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Demographic and genetic factors shaping
contemporary metapopulation effective size
and its empirical estimation in salmonid fish

FP Palstra1 and DE Ruzzante
Biology Department, Dalhousie University, Halifax, Nova Scotia, Canada

The preservation of biodiversity requires an understanding of
the maintenance of its components, including genetic
diversity. Effective population size determines the amount
of genetic variance maintained in populations, but its
estimation can be complex, especially when populations
are interconnected in a metapopulation. Theory predicts that
the effective size of a metapopulation (meta-Ne) can be
decreased or increased by population subdivision, but little
empirical work has evaluated these predictions. Here, we
use neutral genetic markers and simulations to estimate the
effective size of a putative metapopulation in Atlantic salmon
(Salmo salar). For a weakly structured set of rivers, we find
that meta-Ne is similar to the sum of local deme sizes,

whereas higher genetic differentiation among demes drama-
tically reduces meta-Ne estimates. Interdemic demographic
processes, such as asymmetrical gene flow, may explain this
pattern. However, simulations also suggest that unrecognized
population subdivision can also introduce downward bias into
empirical estimation, emphasizing the importance of identify-
ing the proper scale of distinct demographic and genetic
processes. Under natural patterns of connectivity, evolu-
tionary potential may generally be maintained at higher levels
than the local population, with implications for conservation
given ongoing species declines and habitat fragmentation.
Heredity (2011) 107, 444–455; doi:10.1038/hdy.2011.31;
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Introduction

Preserving biodiversity requires an understanding of the
distribution and maintenance of its components, includ-
ing genetic variation. The concept of effective population
size (Ne) was developed by Wright (1931) to describe the
behaviour of the neutral genetic variation of populations
in relation to a theoretically ideal population. On the
time scales of relevance to contemporary evolution
and conservation, Ne is principally shaped by demo-
graphy, mating system and life history (Caballero, 1994;
Frankham, 1995; Gaggiotti and Vetter, 1999). A recent
increase in interest in the estimation of contemporary Ne

(for example, Schwartz et al., 2007; Palstra and Ruzzante,
2008; Waples and Do, 2010) has come with the realization
that its conceptual simplicity is often mirrored by the
high complexity of its empirical estimation (Wright,
1938; Nunney and Elam, 1994; Engen et al., 2005). Spatial
segregation, population connectivity and temporal stra-
tification (that is, age structure) can all complicate the
behaviour and estimation of effective population size (for
example, Jorde and Ryman, 1995; Waples, 2010; Hare
et al., 2011). The effects of incoming gene flow on local Ne

can be multifarious, depending on its relative magni-
tude, directional symmetry and the time frame of interest

(Wang and Whitlock, 2003; Fraser et al., 2007; Palstra and
Ruzzante, 2008).

Ne can also be considered from the relatively higher
hierarchical level of a ‘metapopulation’ (Levins, 1969) or
‘subdivided population’ (Wright, 1969). At this level,
the focus is on the effective size of an assemblage of
populations interconnected by gene flow (hereafter
referred to as meta-Ne; Fraser et al., 2007). This parameter
has seen considerable theoretical treatment, starting with
Wright (1943), who showed that under the restricted
assumptions of his island model (that is, all demes of
equal size and experiencing exactly the same level of
symmetrical gene flow), population subdivision increases
meta-Ne beyond the sum of local or deme effective sizes
(SNe(s)). Subsequent authors have relaxed many of the
assumptions inherent to this model (for example, Li, 1955;
Caballero and Hill, 1992; Wang, 1996; Whitlock and
Barton, 1997; Nunney, 1999; Tufto and Hindar, 2003; see
Wang and Caballero (1999) and Whitlock (2004) for
reviews) and have concluded that meta-Ne will only be
larger than SNe(s) when density regulation acts locally and
constrains reproductive variance (cf. Nunney, 1999; Whit-
lock, 2004). Conversely, factors enhancing overall variance
in vital rates, such as unequal or asymmetrical deme
contributions or extinction–recolonization dynamics, will
reduce the effective size of a metapopulation. These
reductions in meta-Ne can also be generated by directional
abiological factors, such as oceanic currents, by introdu-
cing additional skew in the propagule contributions of
individual demes (Wares and Pringle, 2008).

