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Bayesian shrinkage analysis of QTLs under
shape-adaptive shrinkage priors, and accurate
re-estimation of genetic effects
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The successful implementation of Bayesian shrinkage
analysis of high-dimensional regression models, as often
encountered in quantitative trait locus (QTL) mapping, is
contingent upon the choice of suitable sparsity-inducing
priors. In practice, the shape (that is, the rate of tail decay) of
such priors is typically preset, with no regard for the range of
plausible alternatives and the fact that the most appropriate
shape may depend on the data at hand. This study is
presumably the first attempt to tackle this oversight through
the shape-adaptive shrinkage prior (SASP) approach, with
a focus on the mapping of QTLs in experimental crosses.
Simulation results showed that the separation between
genuine QTL effects and spurious ones can be made clearer

using the SASP-based approach as compared with existing
competitors. This feature makes our new method a promis-
ing approach to QTL mapping, where good separation is the
ultimate goal. We also discuss a re-estimation procedure
intended to improve the accuracy of the estimated genetic
effects of detected QTLs with regard to shrinkage-induced
bias, which may be particularly important in large-scale models
with collinear predictors. The re-estimation procedure is relevant
to any shrinkage method, and is potentially valuable for many
scientific disciplines such as bioinformatics and quantitative
genetics, where oversaturated models are booming.
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Introduction

The mapping of multiple quantitative trait loci (QTLs) is
typically framed as a regression problem, where the
phenotypic trait values, y ¼ ðy1; y2; . . . ; ynÞT , of n geno-
typed individuals are regressed on their genotypes at p
candidate maker loci (for example, Haley and Knott,
1992; Sen and Churchill, 2001). More specifically, the
mapping model has the form

yi ¼ aþ
Xp
j¼1

xij bj þ ei; ð1Þ

where a is the intercept, xij is the genotype code of
individual i at locus j (j¼ 1,y, p), bj is the genetic effect of
locus j and ei (i¼ 1,y, n) are independent and identically
distributed (i.i.d.) residual errors assumed to be Gaus-
sian with mean 0 and variance s0

2. Here, attention is
restricted to controlled crosses such as backcross or
double-haploid progeny with only two possible geno-
types at any locus, and xij is coded as 0 for one genotype
and 1 for the other. In matrix notation, (1) becomes

y ¼ a1n þ Xbþ e; ð2Þ

where 1n is an n-vector of ones, b¼ (b1,y, bp)T,
e¼ (e1,y, en)T and X is the n� p design matrix compris-
ing the genotype profiles of the p loci.

When marker effects are assumed to be strictly
additive (that is, no dominance effect involved) as in
(1), the phenotypic variance sy2 may be partitioned into
the genetic variance (VG) and the residual variance (s0

2).
The expression of the genetic variance of a QTL depends
on the assumed genotype coding. For example, the
genetic variance for a biallelic QTL in an F2 population
under the genotype coding AA¼ 1, AB¼ 0 and BB¼�1
is given by VG ¼ 2 â2p q, where â is the estimated genetic
effect of the QTL of interest, whereas p and q are the
allele frequencies, with q¼ (1�p). When p¼ q¼ 0.5, the
genetic variance of a QTL is VG ¼ 0:5 â2 . In a double-
haploid or a backcross population, VG ¼ 4 â2p qunder the
genotype coding 1/�1 for the two possible genotypes,
and VG ¼ â2p q under the genotype coding 1/0 which is
used here, with p and q¼ 1�p denoting the frequencies of
the two possible genotypes (for example, AA/BB in
double haploids, and AA/AB in backcross) at the focal
locus. Hence, VG ¼ 0:25 â2 in a double-haploid or a
backcross population under the genotype coding 1/0
when p¼ q¼ 0.5 (for example, Xu, 2003a). For more
details on the derivation of the genetic variance with
regard to the assumed genotype coding, see Supplemen-
tary Appendix A. If ŝ2

y denotes the empirical phenotypic
variance estimated from the data, then the extent to
which phenotypes are determined by the particular QTL
transmitted from the parents is measured by the ratio
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VG=ŝ2
y , known as QTL-heritability in the narrow sense,

or simply QTL-heritability (Falconer and Mackay, 1996,
pp. 123–127).

