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SYMPHONY, an information-theoretic method for
gene–gene and gene–environment interaction analysis
of disease syndromes

J Knights1, J Yang2, P Chanda2, A Zhang2 and M Ramanathan1

We develop an information-theoretic method for gene–gene (GGI) and gene–environmental interactions (GEI) analysis of syndromes,
defined as a phenotype vector comprising multiple quantitative traits (QTs). The K-way interaction information (KWII), an
information-theoretic metric, was derived for multivariate normal distributed phenotype vectors. The utility of the method was
challenged with three simulated data sets, the Genetic Association Workshop-15 (GAW15) rheumatoid arthritis data set, a high-
density lipoprotein (HDL) and atherosclerosis data set from a mouse QT locus study, and the 1000 Genomes data. The dependence
of the KWII on effect size, minor allele frequency, linkage disequilibrium, population stratification/admixture, as well as the power
and computational time requirements of the novel method was systematically assessed in simulation studies. In these studies,
phenotype vectors containing two and three constituent multivariate normally distributed QTs were used and the KWII was found to
be effective at detecting GEI associated with the phenotype. High KWII values were observed for variables and variable combinations
associated with the syndrome phenotype compared with uninformative variables not associated with the phenotype. The KWII values
for the phenotype-associated combinations increased monotonically with increasing effect size values. The KWII also exhibited utility
in simulations with non-linear dependence between the constituent QTs. Analysis of the HDL and atherosclerosis data set indicated
that the simultaneous analysis of both phenotypes identified interactions not detected in the analysis of the individual traits. The
information-theoretic approach may be useful for non-parametric analysis of GGI and GEI of complex syndromes.
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INTRODUCTION

A syndrome is the combination of signs and symptoms that are
associated with a morbid process (Dirckx, 2001) and which co-occur
frequently enough to indicate a common underlying disease mechan-
ism; a prototypical example is metabolic syndrome, which is
estimated to affect nearly 25% of the US population, and greatly
increases the risk of cardiovascular disease (Ford et al., 2002). The
constellation of metabolic syndrome symptoms includes fasting
hyperglycemia, high blood pressure, central obesity, increased trigly-
cerides and decreased high-density lipoprotein (HDL) levels. The
causes of metabolic syndrome are not known but aging, genetics,
environmental and lifestyle factors such as physical activity and
diet are considered to be important contributors. Delineating the
gene–gene (GGI) and gene–environmental interactions (GEI) for
syndromes may potentially enable identification of the causative
pathobiological mechanisms.

There are some unique problems and methodological gaps in the
GGI and GEI of syndromes. In particular, syndromes are a distinct
class of clinical conditions that may not be appropriately character-
ized by any one (single) phenotype. Even when the constituent
syndrome-affected phenotypes are individually amenable to genetic
analysis, such an approach may miss loci involved in regulating the
constellation of phenotypes. We hypothesize that an integrated and

unified analysis of the overall syndrome phenotype is preferable
for identifying the master pathophysiological mechanism(s). The
identification of a unifying pathophysiology for syndromes could
lead to better and more targeted treatment strategies as the underlying
causes could be addressed instead of separately treating each
component. Effective analysis methods also need to address issues
arising from linear, and potentially non-linear, dependencies or
relationships between the constituent syndrome-affected phenotypes
for particular genetic and environmental predictor combinations.
Accounting for the confounding effects of dependencies among the
genetic and environmental predictor variables caused by factors such
as pairwise linkage disequilibrium (LD) and correlations among
environmental variables is also a challenge common to GEI and
GGI analysis. In this research, we develop a methodology for
addressing these unique problems associated with the interaction
analysis of syndromes.

Previous reports from our group (Chanda et al., 2008, 2009) have
demonstrated the usefulness of the K-way interaction information
(KWII) and the phenotype-associated information (PAI) for GGI and
GEI analysis of discrete phenotypes and quantitative traits (QTs). This
paper extends our methodology and focuses on the development and
critical assessment of SYMPHONY, a unique information-theoretic
method for GGI and GEI analysis of syndromes.
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MATERIALS AND METHODS
Definitions, terminology and representation
GGI and GEI. The methods in this paper are applicable to both GEI and GGI

analyses and henceforth, we will simply use the term GEI to refer to both. The

term GGI will be used only when environmental variables are not present in a

data set.

Entropy. The entropy (Shannon, 1997), H(X), of a discrete random variable

X is obtained from the probabilities p(X¼ x) of each event, x, in X, using the

formula:

HðXÞ¼ �
X
x

pðX¼ xÞ log pðX¼ xÞ

K-way interaction information. The KWII and PAI were developed in our

earlier publications (Chanda et al., 2007) and are recapitulated here. For the

three-variable case, the KWII is defined in terms of entropies for the individual

variables, H(A), H(B) and H(P) and the joint entropies for the combinations

of the variables, H(A, B), H(A, P), H(B, P) and H(A, B, P):

KWII(A, B, P)¼ �H(A)�H(B)�H(P)þH(A, B)þH(A, P)

þH(B, P)�H(A, B, P)

For the K-variable case on the set v¼ {X1, X2, ..., XK}, the KWII can be

written succinctly as an alternating sum over all possible subsets T of {v, P}

using the difference operator notation of Han (1980):

KWIIðn ; PÞ � �
X

T�fn; Pg
ð� 1Þ fn; Pgj j � Tj jHðTÞ

The number of variables K in a combination is called the order of the

combination; P is the phenotype variable. The KWII quantifies interactions by

representing the information that cannot be obtained without observing all K

variables at the same time (McGill, 1954; Fano, 1961; Jakulin and Bratko, 2004;

Jakulin, 2005). The KWII of a given combination of variables is a parsimo-

nious interaction metric because it does not contain contributions arising from

the KWII of other lower order combinations (subsets) of these variables.