Population subdivision may thus generally lead to
reductions in meta-Ne relative to SNe(s), yet this topic has
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seen little empirical study. For instance, Sugg et al. (1996)
reported that population subdivision increased Ne in
prairie dogs (but see Nunney (1999)). Also, asymmetrical
gene flow among demes does not necessarily imply
reduced meta-Ne. Morrissey and de Kerckhove (2009)
showed that under conditions of hierarchical spatial
structuring in dendritic systems, such as often seen in
freshwater, asymmetrical gene flow can maintain high
genetic diversity and thereby lead to high meta-Ne.
Studies on anadromous salmonid fish (for example,
Hindar et al., 2004; Fraser et al., 2007; Kuparinen et al.,
2010), however, report that metapopulation effective size
can be much reduced compared with the sum of local
deme effective sizes. Using the approach of Tufto and
Hindar (2003), Kuparinen et al. (2010) found that meta-Ne

was mainly determined by the population with the
highest emigration rate (see also Hindar et al. (2004)).
In conclusion, the limited empirical work published to
date provides contrasting results on the consequences of
population subdivision for effective population size, and
more empirical study is needed to better understand the
conditions under which meta-Ne is expected to be larger
or smaller than SNe(s).

Here, we focus on the effective size of a putative
metapopulation in a widespread anadromous salmonid
fish, Atlantic salmon (Salmo salar). The life history of
Atlantic salmon makes this species suitable for meta-
population genetic studies. First, Atlantic salmon are
generally spatially segregated into different freshwater
systems, yet remain connected through the occasional
exchange of migrant individuals that ‘stray’ into non-
natal watersheds (Stabell, 1984; Hendry et al., 2004).
Second, the species has been subject to extensive genetic
study (Verspoor et al., 2008) and its spatial and temporal
genetic structures are relatively well documented (for
example, King et al., 2001; Dionne et al., 2008; Palstra and
Ruzzante, 2010). Finally, small populations of Atlantic
salmon often maintain surprisingly high levels of genetic

diversity, suggesting that gene flow is not negligible and
might often be asymmetrical (for example, Østergaard
et al., 2003; Consuegra et al., 2005; Hansen et al., 2007;
Palstra et al., 2007).
Our objective is twofold: we first estimate meta-Ne

empirically in a putative metapopulation of Atlantic
salmon in Newfoundland, Canada. We do this in two
ways: first, by pooling river-specific samples into a single
sample pool and considering the entire system as a single
(though admittedly subdivided) population; second,
we employ a model that requires knowledge of Ne of
individual subpopulations (Ne(s)) and of migration rates
among them. This latter model was also used to address
our second objective: to determine the combinations of
demographic factors (for example, unequal population
sizes or strong gene flow asymmetries) that facilitate
congruence between the two estimation methods, and
are thus likely to be important in shaping meta-Ne. We,
thus, explicitly assume that the meta-Ne estimate
obtained with the first method is a reliable reference
point for making demographic inferences in the second
method. Additional simulations support our finding that
population subdivision can reduce the effective size of a
metapopulation, but that this reduction is most plausible
under negatively density-dependent dispersal. Impor-
tantly, explorations of bias suggest that population
subdivision itself, when ignored, may downwardly bias
the empirical estimation of meta-Ne and we urge further
theoretical and methodological developments.

Materials and methods

Study system
This study focuses on a set of 12 rivers inhabited by
Atlantic salmon on the southwest coast of Newfound-
land, Canada (Figure 1). These rivers flow into the Bay
of St George and are hereafter called ‘the study system’.

Figure 1 Location of study rivers in southwest Newfoundland (sampled rivers in regular font). There are a total of 12 rivers in this system
(non-sampled rivers in italic font). Also given, for monitored rivers, are the age distributions of smolts, for 1SW fish (black bars) and 2SW fish
(grey bars).
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The river mouths are all located in relatively close
proximity (within a 50-km stretch of coastline) but are
relatively isolated from rivers outside the study system
(by at least 60 km). These rivers lack the extensive
lacustrine habitat typical of Newfoundland watersheds
(see O’Connell and Ash (1993)) and contain salmon with
a regionally distinct life history, comprising a relatively
high proportion of multisea-winter anadromous salmon
(that is, individuals that spend more than a single year at
sea before returning to spawn in freshwater; O’Connell
et al., 2006). Population census information is unavailable
for five rivers, three of which are very small and may not
sustain spawning salmon populations (B Dempson,
personal communication). Further details on life history
and regional habitat are given in Table 1 and Figure 1.