The QTL-heritability concept takes into account the
allele frequencies at QTLs, and is more relevant in
outbred populations. However, it provides a practical
means of individually evaluating the importance of
QTLs even in experimental crosses where allele frequen-
cies are determined by the crossing design, and will be
used here for this purpose.

QTL mapping models based on dense sets of mole-
cular markers are typically saturated, implying that
the number of candidate loci exceeds the sample size
(the number of genotyped individuals). On the other
hand, strong correlations among dense marker geno-
types induce multi-collinearity issues (Xu, 2003b). Using
saturated models and/or models involving collinear
predictors, traditional estimation methods such as maxi-
mum likelihood estimation are prone to over-fitting.

It is, however, widely recognized that the genetic bases
of quantitative traits are typically sparse, in the sense
that most of the candidate loci have a weak or no effect
on the phenotype (for example, Xu, 2003b; O’Hara and
Sillanpää, 2009). Therefore, enforcing model sparsity has
emerged as a legitimate means to avoid over-fitting,
while improving the model’s interpretability and enhan-
cing its predictive performance in gene mapping studies.
Several methods have been proposed for sparse model
representation under both the classical (frequentist) and
Bayesian approaches. These can be classified roughly
into two categories, namely, variable selection and
regularization or shrinkage methods.

Variable selection methods entail the idea of excluding
the presumably redundant predictors from the model.
Classical forward selection, backward elimination and
stepwise selection techniques (Broman, 2001; Broman
and Speed, 2002), as well as Bayesian spike-and-slab
approaches such as stochastic search variable selection
(George and McCulloch, 1993; Yi et al., 2003; Mutshinda
et al., 2009, 2011) or Bayes B (Meuwissen et al., 2001),
fit into this category.

Regularization or shrinkage methods, on the other
hand, attempt to estimate all regression coefficients
simultaneously, but involve a mechanism for automati-
cally shrinking the effects of redundant predictors
(spurious effects) towards 0.

Classical shrinkage methods such as ridge regression
(Hoerl and Kennard, 1970; Whittaker et al., 2000) and the
absolute shrinkage selection operator (LASSO; Tibshir-
ani, 1996) are essentially penalized maximum likelihood
techniques. There, model sparsity is achieved by impos-
ing on the negative log-likelihood (the cost function to be
minimized) a penalty function intended to promote smaller
parameters values. Different shrinkage methods are deter-
mined by the form of the penalty function. For example,
ridge regression and LASSO penalize the L2 and L1 norms
of the regression coefficient vector, respectively.

In Bayesian shrinkage analysis (for example, Xu,
2003b; Yi and Xu, 2008; Mutshinda and Sillanpää, 2010;
Sun et al., 2010), model sparsity is achieved through the
use of the so-called sparsity-inducing priors. These are
typically defined to be centred on 0, with no thinner than
Gaussian tails. More importantly, when each regression
coefficient (marker effect) is assigned its own variance
parameter, adaptive shrinkage is allowed to take place

through differences in the magnitudes of these idiosyn-
cratic variances. The idea is to give larger penalties
(corresponding to smaller variances) to unimportant
variables to heavily shrink their associated coefficients,
and vice versa (for example, Figueiredo, 2003; Xu, 2003b).
This feature allows Bayesian shrinkage models to handle
a number of predictors many times larger than the
sample size (Xu, 2003b; Hoti and Sillanpää, 2006; Zhang
et al., 2008).

It has been well-recognized as a major problem in
Bayesian shrinkage analysis of large-scale associations
that the prior setting for marker effects (both the tail-
decay rate and the parameter setting) much affects the
effectiveness of QTL mapping and the prediction of
genomic breeding values (for example, Gianola et al.,
2009). For example, a centred normal prior leaves the
regression coefficients (marker effects) non-zero. By
contrast, a centred Laplacian or double exponential prior
can shrink some of the spurious effects to 0, owing to its
sharp peak at the mode, while allowing the effect sizes of
important predictors to take values much larger than 0 as
a result of its heavy-tailedness. These two attributes allow
the Bayesian shrinkage model under a Laplacian prior to
combine parameter shrinkage with variable selection. This
explains the increasing interest in the LASSO-type penalties.