In the bivariate case, the KWII is always non-negative but in the

multivariate case, the KWII can be positive or negative.

Interaction definition. Operationally, we define positive KWII values to

indicate interactions (or net synergy) between the variables and negative

KWII values to indicate net redundancy between variables. A value of zero

indicates the net absence of K-way interactions.

Phenotype-associated information. The PAI is obtained from the total

correlation information (TCI) (Watanabe, 1960), which is the difference

between the entropies of the individual variables H(Xi) and the entropy of

the joint distribution H(X1 X2yXK).

TCIðX1;X2; . . . ;XK Þ¼
XK
i¼ 1

HðXiÞ�HðX1X2; . . . XKÞ

The TCI can be viewed as a general measure of dependency.

The PAI represents the overall dependency among the set of genetic

and environmental variables with the phenotype by removing the interde-

pendencies among the genetic and environmental variables. The inter-

dependencies among variables can be caused by factors such as LD or by

correlated source patterns of pollutant exposures. Accordingly, the PAI is

defined by:

PAIðX1;X2; . . . ;XK ; PÞ¼TCIðX1;X2; . . . ;XK ;PÞ�TCIðX1;X2; . . . ;XKÞ

In the above equation, the genetic and environmental variables (predictors)

are denoted by the X1, X2, y, XK, and the quantitative trait is denoted by P.

In the PAI definition, the TCI(X1, X2,y, XK, P) term represents the overall

dependency between the predictors and the phenotype, whereas the TCI(X1,

X2, y, XK) term represents the interdependencies among the predictors in the

absence of the phenotype.

Our approach utilizes the KWII as the principal measure of the GEI.

However, we employ the PAI to facilitate efficient searching of the

combinatorial space (Chanda et al., 2008, 2009). KWII computations require

the entropies of all subsets and are computationally intensive. PAI calculations

are computationally more tractable because only individual and joint

entropies are needed. The PAI contains useful information regarding the

KWII and also increases monotonically with increased combination size,

which makes it a suitable search metric for hill climbing algorithms (Chanda

et al., 2008, 2009).

Extension to syndrome multiple QT vector phenotypes
We have previously demonstrated that the general expressions for the KWII

and PAI can be used for single QTs and categorical phenotypes (Chanda et al.,

2008, 2009), as well as count/rate data (Knights and Ramanathan, 2012).

However, specific expressions are necessary for the entropy of the multiple QT

(MQT) vector phenotype and the subsequent joint entropies of the MQT

vector phenotype with discrete variables resulting from the genetic variants,

environmental variables and their combinations.

We assume that the MQT vector phenotype, P, is multivariate normally

distributed. The entropy of a multivariate normal distribution containing M

variables, NM(m, S), with mean vector m and covariance matrix S is (Gokhale

et al., 1989):

HðPÞ¼ lnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2peÞM �j j

q
Þ

For GGI and GEI analysis in this report, we are interested in H(X, P), the

entropy of the joint distribution of the MQT vector, P, and a discrete variable

X, representing, for example, genetic variants or environment variables of

interest or their combinations.

HðX;PÞ¼ �
X
x

Z
P

pðX¼ x;PÞ ln pðX¼ x;PÞdP

Therefore:

HðX;PÞ¼ �
X
x

Z
P

pðPjX¼ xÞpðX¼ xÞ lnðpðPjX¼ xÞpðX¼ xÞÞdP

We assume that the MQT vector, P, given X¼ x, is also multivariate

normally distributed NM(mx, Sx). By expanding, simplifying and substitution,

we obtain:

HðX;PÞ¼HðXÞþ
X
x

pðX¼ xÞ lnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2peÞM�x

q
Þ

The H(X) term contains only discrete variables and as a result, this entropy

can be computed using the usual Shannon entropy formula:

HðXÞ¼ �
X
x

pðX¼ xÞ ln pðX¼ xÞ

The p(X¼ x) are the probabilities of the event x (for example, the frequency

of a particular genotype). These equations for the entropy of the MQT

phenotype, the entropy of discrete variable combinations, and the joint

entropy of the combinations composed of the MQT phenotype with discrete

variables enable computation of the KWII and the PAI for GGI and GEI

analysis of the syndrome phenotype.

The SYMPHONY algorithm
We designed the SYMPHONY algorithm to mine GEI interactions involving an

MQT vector based on our previous work on discrete and single QT. The input

of the algorithm is a quadruple (X, P, h, s): X¼ {x1, x2, y, xn} is the set of

genetic and environmental variables, P is the syndrome MQT vector, h is the

number of combinations to be picked up in each iteration and s is the highest

order of interactions to be assessed.

The SYMPHONY algorithm employs the PAI iteratively to search for the set

of candidate combinations for genetic and environmental variables that have

high interactions involving the MQT vector. In the ith (i ’1 to t) iteration, y
combinations which contain i genetic/environmental variables with the top-

ranked PAI values are retained in Xi and are passed to the (iþ 1)th iteration for

the PAI computation of combinations with iþ 1 variables. After t iterations,

we can get the promising combinations {X1, X2, y Xt } which contain up to t
variables. Finally, for the combination c, which is the subset of one of the
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combinations in Xi, calculate KWII(c, P) to measure interaction for combina-

tion (c, P).

The pseudo code for SYMPHONY is shown in Supplementary data.

Methods for the case studies
Case Study 1, two single-nucleotide polymorphism interactions with a bivariate

phenotype. The model used for this prototypical example of GGI is shown in

Figure 1a. The allele frequencies for all bi-allelic single-nucleotide polymorph-

isms (SNPs) were 0.5.

