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I would like to thank the authors of Mueller et al. (2011) for their
valuable contribution to the area of genome-wide association map-
ping. In their paper, they present a strategy for controlling the type 1
error rate (probability of making a false positive) when multiple
correlated hypothesis tests are being performed. This issue lies at the
heart of all genome-wide analyses.
Association mapping techniques for the analysis of data collected

from highly structured populations are best cast within a linear mixed
model framework (Yu et al., 2006; Zhao et al., 2007). Here, a separate
linear mixed model is constructed for each marker locus where the
marker locus is treated as a fixed effect. Maximum likelihood or
residual maximum likelihood estimates are then obtained. From these
estimates, a hypothesis test is performed to access the significance of
the marker effect in the model. A test statistic is calculated and its
significance is a measure of the strength of association between
the marker locus and quantitative trait. However, this process does
not take into account that in genome-wide studies, a large number of
hypothesis tests are being performed. Without adjustment, the type 1
error rate is inflated.
Mueller et al. (2011) present a resampling approach for this

problem. It is based on the Wald statistic. Briefly, the Wald statistic
Wj

� �
for testing the significance of a fixed marker effect can be

expressed as a quadratic form Wj ¼ ô0
jM

� 1
jj ôj where ôj ¼ Ljt̂j and

Mjj¼ LjðX0
jH

� 1
jj XjÞ� 1L0j. Here, Lj is a matrix of zeroes and ones such

that H0 : Ljtj ¼ 0, t̂j is a vector of fixed marker effects estimates, Xj is
a design matrix for the fixed effects in the linear mixed model and
contains the marker genotypes for the jth locus and Hjj is a submatrix
of the variance matrix H. H is calculated from the variance
component estimates obtained from fitting the linear mixed model
to the phenotypic data, assuming there is no association between any
of the marker loci and trait. The authors show that the joint
distribution of ô1; ô2; . . . ; ômð Þ, under the joint null hypothesis
of no marker–trait associations, is a multivariate normal distribution
with vector mean zero and variance matrix with elements
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jj XjÞ� 1L0j where

Mij is the covariance between ôi and ôj. Vector samples are drawn

randomly from this multivariate normal and used to calculate,
empirically, a genome-wide threshold.
Despite the relative simplicity of their resampling approach, I did

encounter practical issues when implementing it for the analysis of
real data that were obtained from an association study in wheat
(unpublished). In the study, phenotypic and genotypic data were
collected on 186 different cultivars yielding 1890 data records. The
genotypic data consist of genotypes recorded from 2100 single-
nucleotide polymorphisms (SNPs). These SNPS had been mapped
in a previous study (Huang et al., 2012). As Mij is calculated for

all unique pairings of the marker loci, this meant
2100�2101/2¼ 2 206 050 Mij calculations are required to form the
variance matrix. Also, on a locus by locus basis, Mueller removes
plants whose marker genotypes are missing from the analysis. This
results in the dimension of Hii; Hij; Hjj;Xi;Xj varying across a
genome with the amount and pattern of missing marker data. To
form the variance matrix for the joint distribution of ôj, a large
number of matrix inversions are required. This is a significant
computational overhead to Mueller’s resampling approach.
Yet, with a few simple changes, I found their approach to be an

effective and efficient way of controlling the type 1 error rate in my
genome-wide study. First, instead of calculating Mij across the entire
genome, I calculated Mij within linkage groups. The joint distribution
of oj becomes the product of L lower dimensioned multivariate
distributions where L is the number of linkage groups.
Here, I am assuming unlinked loci are not correlated strongly

which I have found to be true generally. For the wheat study that has
21 linkage groups, this reduced the number of covariance calculations
from 2206 050 to 156 538. For those situations where a marker map is
not available, loci could be grouped, based on their linkage
disequilibrium, with clustering techniques such as partitioning about
medoids.

Figure 1 A comparison of three different approaches for performing

genome-wide association mapping and adjusting for multiple testing. Circles
(triangles) denote the –log adjusted P-values from a single-stage analysis

with raw P-values adjusted with Mueller’s resampling approach verse the

–log adjusted P-values from a single-stage analysis (weighted two-stage

analysis) with raw P-values adjusted with my modified resampling approach.

Symbols on the diagonal mean the two approaches are giving equivalent

adjusted P-values. This figure shows that the three approaches give similar

results despite there being orders of magnitude differences in computing

times.
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Second, much of the computational burden in implementing
Mueller’s resampling approach stems from removing data on plants
with missing marker genotypes. I avoid this by replacing missing
genotypes with suitable values. Since in our study, data are recorded
on SNPs on inbreds, marker loci are treated as covariates in the linear
mixed models. The marker data for a locus are normalized
and missing genotypes replaced with zeroes. If the marker locus
was multi-allelic, then it would be treated as a categorical variable in
the model. A new factor level is assigned to the missing genotypes.
For our analyses, the covariance calculation simplified to

Mij¼ L X0
iH

� 1Xi
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only be calculated once and reused for all Mij and X0
iH

� 1Xi

� �� 1
is

calculated for i¼ 1; 2; . . . ;m. With these changes, the computing
time is reduced from 133 days to 36h. I was also able to make further
computational savings by performing the linear mixed model analyses
as a weighted two-stage approach (Smith et al., 2001). Here, the
analysis was completed in 76min. This significant drop in computing
time is due to the simple form of the second-stage model that allows
rapid calculation of the Mij.

Note that it is not the absolute times that are of importance here
but the relative times. The absolute times are based on prototype code
written in the R language. Calculations are distributed across 10
computer processors via functionality contained in the R package
snow (Rossini et al., 2007). Significant reductions in the absolute
computing times should be able to be achieved with better optimized
code. However, the relative times will change little.
To examine the impact of the above described changes, I selected,

randomly, 400 SNPs. This subsetting of the available marker data was
done for computational expediency. The strength of association,
adjusted for multiple testing, for these SNPs were then assessed with:
(1) Single-stage analyses with the raw P-values adjusted for multiple
testing with Mueller’s resampling approach, (2) Single-stage analyses
with the raw P-values adjusted for multiple testing with my modified
resampling approach and (3) weighted two-stage analyses with the

raw P-values adjusted with my modified resampling approach.
As Figure 1 shows, I found very little difference in the results for
the three approaches.
Muller’s resampling approach is a simple and statistically sound

procedure for controlling, empirically, the type 1 error rate in
genome-wide studies. With the changes suggested above to improve
its implementation, it should become the approach of choice.
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