In practice, the shape of shrinkage priors is routinely
preset to be, for instance, of the Gaussian, Laplacian or
Student-t forms, with no regard for the range of plausible
alternatives, and the fact that the most suitable shape
may depend on the data at hand.

In this paper we introduce the shape-adaptive shrink-
age prior (SASP) approach to address this issue, focusing
on QTL mapping in experimental crosses. The under-
lying principle of the SASP approach is to impose on
each regression parameter a hierarchical prior involving
a generalized Gaussian (GG) distribution at the lowest
level. The shape parameter of the GG is set as a free
parameter to be estimated alongside the other model
parameters to suitably adjust the tail decay of the priors
for the data set at hand.

Materials and methods

Before delving into details regarding the prior specifica-
tion and model fitting issues, it may be instructive to
reconsider the GG distribution.

The GG distribution
The probability density function of a random variable X
having a GG distribution is given by

GGðx; m; v; dÞ ¼ v

2 dGð1=nÞ

� exp �j ðx� mÞ
d

jv
� �

ð1oxo1Þ
ð3Þ

(Niehsen, 1999; Mitra and Sicuranza, 2001), where mAR
is a location parameter representing the mean of the
distribution and v40 is the shape parameter, which
determines the rate of tail decay. For 0ovo2, the tails
decay more slowly than those of the normal distribu-
tion, resulting in heavier-tailed distributions. d40 is the
scale parameter relating to the variance of X through
Var ðXÞ ¼ ðGð3=nÞ=Gð1=nÞÞd2 , and G(.) denotes Euler’s
Gamma function: GðzÞ ¼

R1
0 tz�1e�tdt, z40.
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The GG family encompasses a continuum of distribu-
tional shapes, with the Laplacian, the Gaussian and the
uniform distributions arising as particular cases when
v¼ 1, v¼ 2 and v-N, respectively. Henceforth, GG (v, d)
denotes the probability density function of a GG
distribution centred on 0, with shape parameter v and
scale parameter d.

Hierarchical Bayesian specification of the model
We adopt a hierarchical Bayesian modelling approach
(Gelman et al., 2003). Hierarchical modelling is a
conceptual and philosophical approach to model con-
struction, with proven practical advantages regardless of
whether one is adopting a Bayesian approach or not (for
example, Royle and Dorazio, 2008). Under the Bayesian
framework, all unknown quantities are assigned prior
distributions. The joint prior of the model parameters is
combined, through Bayes formula, with the likelihood
to produce the posterior distribution, that is, the condi-
tional distribution of the parameters given the data.
Bayesian inferences are made in terms of probability
statements about the unknown parameters or yet
unobserved data (prediction), with regard to the poster-
ior distribution.

A hierarchical Bayesian model is a Bayesian model
where the prior distributions are specified in a hierarchy:
parameters in the likelihood have priors, some of
which may also have priors (hyper-priors). The para-
meters of hyper-priors (called hyper-parameters) may
in turn have priors etc., with the process coming to
an end when no more priors are introduced. The HB
model specification makes it easier to exploit the
structural links between different pieces of data by
expressing complex joint distributions as products
of simple conditional distributions, and adopting prior
specifications that convey substantive knowledge of
the underlying mechanisms. The likelihood for our
model (1) is

pðyjb; s2
0; aÞ ¼

Yn
i¼1

ffiffiffiffiffiffiffiffiffiffi
2ps2

0

q� ��1

exp � yi � a� Xi bð Þ2=2s2
0

n o
:

As noted earlier, we proceed by imposing independent
GG priors on each marker effect bj for (j¼ 1,y, p).
More specifically, we let pðbjjv; l; ZjÞ ¼ GGðv; djÞ, where
dj ¼ lZj. The hyper-parameters l and Zj are, respectively,
intended to control the model sparsity level and the
degree of shrinkage specific to locus j (cf. Mutshinda and
Sillanpää, 2010).