There were two traits P1 and P2 comprising the MQT vector, whose

bivariate normal joint distribution N2(m, S) had mean vector m and covariance

matrix S. The means for the P1 and P2 traits were zero for all genotype

combinations and standard deviations of the P1 and P2 traits were both unity

for all genotype combinations. However, the genotype combinations differed

in the extent to which the P1 and P2 traits were correlated. The Pearson

correlation (R2) value for the correlation between the traits P1 and P2 was 0.5

for all combinations containing the aa genotype at SNP 1, 0.9 for the

{A*, bb} genotype combinations and 0.1 for all {A*, B*} genotype combina-

tions (the asterisk in a genotype combination is a ‘wild card’ that denotes

that any allele is suitable). In the nomenclature of Figure 1a, the covariance

matrices are:

�0 ¼
1 0:5

0:5 1

� �
�1 ¼

1 0:9
0:9 1

� �
�2 ¼

1 0:1
0:1 1

� �

A total of 100 independent simulated data sets, each of sample size

n¼ 2000, were used for power calculations. The Pearson correlation (R2)

value for the correlation between the traits P1 and P2 was 0.5 for all genotype

combinations containing the aa genotype at SNP 1, (0.5þ E) for the {A*, bb}

genotype combinations and (0.5�E) for all {A*, B*} genotype combinations.

In the nomenclature of Figure 1a, the covariance matrices are

�0 ¼
1 0:5

0:5 1

� �
�1 ¼

1 0:5þ E
0:5þ E 1

� �
�2 ¼

1 0:5� E
0:5� E 1

� �

The parameter E was treated as the effect size for this model; the range of E

was 0oEo0.5. The distribution of the KWII for an effect size of zero was

obtained and its 95th percentile value was computed. Power was defined as the

fraction of the simulations whose KWII value exceeded the 95th percentile

value of the KWII distribution for the zero effect size.

Permutation-based KWII P-values were obtained by randomly permuting

the phenotype MQT vectors; 10 000 independent permutations of the

phenotype were conducted for each combination of interest.

Case Study 2, two-SNP interactions with a three-variate phenotype. The model

used for this Case Study is shown in Figure 2a. The allele frequencies for all bi-

allelic SNPs were 0.5.

The MQT vector phenotype P comprising three traits P1, P2 and P3, whose

three-variate, multinormal joint distribution was N3(m, S) and had mean

vector m and covariance matrix S. The means for the P1, P2 and P3 traits were

zero for all genotype combinations, and standard deviations of the P1, P2 and

P3 traits were each unity for all genotype combinations. However, the genotype

combinations differed in the covariance matrices to which the P1, P2 and P3

traits were correlated. In the nomenclature of Figure 2a, the covariance

matrices are

�0 ¼
1 0:5 0:9

0:5 1 0:5
0:9 0:5 1

0
@

1
A�1 ¼

1 0:9 0:5
0:9 1 0:5
0:5 0:5 1

0
@

1
A�2 ¼

1 0:5 0:5
0:5 1 0:9
0:5 0:9 1

0
@

1
A

As in Case Study 1, a total of 100 independent simulated data sets each of

sample size n¼ 2000 were used for power calculations. Power was defined as

the fraction of the simulations whose KWII value exceeded the 95th percentile

value of the KWII distribution for the zero effect size. The P-values were

calculated using the permutation-based approach in Case Study 1.

Case Study 3, bivariate phenotype with non-linear dependencies. The model

used for this Case Study is shown in Figure 3a. The allele frequencies for all bi-

allelic SNPs were 0.5.

The phenotype P comprising two inter-dependent QT, P1 and P2. The

dependence between P1 and P2 was modeled by using a non-linear function

that differed between the genotype combinations as shown in Figure 3a. For

the genotype combinations containing the aa genotype at SNP 1, P2 was

independent of P1 and defined by:

P2¼N1ð0; 1Þ

For the {A*, bb} genotype combination, the relationship between P1 and P2

was

P2¼ P12 þP1þN1ð0; 1Þ

For all {A*, B*} genotype combinations, the relationship between P1 and P2

was

P2¼ � P12 � P1þN1ð0; 1Þ

For analysis, the relationship between P1 and P2 for all subjects was fitted to

a second-order polynomial with linear regression. The linear regression

equations were used to calculate the residuals P2R between P2 and the

regression equation. For KWII calculations, the phenotype P comprising P1

and P2R was assumed to be a bivariate normal distribution.

The effect size E was varied by altering the standard deviation of the normal

random variate as N1(0, 1/E). The P-values were calculated using the

permutation-based approach in Case Study 1.

Analysis of public domain data sets
Hybrid simulations with Genetic Analysis Workshop 15 Genotypes. The data

corresponding to Problem 3 of Genetic Analysis Workshop 15 (GAW15) were

obtained from the GAW site (http://www.gaworkshop.org/) and used with

permission.

These data consist of 100 replicates of simulated data that are modeled after

the rheumatoid arthritis data and were generated by Miller et al. (2007). Each

replicate includes 1500 nuclear families, each with 2 parents and an affected sib

pair, and 2000 unrelated controls.

For evaluating the effectiveness of SYMPHONY on a data set with a larger

number predictors, we used a subset of data from the larger GAW15 Problem 3

containing 9187 SNPs distributed across the genome to mimic a 10-K

SNP chip set. Additionally, sex, age and smoking status were included as

covariates; the age variable was binned into three intervals of equal width.

The analyses were conducted with unphased genotypes. We pooled sequential

pairs of replicates from the GAW15 replicates to generate 50 replicate data

sets containing 4000 subjects. We refer to this data set as the ‘10 K GAW15

Data set.’

