cM, respectively. For both
traits, the number of detected QTL decreased with reduced marker
density, but not as strongly as might have been expected (Table 2).
This may be due to the LD present in this population, which will
allow detection of QTL with strong effect even for lower marker
densities. Regarding pG, we observed a constant increase with marker
density and no plateau was reached even for the highest marker
density available in this study (Figure 5). No effect was observed
between the balanced and the unbalanced sampling of markers.
Marker density is certainly a critical issue for family mapping and
higher marker densities or even sequence data will increase the QTL
detection power. Depending on the LD present in the data set
(Hamblin et al., 2011), however, a few hundred markers will already
be sufficient for the detection of QTL with large or medium effects,
and thus for a satisfactory result in family mapping. The extent of LD
in the mapping population also determines whether linked QTL can
be separated or not. This in turn can affect the bias in QTL estimation
as linkage in coupling can result in overestimation and linkage in
repulsion in underestimation of QTL effects.

CONCLUSIONS

We have used a simulation study and the analysis of experimental
data to assess the optimum allocation of resources in family mapping
studies. Our results highlight the importance of a high heritability
achieved by robust phenotyping of the individuals. The family
mapping population should balance the contribution of parental
alleles, and results can likely be improved by higher marker densities
that will be available in the near future. A promising strategy appears
to be to use cross-validation and RMA to assess the quality of the
obtained mapping results.
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