After suitable priors p(a), p(s0
2) and p(v) have been

specified for the intercept, the residual variance and the
shape or tail-decay parameter of the GG distribution,
the joint prior of all model parameters and their joint
posterior are, respectively, given by

pðb; s2
0; a; v; l; gÞ ¼ pðlÞpðvÞpðs2

0Þ
Yp
j¼1

pðbjjv; l; ZjÞp ðZjÞ

and

pðb; s2
0; a; v; l; ZjyÞ

¼
Yn
i¼1

pðyijb; s2
0; aÞ

Yp
j¼1

pðbjjv; l; ZjÞp ðZjÞ
h i

p ðlÞp ðvÞp ðs2
0Þ:

ð4Þ

It goes without saying that the high-dimensional
posterior distribution (4) does not have a familiar form.
However, as we discuss in the section on model fitting
issues below, we can simulate from it through sampling-
based methods such as Markov chain Monte Carlo (MCMC)
methods (Gilks et al., 1996; Gelman et al., 2003).

Model fitting issues
As already pointed out, the model fitting to the data can
be performed by MCMC simulation methods through
standard Bayesian freeware such as BUGS (WinBUGS/
OpenBUGS; Spiegelhalter et al., 2003; Thomas et al.,
2006). The only stumbling block seems to be simulation
from the GG distribution. This, however, turns out to be
straightforward after a suitable variable transformation
(that is, change of variables). More briefly, if we let
uj ¼ jbjjv , then a sample bj � GG ðv; djÞ can be obtained
as bj ¼ ð�1Þxj u1=v

j , where uj � Gamma ðv�1; d�v
j Þ and

xj � Bernoulli ð0:5Þ . The factor ð�1Þxj is introduced to
make positive and negative values of bj equally likely,
given that the GG distribution is symmetric and
supported on the entire real line. Supplementary
Appendix B provides more details on this issue. This
simulation scheme can easily be implemented in BUGS
(see Supplementary Appendix C).

Simulation studies
We conducted two simulation studies to investigate the
performance of our model, using the extended Bayesian
LASSO (EBL; Mutshinda and Sillanpää, 2010) as bench-
mark for comparison. Simulation studies I and II were,
respectively, based on real-world barley (Hordeum vulgare L.)
marker data and on a synthetic dense marker map
simulated through the WinQTL Cartographer 2.5 pro-
gram (Wang et al., 2006). The empirical statistical power
(ESP) of detecting true QTLs can be evaluated in
replicated data analysis by the proportion of the
replicates in which the estimated QTL effect size exceeds
the empirical significance threshold used to declare QTLs
(see the sections below). The ESP relates to the type-II
error, b, as b¼ 1�ESP.

Xu (2010) argued that the effect of a QTL failing to be
detected can be picked up by a neighbouring locus.
Along his lines, we consider three consecutive loci with a
true QTL in the middle as QTLs. All computations were
performed on an AMD Turion X2 Dual, equipped with a
64-bit operating system with a 2.10 GHz processor and
4 GB of RAM.

Results

Simulation study-I: Our first simulation study is based
on a real-world barley marker data set from the North
American Barley Genome Mapping project (Tinker et al.,
1996). This data set comprises 127 biallelic markers on
145 doubled-haploid lines for which the phenotype
‘number of days to heading averaged over 25 envi-
ronments’ was available from the original data. The
markers span seven chromosomes, with an average
distance of 10.5 cM between consecutive markers. The
few missing genotypes were filled in with random
draws from Bernoulli(0.5) before the analysis. The
phenotypic trait values were simulated under sparse
underlying biology with only four QTLs (QTL1, QTL2,
QTL3 and QTL4), namely, at loci 4, 25, 50 and 65, with
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respective effects set to 2.5, �2.5, 4 and �4. Loci are here
identified by their marker indices (for example, 4, 25,
50 and 65). The intercept was set to 0 without loss
of generality, and the residual variance was set to 2,
yielding a rough heritability of 0.80. The simulated
QTL-heritabilities of QTL1, QTL2, QTL3 and QTL4
were, respectively, 0.14, 0.14, 0.35 and 0.35 under the
assumption that p¼ q¼ 0.5.

We generated 50 replicated data sets and analysed
each replicate using the SASP-based Bayesian shrinkage
model and the EBL selected as a benchmark for
comparison. The choice for EBL as the reference line
was motivated by the fact that the latter makes a clear
distinction between model sparsity and parameter
shrinkage, and arises as a particular case of the SASP-
based model when the shape parameter is fixed to 1.