The original GAW15 data set was not simulated to include MQT vector

phenotypes. To enable structured evaluation of SYMPHONY, we simulated an

MQT vector phenotype random variable against the background of GAW15

genotypes and covariates. The model used (Figure 4a) contained interactions

among SNP C6-153 from the DR locus (spanning SNPs C6-152-C6-155) on

Chromosome 6 and SNP C16-30 from Locus A (spanning SNPs 30-31 on

Chromosome 16), age and smoking. The other SNPs were uninformative, that

is, they were not associated with the vector phenotype in the simulations. The

covariance matrices for the mixture of bivariate normal distributions arising

from the interactions in Figure 4 were

�0 ¼
1 0:25

0:25 1

� �
�1 ¼

1 0:75
0:75 1

� �

The P-value of the KWII of each combination was obtained using 10 000

independent permutations of the phenotype MQT vector for each combina-

tion assessed. The permutation P-values reported are for the first replicate.

We analyzed all 50 replicates individually to obtain KWII values. The mean

and standard deviations for the KWII of each combination of variables were

calculated from these results.

All the analyses were performed with SYMPHONY input parameters values

of y¼ 50 and t¼ 3.
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The computational speed was assessed in the context of the hybrid GAW15

data set simulations on a 3.2-GHz Intel Xeon computer with Irwindale

Processor with 4 Gb of main memory. We created six data sets containing 30,

100, 300, 1000, 3000 or the entire 9187 SNPs from the 10-K GAW15 data set.

All data sets contained 4000 subjects and the sex, smoking, age, C6-153,

C16-30 variables.

h
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Figure 1 Case Study 1: two-SNP interactions with a bivariate phenotype. (a) The gene–gene interaction model for Case Study 1. The alleles of SNP 1 are A

and a, whereas those of SNP 2 are B and b; the asterisk is a ‘wild card’ indicating either allele. For Case Study 1, the Pearson correlation (R2) values for

the correlation between the traits P1 and P2 was 0.5 for the aa genotype at SNP 1, 0.9 for the {A*, bb} genotypes and 0.1 for all {A*, B*} genotypes; the

means were all zero and the variances were all unity. (b) The relationship between the syndrome P, which is comprised of traits P1 and P2, for various

genotype combinations of SNP 1 and SNP 2; each plot in the panel represents the genotype combination indicated. The data points correspond to a single

subject and the regression lines are shown. (c) The mean KWII values at an effect size of 0.4 for the combinations indicated in the y-axis. The error bars

are standard deviations of the KWII. The P-values from permutation testing are shown for combinations with a P-valuep0.05. (d) The KWII values of the

combinations in (c), but with only phenotype P2 considered. (d) is a plot of KWII vs effect size for the combinations {1, P}, {2, P} and {1, 2, P}, which are

indicated as open circles, filled circles and triangles, respectively.
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Analysis of HDL and Atherosclerosis Data. This data set from mice contains

genotypes, HDL concentrations and size of aortic fatty streak measurements for

294 female F2 intercross progeny (derived from the C57BL/6 (B6) strain, which

is susceptible to atherosclerosis and has low levels of HDL, and the 129 strain,

which is relatively resistant to atherosclerosis and has high HDL levels) that

were fed a high-fat diet for 14 weeks (Ishimori et al., 2004). The mice were

genotyped with 88 simple sequence length polymorphic markers and

subsequently 23 additional simple sequence length polymorphic markers in

the QTL regions were added. The data were obtained from the Center for

Genome Dynamics at the Jackson Laboratory (http://cgd.jax.org/nav/

qtlarchive1.htm).

We analyzed the HDL and atherosclerotic aortic fatty streak lesion size as the

MQT vector phenotype of interest. The atherosclerotic aortic fatty streak lesion

size variable was logarithmically transformed using the function log10(1þ
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Figure 2 Case Study 2: two-SNP interactions with a three-variate phenotype. (a) The interaction model used to generate the data for Case Study 2. The
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Atherosclerotic Aortic Fatty Streak Lesion Size) before analysis; the 1 was added to

accommodate individuals with no atherosclerotic streaks within the same

transformation framework. The vector phenotype was obtained by normalizing

the means and standard deviations of both the HDL and transformed

atherosclerotic aortic fatty streak lesion size variable to zero and 1,

respectively.
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The P-value of the KWII of each combination was obtained using 10 000

independent permutations of the MQT vector phenotype for each combina-

tion assessed.

The results were compared with the findings on the same data set using

regression presented in Tables 1–3 of Ishimori et al. (2004) and to the

information-theoretic findings in Chanda et al. (2009).

Analysis of 1000 genomes data. Data from the 1000 Genomes project was

downloaded from http://www.1000genomes.org/data. PLINK was used to

compute minor allele frequency (MAF) and pairwise LD values.

Minor allele frequency. To investigate the effect of MAF on the KWII, we used

the Southern Han Chinese (CHS) data set. Each autosome was divided into
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five segments of equal length and 20 contiguous SNPs were randomly selected

from each segment. A data set containing 2200 SNPs and 4000 subjects was

created by independently resampling each of the 22 autosomes. The Model in

Case Study 1 was used to assign bivariate vector phenotypes. The informative

SNP 1 in this Case Study was randomly selected from among the SNPs with

MAF of 0.49±0.01. The informative SNP 2 in Case Study 1 was among the

SNPs with MAF of 0.49±0.01, 0.33±0.01, 0.25±0.01 and 0.1±0.01.

Linkage disequilibrium. The dependence of KWII on LD was evaluated using

the same general method for MAF evaluation; however, both informative SNPs

(SNP 1, SNP 2) had MAFs between 0.48 and 0.5 and were randomly selected

from among the SNP pairs in LD within the following ranges of R2: 0–0.3,

0.35–0.4, 0.45–0.5, 0.65–0.8 and 0.85–1.