The model fitting was performed by MCMC simulation
through OpenBUGS (see BUGS code in SOM; Supplemen-
tary Appendix C) using the following fairly uninforma-
tive priors: s2

0 � Inv� Gammað0:1; 0:1Þ; a � N ð0; 1000Þ,
v � Uni ð0:5; 2:15Þ, bearing in mind that 0ovo2 is
required for inducing fatter-than-normal tails. We set
the prior of l to be Gammað0:5; 0:1Þ, which has an expected
value 5 and a quite large (50) variance. Finally, we assume
that Zj � Nð1; 10ÞIðZj40Þ independently for ðj ¼ 1; . . . ; pÞ,
where I(.) denotes the indicator function. The prior mode
of Zj is 1, and p(Zj) is properly truncated to steer clear of
negative values. Updating of l to the adequate model
sparsity level will push the shrinkage factors Zj towards
lower values than 1 for genuine QTLs effects and towards
larger values for spurious effects to achieve adaptive
shrinkage. As the support of Zj is a priori unbounded
from above, Zj can take larger values and effectively
prune redundant predictors from the model.

Initially, we ran 20 000 iterations of two MCMC chains
starting from dispersed initial values to assess the mixing
of the MCMC. The chains seemed to reach their target
distribution after about 500 iterations. The computation
time was higher for the SASP relative to the EBL, owing
presumably to the convoluted hierarchical priors involved
in the former. The 20 000 iterations of two chains took
3000 s for the EBL versus 10 000 s for the SASP model.

We used the phenotype permutation method (Church-
ill and Doerge, 1994) to determine the empirical
significance thresholds for distinguishing QTLs from
non-QTLs under each model. This procedure consists of
the following three steps: (1) Randomly shuffling the
data (N times, say) by pairing one individual’s genotypes
with another’s phenotype, in order to simulate data sets
with the observed linkage disequilibrium structure
under the null hypothesis of no intrinsic genotype-to-
phenotype relationship; (2) performing mapping analy-
sis and obtaining the value of a suitable test statistic, for
example, the maximum (absolute) effect size, for each
of N shuffled data sets. This yields an empirical distri-
bution F of the test statistic under the null hypothesis;
(3) selecting the 100� (1�a) percentile of F as a critical
threshold for declaring QTLs, where 0oao1 is chosen to
control the type-I error (false discovery rate). We used
N¼ 50 phenotype permutations and for each permuted
data set, we ran 6000 iterations of a single MCMC chain,
discarding the first 2000 samples as burn-in and thinning
the remainder to each fifth sample. The significance
thresholds, T, for QTL effect sizes based on a significance
level a¼ 0.10 for the EBL and the SASP-based model are

shown as dashed horizontal lines in Figure 1. There, the
vertical needles represent the estimated QTL effects as
posterior means averaged over 50 replications under the
two models, and the solid diamonds indicate the true
QTL effects.

Table 1 shows the true values and the posterior means
averaged over 50 replicated data sets for the model
parameters that are common to the EBL and the SASP-
based model.

For the SASP-based model, the range of the posterior
mean of the shape parameter over replicates was
[0.59, 1.12], with a median value of 0.85, implying a
relatively stronger shrinkage than under the EBL. This
resulted in a clearer separation between genuine QTL
effects and spurious ones under the SASP-based model
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Figure 1 True values (grey diamonds) and posterior means of
marker effects (vertical bars) averaged over 50 replicated data sets
under the EBL (top) and the SAP approach (bottom) plotted against
the marker indices, for simulations based on the barley marker data.
The dashed horizontal lines indicate the permutation-based QTL
significance thresholds. EBL, extended Bayesian LASSO; QTL,
quantitative trait locus; SASP, shape-adaptive shrinkage prior.

Table 1 True parameter values and the posterior means averaged
over 50 replicated data sets and associated standard errors (s.e.s)
under the EBL and the SASP approach, for simulations based on
barley marker data

Parameter True value Posterior mean (s.e.)