Admixture/population stratification. To assess the effect of race admixture/

population stratificiation on the KWII, the 1000 Genomes data from the

Southern Han Chinese (CHS), Finnish (FIN) and Toscani (TSI) groups were

filtered to obtain a single data set containing genotypes for all the SNPs that

were shared between the three groups. From each autosome, 100 SNPs were

randomly selected as described for the MAF and LD simulations. The

informative SNP 1 and SNP 2 in Case Study 1 were selected from among

the SNPs with MAFs between 0.48 and 0.5.

The Model in Case Study 1 was used to randomly assign bivariate vector

phenotypes. The covariance matrices for different genotype combinations of

the three groups, however, were different:

Genotype {aa, **} {A*, bb} {A*, B*}

CHS S0 ¼
1 0:5

0:5 1

� �
S1 ¼

1 0:9
0:9 1

� �
S2 ¼

1 0:1
0:1 1

� �

FIN S0 ¼
1 0:1

0:1 1

� �
S1 ¼

1 0:1
0:1 1

� �
S2 ¼

1 0:1
0:1 1

� �

TSI S0 ¼
1 0:9

0:9 1

� �
S1 ¼

1 0:5
0:5 1

� �
S2 ¼

1 0:1
0:1 1

� �

The covariance matrix of the bivariate phenotype for the FIN group was

independent of the genotype. Saliently, the covariance matrices of the CHS and

TSI groups for the {A*, bb} and the {aa, **} genotypes differed.

Data sets containing 4200 subjects were obtained by resampling the shared

genotypes. A race variable was included for each subject based on the group

(CHS, FIN or TSI) from which the resampled genotypes were obtained. To

assess the effects of admixture, the percent of the FIN group in the population

was varied (0, 10, 25, 33, 50 and 80%) and the relative percentages of subjects

from the CHS and TSI groups were kept equal. The effects of admixture were

assessed through the dependence of the KWII on the percentage of the FIN

group in the population.

RESULTS

Analysis of case studies
Case Study 1. To assess the usefulness of our information-theoretic
approach, we used the GGI model in Figure 1a to generate simulated
data. The interaction model was inspired by the genetics of coat color
in Labrador retrievers, which involves interactions between two loci
involved in skin pigmentation. The MQT phenotype vector consisted
of two QTs.

To exclude the possibility that the information-theoretic approach
was detecting interactions by identifying associations between the
individual QT in the phenotype vector, we ensured that there were no
differences in the mean values and standard deviations among the
genotypes on either of the two QTs: the mean values and standard
deviations for both QT were zero and unity for each of the nine
genotypes. The strength of the associations between the QT, however,
was dependent on the genotype. These relationships are summarized
in Figure 1b.

Figure 1c shows the KWII values for each combination. We found
three significant peaks {1, P}, {2, P} and {1, 2, P}. From permutation
analysis, the P-value of the KWII for the {1, P} combination was 0.004

and the P-values for the KWII of the {2, P} and {1, 2, P} combinations
were both o0.0001. The P-values for the KWII of all other
combinations were 40.05. Figure 1d shows the KWII values for the
same data when the quantitative trait P2 was analyzed individually
without considering P1: there were no prominent peaks. The results
for individual analysis of P1 without considering P2 were similar and
are not shown.

Figure 1d shows the dependence of the KWII values of the {1, P},
{2, P} and {1, 2, P} combinations when the effect size (defined as the
difference in the covariance between P1 and P2) between the three
outcomes in Figure 1a was varied. The logarithm of KWII values for
the {1, P}, {2, P} and {1, 2, P} combinations increased monotonically
with increasing effect size.

The power of the KWII for detecting the interactions for the {1, P},
{2, P} and {1, 2, P} combinations was computed at a sample size of
n¼ 2000 subjects and effect sizes of 0.2 and 0.4. At the effect size of
0.2, the power to detect the {1, P}, {2, P} and {1, 2, P} was 32, 100 and
88%, respectively. At the higher effect size of 0.4, the power to detect
the {1, P}, {2, P} and {1, 2, P} combinations was 96, 100 and 100%,
respectively.

The results from this motivating example demonstrate that the
information-theoretic approach is capable of detecting GGI associated
with vector phenotypes representing syndromes. High KWII values
were observed for SNPs involved in interactions compared with
uninformative SNPs, which had low KWII values; the value of the
KWII was also dependent on the effect size.

Case Study 2
Syndromes such as metabolic syndrome can contain more than two
QTs. We therefore evaluated the ability of our method to identify
interacting SNPs in a simulation framework similar to Case Study 1
but with an MQT phenotype comprising three QT. Figure 2a shows
model used to generate the simulated data.

Figure 2b is a panel of three-dimensional scatter plots summarizing
the generated data and shows that the mean values and standard
deviations for the QT were identical for all the genotype combinations
of SNP 1 and SNP 2. The KWII method therefore relies on the
dependencies among the constituent phenotypes in the syndrome
MQT vector to detect the underlying GGI.

Figure 2c shows the KWII values, their confidence intervals and
P-values for various combinations in the model. As would be
expected from the simulation model, the KWII values for the
informative combinations {1, P}, {2, P} and {1, 2, P} had the highest
peaks (all P-values p0.001). Figure 2d shows the dependence of the
KWII values for the {1, P}, {2, P} and {1, 2, P} combinations when the
effect size was varied. As for Case Study 1, the logarithm of KWII
values for the {1, P}, {2, P} and {1, 2, P} combinations increased
monotonically with increasing effect size.

The power of the KWII for detecting the interactions in the {1, P},
{2, P} and {1, 2, P} combinations was computed at a sample size of
n¼ 2000 subjects and effect sizes of 0.2 and 0.4. For both effect sizes,
the power to detect the {1, P} and {2, P} combinations was 100%. The
power to detect the {1, 2, P} combination was 100% at the effect size
of 0.4 and 62% at the effect size of 0.2.

Thus, the KWII method is capable of detecting complex depen-
dencies in three-variate phenotypes in the absence of main effects on
the constituent QTs.

Case Study 3. A complexity with syndrome MQT vector data that
is not present in discrete phenotypes or in the analysis of a single QT
is the possibility of a non-linear inter-dependence between the
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constituent traits. We developed the strategy, described in Materials
and methods, for identifying interactions in the presence of non-
linearity by employing the residuals from regression.

Figure 3a summarizes the model. The non-linear dependence of the
constituent QT for the various genotype combinations of SNP 1 and
SNP 2 is highlighted in Figure 3b. Figure 3c shows that the KWII
correctly identifies the main effects of SNP 1, SNP 2 and the
interaction between SNP 1 and SNP 2 with the syndrome MQT
vector phenotype. The variation of KWII with changes in effect size is
summarized in Figure 3d. These results demonstrate that the
proposed approach can be used even when non-linear dependence
between the constituent phenotypes is present.

Performance on the hybrid 10K GAW15 data set
The goal was to demonstrate the utility of our method on a larger
data set with numerous genetic markers and environmental variables.
We used the hybrid simulation approach so that the ground truth
required for critical assessment of the method was known. The
predictors from the GAW15 simulations conducted by Miller et al.
(2007) were retained and the vector phenotypes were randomly
assigned based on the model in Figure 4a.

Figure 4b summarizes the average KWII values, standard deviations
and permutation-based P-values for the top five one- and two-
predictor containing combinations with the highest mean KWII
values in the GAW15 data set. The top-ranked one-predictor contain-
ing combinations were {Age, P}, {Smoking, P}, {C16-30, P}, {C6-153,
P} and {C4-330, P}. Four of the top-five combinations were present in
the model (Figure 4a); the {C4-330, P} was not present in the model
but had a non-significant P-value of 0.11. The two-predictor contain-
ing combinations with the highest mean KWII were {Age, C6-153, P},
{Age, Smoking, P}, {Age, C6-154, P}, {Age, C16-30, P} and {Smoking,
C16-30, P}. The C6-154 SNP in the {Age, C6-154, P} combination is
part of the same locus (HLA DR locus) that contains the C6-153 SNP
present in the model and is in LD with it.

Computational speed
To evaluate the computational speed, we utilized the GAW15 data set
as a test bed. We generated subsets of the GAW15 data set containing
either 1000 or 4000 subjects, and 30, 100, 300, 3000 or all 9192
predictors in the modified GAW15 data set. The runtime require-
ments for obtaining the KWII values of all one- and two-predictor
combinations are summarized in Table 1. The results indicate that the
analysis of the GAW15 data set for 4000 subjects and 9192 predictors
required B11 h.

The SYMPHONY search algorithm is computationally much
more efficient than an exhaustive search, which requires computation
of all possible combinations and requires exponential time. Let m be
the sample size of the data, n be the number of variables
(excluding phenotype vector), t be the number of iterations and
y be the number of combinations retained in each iteration of
computing the PAI: using order notation from complexity
theory, the running time of SYMPHONY can be estimated as
O(t n y m2þ t y 2t m2).

Comparison with other methods: analysis of HDL-atherosclerosis
data
The HDL-atherosclerosis data set was used to evaluate the results
from SYMPHONY because this data set has been previously analyzed
by two other methods for single QT.

Ishimori et al. (2004) used multiple regression analysis to identify
main effects and interactions associated with HDL and atherosclerosis

individually. They found that mouse HDL concentrations were
affected by six loci: two loci were located on chromosome 1 (Hdlq14
and Hdlq15) and one locus each on chromosomes 8, 9 and 12; there
was also an interaction found between a locus on chromosome 2 with
the Hdlq15 chromosome 1 locus. The five loci (and their combina-
tions) associated with atherosclerosis susceptibility in mice were
(1) Ath17 on chromosome 10, (2) Ath18 on chromosome 12, an
interaction between Ath18 and (3) Ath19 on chromosome 11, and an
interaction between (4) Ath20 on chromosome 10 and (5) Ath21 on
chromosome 12 (Ishimori et al., 2004). The same HDL and
atherosclerosis phenotypes were also analyzed by Chanda et al.
(2009) using the CHORUS information-theoretic algorithm.

Table 2 summarizes the KWII and permutation-based P-values
for the 12 one-marker and 10 two-marker combinations with the
highest KWII values for the HDL-Atherosclerosis phenotype vector.
Table 2 also compares the findings from SYMPHONY to the
analyses of the individual HDL and Atherosclerosis phenotypes
with multiple regression and CHORUS. Among the single marker
associations identified by SYMPHONY, D10Mit28 was found
to be associated with both HDL and Atherosclerosis phenotypes
individually by CHORUS. The D10Mit213 marker was found
to be associated with Atherosclerosis by both CHORUS and
regression, whereas D1Mit159 was found to be associated with
HDL by both CHORUS and regression. None of the other nine
markers identified by SYMPHONY overlapped with CHORUS or
regression.

There were five two-marker pairs that contained D3Mit320 and two
pairs that contained D3Mit320. Interestingly, the D3Mit320 had been
identified as being associated with Atherosclerosis by CHORUS and
four of the remaining markers (D12Mit54, D12Mit172, D12Mit84 and
D12Mit243) were associated with HDL levels. This suggests that
interactions between loci on mouse chromosomes 3 and 12 are
involved in the HDL-atherosclerosis correlations. Four markers on
chromosome 12 (D12Mit170, D12Mit243, D12Mit84, and D12Mit91)
were also involved in interactions with the DXMit159 marker on the
X-chromosome.