EBL SASP

a 0 0.17 (0.37) 0.29 (0.33)
s2 2 1.84 (0.23) 2.48 (0.29)
b4 2.5 2.24 (0.28) 2.36 (0.35)
b25 �2.5 �2.17 (0.26) �2.40 (0.27)
b50 4 3.64 (0.27) 3.80 (0.39)
b65 �4 �3.75 (0.24) �3.87 (0.26)

Abbreviations: EBL, extended Bayesian LASSO; SASP, shape-
adaptive shrinkage prior.
The subscripts 4, 25, 50 and 65 are marker indices of loci whose
effects are estimated.
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as can be seen from Figure 1. On the other hand, the prior
specification adopted for the locus-specific shrinkage
factors Zj seemed to effectively prevent true QTL effects
from strong shrinkage, thereby allowing them to be
estimated with reasonable accuracy as suggested by the
results depicted in Figure 1. The estimated QTL-
heritabilities of QTL1, QTL2, QTL3 and QTL4 averaged
over the 50 replicated data sets were, respectively, 0.11,
0.10, 0.28 and 0.30 for the EBL and 0.12, 0.11, 0.31
and 0.32 for the SASP-based model under the assump-
tion that p¼ q¼ 0.5, with the SASP-based values
being slightly closer to the true values than their EBL
counterparts.

All true QTLs were detected in all replicated analyses
under both models, implying an empirical statistical
power of roughly 100%. Adjacent loci to true QTL
positions were also occasionally selected under the EBL.
We conducted a second simulation study to investigate
the performance of our model in oversaturated models
with dense and highly correlated markers.

Simulation study-II: The second simulation study was
based on a synthetic dense marker map simulated
through the WinQTL Cartographer 2.5 programme
(Wang et al., 2006), and involving 102 markers for 50
backcross progeny (more than twice more markers than
individuals). The marker data set used here is a random
sample from a data set used by Sillanpää and Noykova
(2008). It comprises three chromosomes, with 34 evenly
spaced markers on each chromosome, and just 3 cM
between consecutive markers. The phenotypic values
were simulated from a sparse model with only four
QTLs (QTL1, QTL2, QTL3 and QTL4), with the same
positions and effects as in Simulation study-I. The
intercept was again set to 0 and the residual variance
to 1, yielding a rough heritability of 0.80. The simulated
QTL-heritabilities of QTL1, QTL2, QTL3 and QTL4 were,
respectively, 0.15, 0.15, 0.38 and 0.38.

The model fitting to the data was performed by
MCMC through OpenBUGS using the same prior
specification as in Simulation study-I. We analysed a
couple of replicated data sets, running 10 000 iterations of
a single chain, discarding the first 3000 as burn-in and
thinning the remainder to each tenth sample. The
running times for the EBL and the SASP-based model
were, respectively, 1017 s and versus 9000 s.

We noticed that, with dense markers, the genetic
effects were usually broken up over nearby loci to actual
QTL positions with varying magnitudes not only in
different replicates but also in different model runs using
the same data set, as a result of multi-collinearity. This
makes it unreasonable to average the results over
replicated data sets. It is however worth pointing out
that the estimated genetic effect of each of nearby loci
was in general relatively small, implying negligible QTL-
heritabilities when the actual QTL effect was shared by
multiple loci.

Figure 2 shows a typical plot of the posterior means of
the QTL effects against the marker indices under the EBL
and the SASP-based models. The dashed lines indicate
the empirical QTL significance levels based on 50
phenotype permutations, with same number of iterations
as in Simulation study-I.

The range of v for the SASP-based model was 0.56–
1.22. A relatively stronger shrinkage for spurious effects

was observed under the SASP-based model as compared
with that under the EBL. The estimates of spurious
effects were typically two orders of magnitude lower
than those of genuine QTL effects under the SASP-based
approach, making the separation between genuine QTL
effects and spurious effects clearer (Figure 2).

The empirical statistical power was roughly 100% for
QTL3 and QTL4 under the two models. For each of the
two other loci, namely, QTL1 and QTL2, the ESP under
the EBL and the SASP-based model were, respectively,
91 and 96%.

It is perceptible from Figure 2 that some of the
estimated QTL effect sizes may be far below their true
values, as a result of collinearity among markers.
Buhlmann and Meier (2008) pointed out that, when
viewing the shrinkage mechanism as a variable filtering
method, an additional step may be necessary to go from
the shrinkage estimates to the true model. This addi-
tional step is what we refer to as accurate re-estimation of
the genetic effects of the selected QTL loci. We discuss a
procedure for doing this in the following section.

Accurate re-estimation of QTL effects
The shrinkage-induced bias on the estimated effects of
the selected QTLs can be alleviated by re-estimating
them from the so-called ‘relaxed model’. This is nothing
but the mapping model limited to the low-dimensional
subspace of the selected markers, with no shrinkage
imposed on their effects, that is, under diffuse (that is,
fairly flat) priors such as i.i.d. centred Gaussians with
large variance. By doing so, the estimated effects of the
selected loci are adjusted in the direction of the least
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Figure 2 Posterior mean QTL effects plotted against the marker
indices for the EBL and the SASP approach for a single data set
under the simulated dense marker map. The grey diamonds
represent ‘true’ QTL effects and the dashed horizontal lines indicate
the permutation-based QTL significance thresholds. EBL, extended
Bayesian LASSO; QTL, quantitative trait locus; SASP, shape-
adaptive shrinkage prior.
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squares solution. This relaxed estimation can be im-
plemented handily without having to modify the
original marker data as follows: Let g ¼ ðg1; . . . ; gpÞ be
a vector of indicators with gj¼ 1 when locus j is selected
as QTL, and gj¼ 0 otherwise, and let b ¼ ðb1; . . . ; bpÞ be a
vector of auxiliary Gaussian variables. To implement the
relaxed estimation, it suffices to replace b in Equation 2
by the point-wise vector multiplication b�c, with i.i.d.
zero-mean diffuse Gaussians placed on the component
of b. This can be easily achieved using BUGS for MCMC
sampling (see Supplementary Appendix D).

After the re-estimation step, the search for additional
QTLs can be attempted by re-fitting the shrinkage model
barring the already selected QTLs and pre-conditioning
on their effects, that is, deducting their effects from the
phenotypic data (phenotype adjustment). The exclusion
of the already selected loci can also be conveniently
implemented through the indicator-based technique
described above. This two-step procedure (QTL selection
followed by re-estimation of their genetic effects) can be
iterated until no locus is selected.

We evaluated the performance of the re-estimation
procedure using 50 replicated data sets basing the QTL
detection step on the SASP approach, using a single data
replicate. The phenotype generation process was based
on the same parameter setting as in Simulation study-II.
Because we assumed that three consecutive loci repre-
sent the same QTL, only the locus with the largest effect
size was preliminarily selected from each group of three
consecutive loci for use in re-estimation in cases where
the QTL effects were broken up to show significant
effects over multiple loci. Our procedure was able to
select the four loci corresponding to actual QTLs indices,
namely loci 4, 25, 50 and 65, although this may not
always be the case in practice. Moreover, no additional
QTL was found in subsequent chromosome sweeps. This
implies that the four loci selected for re-estimation
seemed to fully account for the genetic signal in the
data. We thus fitted the relaxed model restricted to these
four loci to 50 replicated data sets. Figure 3 depicts the
error bars (mean±s.e.) of the re-estimated posterior
mean QTL effects over the 50 replicates.

The results plotted in Figure 3 show that the re-
estimation method can provide remarkably accurate
estimates of the genetic effects. The estimated QTL-
heritabilities of QTL1, QTL2, QTL3 and QTL4 averaged
over the 50 replicates were, respectively, 0.13, 0.14, 0.36
and 0.40, which are close to the true values.

Discussion

In this paper we introduced the SASP approach to sparse
Bayesian regularization, focusing on QTL mapping in
experimental crosses. The rationale of the SASP-based
shrinkage approach is to assign to each marker effect a
hierarchical prior involving at the lowest level a GG
distribution. The shape parameter of the involved GG
distributions is set as a free parameter to be estimated
alongside the other model parameters to accommodate a
continuum of distributional shapes that can be optimized
from the data.

We conducted two simulation studies based on real-
world barley (H. vulgare L.) markers and on a synthetic
dense marker map simulated through the WinQTL
Cartographer 2.5 programme to evaluate the perfor-
mance of our new method, using the EBL (Mutshinda
and Sillanpää, 2010) as benchmark for comparison.

Simulation results showed that the separation between
true QTL effects and spurious effects can be made clearer
using the SASP-based Bayesian regularization model,
making it a promising approach for QTL mapping where
good separation is the ultimate goal.