Overall, these comparisons suggest that the findings from SYMPH-
ONY overlap to a greater extent with CHORUS, which is to be
expected given that they share the same information-theoretic
framework. These findings further demonstrate that the vector
phenotype approach in SYMPHONY complements the results from
analysis of single traits in important ways. Some of the results from
SYMPHONY overlap partially with regression and CHORUS methods
but importantly, SYMPHONY provides novel results that can direct
further investigation.

Table 1 Run time assessments of SYMPHONY

Number of predictors

Number of subjects

1000 4000

Time (min) Time (min)

30 0.1 0.5

100 1.5 6.1

300 5.0 20.1

1000 17.0 65.2

3000 49.7 216.6

9190 143.7 655.9
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Performance on the hybrid 1000 genomes data set
The goal of these simulations was to demonstrate the utility of
SYMPHONY for analysis of genetic data from a genome-wide study
and to assess the dependence of the KWII on LD, MAF and
admixture. The SNP genotypes from the 1000 Genomes data were
used and the vector phenotypes were simulated based on the model
described for Case Study 1.

Minor allele frequency. Figure 5a shows the dependence of the KWII
on the MAF of SNP 2 with the MAF of SNP 1 kept constant at 0.5.
The KWII values of the first-order {2, P} combination and the
second-order {1, 2, P} combination increase monotonically with
increasing SNP 2 MAF.

Linkage disequilibrium. Figure 5b summarizes the effect of LD (as
measured by R2) between SNP 1 and SNP 2 on the KWII. The KWII
for the {1, P} and {2, P} first-order combinations converge at the
highest LD value because the genotypes become highly correlated
with each other. The KWII value of the second-order combination
{1, 2, P} decreases monotonically with increasing LD and becomes
negative, indicating that information present in this combination is
rendered redundant as a result of increased LD.

Population stratification/admixture. Figure 5c shows the effects of
population stratification/admixture, which was assessed by increasing
the percentage of the sample from the FIN group in the population.
The KWII patterns for the {1, P} and {2, P} combinations were

similar (data for {2, P} not shown) and decreased monotonically
as the percentage of the FIN group increased. This is a consequence
of the absence of SNP 1 and SNP 2 effects in the FIN group. The
{Race, P} combination reached a maximal value at a FIN group
percentage of 33% when the relative proportions of all three groups—
CHS, TSI and FIN—were equal. In the admixture simulation, we
found high KWII values for the second-order {Race, 1, P} and {Race,
2, P} combinations. At FIN group, percentages 433% the KWII
values decreased because of the absence of SNP 1 and SNP 2 effects in
this group.

DISCUSSION

In this report, we have presented results for a novel information-
theoretic GGI and GEI analysis method for disease syndromes. The
salient contributions of the paper include the development of an
MQT vector framework for describing the phenotype of the syn-
drome and the demonstration that the versatile and general frame-
work previously developed in AMBIENCE and CHORUS for the
genetic analysis of discrete and QTs can be deployed for vector traits.

Our approach is based on the assumption that the MQT vector
phenotype is adequately modeled by the multivariate normal dis-
tribution. Several statistical tests for assessing whether or not a given
data set follows a multivariate normal distribution are available (Cox
and Small, 1978; Friedman and Rafsky, 1979; Smith and Jain, 1988;
Henze, 2002). In addition to its statistical underpinnings in the
Central Limit theorem, the normal distribution N(m, s) has

Table 2 Comparison of the one- and two-marker results from SYMPHONY for the HDL-Atherosclerosis vector phenotype.

Marker KWII KWII

P-value

Regression CHORUS

D13Mit16 5.28 0.0004

D11Mit285 5.21 0.0001

D10Mit28 5.13 0.0008 H, A

D10Mit86 5.04 0.0008

D12Mit7 5.04 0.0009 A

D4Mit308 5.02 0.0008

D10Mit213 4.93 0.0016 A A

D1Mit65 4.92 0.0016

D4Mit17 4.91 0.0012

D4Mit196 4.88 0.0015

D1Mit107 4.88 0.0017

D1Mit159 4.87 0.0008 H H

Marker pair KWII KWII P-value Regression CHORUS

Marker 1 Marker 2 Marker 1 Marker 2 Marker 1 Marker 2

D3Mit320 D12Mit54 3.78 o0.0001 A H

D3Mit320 D12Mit172 3.68 o0.0001 H A H, A

D3Mit320 D12Mit84 3.44 o0.0001 A H, A

D3Mit320 D12Mit243 3.39 o0.0001 A A H

D3Mit320 D4Mit227 3.25 0.0001 A

D3Mit318 D15Mit107 3.04 0.0001 A

D3Mit318 D15Mit243 2.94 o0.0001 A

D12Mit170 DXMit159 2.90 0.0036 H

D12Mit243 DXMit159 2.85 0.0008 A H

D12Mit84 DXMit159 2.83 0.0045 H, A

D12Mit91 DXMit159 2.80 0.0002 H, A

Abbreviations: HDL, high-density lipoprotein; KWII, K-way interaction information.
The results from the analyses of the HDL and Atherosclerosis phenotypes using multiple regression (Ishimori et al., 2004) and the information-theoretic CHORUS algorithm (Chanda et al., 2009)
are shown. The markers associated with HDL and Atherosclerosis are denoted by H and A, respectively. Those associated with both HDL and Atherosclerosis are denoted by H, A.
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maximum entropy among all real-valued distributions with specified
mean m and standard deviation s (Srivastava and Gupta, 2008). The
findings from the univariate normal distribution also generalize to
the multivariate normal distribution N(m, S), which has maximum

entropy among all real-valued distributions with specific mean vector
m and covariance matrix S. Therefore, a multivariate normal
distribution is reasonable if only the mean and covariance matrix of
MQT vector phenotype are known. A question that is outside the
scope of the current research is the nature and number of the
dimensions that should comprise the syndrome vector. The choice of
the dimensions should be based on clinical and biometric character-
istics that provide sensitivity and specificity for diagnosing and
measuring the progression of the syndrome pathology objectively in
the clinical or study setting. However, there may be a lack of
agreement on whether a particular syndrome is a distinct clinical
entity; in such situations, there may not be clinical consensus on the
best ways diagnose and measure it.