Simulation results also showed that, with highly corre-
lated markers, some estimated QTL effect sizes may
be well below their true values as a result of multi-
collinearity. We discussed a re-estimation procedure
intended to mitigate the shrinkage-induced bias on the
effects of detected QTLs. The methodology consisted of
re-estimating the effects of detected QTLs without
shrinkage (that is, under diffuse Gaussian priors) from
the regression model barring the presumably spurious
predictors. The search for additional QTLs may be
attempted by pre-conditioning on the effects of the
already selected loci until no QTL is detected. In
simulations, the re-estimation procedure proved to
provide remarkably accurate estimates of QTL effects.
This approach may open new prospects for many
disciplines such as bioinformatics where oversaturated
models are booming.

It is worth mentioning that the re-estimation proce-
dure consisting of separately solving subset selection
and parameter estimation has already been considered
in different settings. For example, Meinshausen (2007)
proposed a relaxation to the LASSO penalty subse-
quently to initial model selection to address the issue
of high bias of LASSO estimates in high-dimensional
models. Our re-estimation approach is related to the
(non-Bayesian) relaxed LASSO of Meinshausen (2007)
when f-0. The LARS-OLS approach of Efron et al.
(2004) is also based on the same principle.

The model fitting to the data was performed using
MCMC methods using the freeware OpenBUGS. BUGS
(WinBUGS or OpenBUGS) can be used to fit models of
essentially arbitrary complexity without requiring the
derivation of posterior distributions. It has, however,
been pointed out (for example, Gelman and Hill, 2007,
p. 567) that under BUGS, the MCMC samplers can be
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Figure 3 Error-bars (mean±s.e.) of re-estimated posterior mean
QTL effects over 50 replicated data sets under the simulated dense
marker map. The black solid circles represent the averaged
posterior means over the 50 replicates and the grey diamonds
represent the true values. QTL, quantitative trait locus.
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slow to converge in extremely high-dimensional or in the
presence of highly correlated parameters. In such cases
and instances where BUGS does not seem to work, one
needs to write her/his own sampler and implement it in
a convenient programming language. This may not be
straightforward in many cases, including for the SASP-
based shrinkage model proposed here. Supplementary
Appendix E provides some guidelines as to how this can
be done for our model, noting that a hybrid algorithm
combining Gibbs sampling (Geman and Geman, 1984;
Gelman et al., 2003) with Metropolis–Hastings (Metro-
polis et al., 1953; Hastings, 1970) steps would be required.
The Metropolis–Hastings steps are needed to sample
from the posteriors of model parameters for which the
full conditionals are not available in closed-form as is
the case for the genetic effects bj (j¼ 1,y, p). A key
advantage of user-designed samplers is that the analyst
has direct control on the adaptive rules, and may, for
example, select optimal proposal kernels for the Metro-
polis–Hastings steps.

It should be emphasized that the methodology presented
here focuses on experimental crosses. With outbred popu-
lations, one needs to correct for confounding effects of
population structure and cryptic relatedness (Sillanpää,
2011). However, simultaneous variable selection and estima-
tion has been pointed out to be relatively robust to these
confounders in multi-locus models (Pikkuhookana and
Sillanpää, 2009; Sillanpää, 2011).

Many studies, including those by Edwards et al. (1987),
Bost et al. (2001), Hayes and Goddard (2001) and Xu
(2003b), have pointed out the typical L-shaped aspect of
the distribution of (absolute) QTL effects. This feature
follows from the fact that most of the marker effects
are 0 or nearly so (that is, most of the mass of the
QTL effects is concentrated near 0), with just a few
ones having moderate-to-large effects. The tenet of
the SASP-based approach introduced here is to infer
the tail-decay rate of priors that are intended to induce
the L-shaped distribution of estimated QTL effects,
which is rather an outcome than a distributional model
assumption.
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Pikkuhookana P, Sillanpää MJ (2009). Correcting for relatedness
in Bayesian models for genomic data association analysis.
Heredity 103: 223–237.

Royle JA, Dorazio RM (2008). Hierarchical Modeling and Inference
in Ecology: the Analysis of Data from Populations, Metapopula-
tions and Communities. Academic Press: San Diego.

Bayesian shrinkage-based QTL mapping
CM Mutshinda and MJ Sillanpää
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