We have provided results that demonstrate proof of concept that
(with modifications) the KWII method may be generalizable to
certain situations wherein there are non-linear relationships
between the QT constituents comprising the vector phenotype.
However, the method relies on regression. More research is
necessary to define the range and applicability of the approach and
its power to detect the potentially diverse range of non-linearities that
could occur.

A range of GEI analysis methods based on the multi-factor
dimensionality reduction (MDR) method are available for identifying
and analyzing GEI (Ritchie et al., 2001; Hahn et al., 2003; Moore
et al., 2006). MDR reduces the dimensionality of the multi-locus
genotype systematically by pooling into high and low risk groups
(Ritchie et al., 2001; Hahn et al., 2003; Ritchie et al., 2003; Bush et al.,
2006; Moore et al., 2006). The combinatorial partitioning method and
the restricted partition method (Culverhouse et al., 2004) share
similarities to MDR, but identify multilocus genotypes capable of
predicting QT levels (Nelson et al., 2001). The generalized MDR
method employs the generalized linear model framework for scoring
in conjunction with MDR for dimensionality reduction. Generalized
MDR enables covariate corrections and handles both discrete
phenotypes and continuous traits in population-based study designs.
The Pedigree Disequilibrium Test (Martin et al., 2000) approach has
been used to extend MDR, which was initially limited in its capacity
to include potentially informative family data beyond single matched
pairs in each family, to family-based study designs (Martin et al.,
2006). MDR and its variants including generalized MDR are not
capable of GEI analysis of syndromes.

Some machine learning methods including random forests and
decision trees employ information gain metrics as an aid to decision
making. Random forest methodologies are now being applied to
GWAS studies (Kim et al., 2009; Meng et al., 2009; Wu, 2011);
however, the design and role of the information-theory metrics are
different from that in SYMPHONY. Additionally, random forest and
decision tree algorithms have generally been limited to discrete
phenotypes. The Markov blanket method has been used to analyze
interactions at the genome-wide level with case–control study designs
(Han et al., 2010). The extensions of these methods for analyzing
vector phenotypes have not yet been evaluated systematically.

The KWII and PAI metrics that provide the underpinning of
SYMPHONY are robust to LD. The second term on the right-hand
side of the PAI definition contains the inter-dependence among the
genetic (for example, pairwise LD) and environmental variables (for
example, common source of multiple pollutants). Unlike traditional
LD measures, which are pairwise in character (and typically
are computed for contiguous SNPs), the PAI and KWII can assess
the joint dependence between variables generalized to multiple,
non-adjacent SNPs. We have extensively investigated the robustness

Figure 5 Results for hybrid simulations with the 1000 genomes set: Case

Study 1 was used to simulate the vector phenotype. (a) The dependence of

the KWII of the informative {1, P}, {2, P} and {1, 2, P} SNP combinations

on the minor allele frequency (MAF) of SNP 2. (b) Dependence of the KWII

on the linkage disequilibrium as assessed by R2 value. (c) Dependence of

the KWII on admixture as assessed by varying the percentage of the FIN

group in the population while keeping the percentages of the CHS and TSI

groups equal. The Race variable corresponds to the label indicating group

membership (CHS, TSI or FIN). The KWII for the {S2, P} combination was

similar to that for the {S1, P} combination and is not shown. The error bars

in each plot are standard errors from five independent simulations.
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of the PAI over a range of LD values for discrete and QTs (Chanda
et al., 2008, 2009). The robustness of the PAI to LD does not
compromise its ability to identify informative interactions.

In previous work, we have shown that the KWII is also effective at
identifying two-locus interaction models that do not contain main
effects (Chanda et al., 2009; Sucheston et al., 2010). Because
SYMPHONY utilizes a marginal effect search strategy based on the
PAI, its power is compromised when main effects are completely
absent. However, interactions that lack main effects entirely are
relatively rare in real data because of the stringent symmetry required
to enforce absence of main effects (Chanda et al., 2008). Interactions
in real data generally contain traces of main effects that can be
leveraged by the SYMPHONY search. SYMPHONY can also easily be
modified so that the entire space of second-order combinations is
searched to identify interactions which could overcome the loss of
power (Chanda et al., 2008).

In this report, we have focused on syndromes comprising multi-
variate normally distributed QT. However, many clinical syndrome
vector phenotypes may comprise discrete or continuous non-normal
variables. For example, subjects with autism may be described by the
severity of the social and communication symptoms, the severity of
fixated behaviors as well as associated features such as presence of
genetic risk factors, epilepsy and intellectual disability. The framework
developed in the paper can potentially be extended to syndrome
phenotype vectors containing discrete and multivariate normally
distributed variables in a straightforward manner since the phenotype
can be represented as a mixture of multinormal distributions. Data
transformations such as the logarithm and the cube root, which are
well-established approaches to obtain normal distributions from non-
normal data, could also be useful if an individual QT is not normally
distributed. However, there are numerous challenges related to
computations of the entropy expression for more complex multi-
variate distributions.

In conclusion, our results suggest that the availability of versatile
methods based on information-theoretic metrics could enhance the
GGI and GEI analysis for complex disease phenotypes.
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