Molecular genetic analyses
Archived scale samples (N¼ 395) were collected non-
lethally from anadromous adult salmon in five water-
ways in the study system (all river mouths located
within 50 km from each other), between 1973 and 1994.
Contemporary samples from these rivers (N¼ 197) were
analysed previously by Palstra et al. (2007) and were
added to this study. Samples (N¼ 306) from two rivers
further up the west coast of Newfoundland (Humber
River and Western Arm Brook) were included for
comparative purposes and in particular for the isola-
tion-by-distance analysis (see below), bringing the grand
total of samples to N¼ 899. All scales were stored in dry
paper envelopes from collection until molecular ana-
lyses. DNA was extracted from these samples and
genetically characterized for 13 microsatellite marker
loci, previously found to be selectively neutral, unlinked
and free of technical artefacts in allele scoring for
populations in this region (see Palstra et al. (2007, 2009)
for details; locus SSsp1605 was omitted from the present
study due to allele scoring difficulties).

Sample statistics
Basic descriptives for each sample and locus (allele
frequencies, number of alleles, observed and expected

heterozygosity) were obtained using FSTAT (version
2.9.3.2; Goudet, 1995). Genetic methods to estimate
effective population size require selectively neutral
marker loci and here we verified this assumption as
follows. First, departures from Hardy–Weinberg equili-
brium were assessed, for each locus and sample, by tests
for departures of Fis from neutral expectations, as
implemented in FSTAT (based on 5600 randomizations).
The occurrence of genotyping errors (resulting from
technical artefacts (null alleles) or DNA quality (large
allele dropouts)) was checked using MICRO-CHECKER

(van Oosterhout et al., 2004). Samples were rescored
and amplification procedures (if possible) repeated,
whenever irregularities were encountered. A total of 34
individuals were rescored for at least one locus (8% of
total) and 25 samples were discarded due to failure to
consistently amplify (2.8% of total).

Population structure
Genetic differentiation between all samples was esti-
mated using pairwise FST (Weir and Cockerham, 1984) in
GENETIX 4.04 (Belkhir et al., 2004). To assess the effects of
age structure on temporal genetic stability (see Palstra
and Ruzzante (2010)), these analyses were repeated on
individual year cohorts, reconstructed based on age
information of samples. We evaluated temporal stability
of population structure by nesting temporal samples
within rivers in a two-level hierarchical analysis of
molecular variance using ARLEQUIN (Schneider et al.,
2000). The analysis of molecular variance was also
repeated on age cohorts nested within rivers. Population
structure among rivers was further characterized by
testing for isolation-by-distance relationships (Wright,
1943) on two different spatial scales: (1) a large spatial
scale of nearly 250 km (encompassing all samples used in
this study, including those from the Humber River and
Western Arm Brook) and (2) a small spatial scale of
o50 km (including only samples from the five rivers in
the study system). Mantel tests (Mantel, 1967) were
applied to evaluate the statistical significance of genetic–
geographic distance associations, using the program IBD
1.52 (Bohonak, 2002).

Table 1 Study rivers and samples

River Drainage area (km2) Ñ(anad) Age(smolt) P(MSW) Sample year (size)

Highlands river 183 251 3.01 0.375 1999 (78)
Crabbes river 551 1067 2.96 0.000 1982 (37), 2001 (31)
Middle Barachois Brook 241 1084 2.95 0.122 1973 (32), 1975 (95), 1980 (11), 1998 (102)
Robinsons river 439 1171 2.96 0.000 1982 (53), 2000 (42), 2001 (52)
Fishell’s Brook 369 621 2.88 0.000
Barry Brook 31 — — —
Middle Brook 30 — — —
Journois Brook 64 — — —
Flat Bay Brook 635 1677 3.13 0.081 1994 (26), 2000 (27), 2001 (50)
Little Barachois 354 — — —
Southwest/Bottom Brook 814 — 3.16 0.000
Harry’s river 816 1735 3.23 0.000
Humber river 7679 27 685 0.095 2004 (42)
Corner Brook — — — — 2004 (46)
Western Arm Brook 149 403 1971 (59), 1972 (63), 1981 (34), 1982 (37), 2004 (100)

When available, for each river is given the drainage area (in km2), the harmonic mean annual anadromous run size (Ñ(anad)), the arithmetic
mean age of smolts leaving the river (Age(smolt)) and the proportion of anadromous fish returning after two winters at sea (P(MSW)). For each
sample the collection year and size are given. Samples given in italic have been taken from previous publications. Demographic and
environmental data from Mullins and Caines (2000), Mullins et al. (2000), Dempson and Clarke (2001), Porter et al. (2002) and Chaput et al.
(2006).
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We assessed the extent of spatial structure with the
Bayesian clustering approach of STRUCTURE (Pritchard
et al., 2000). This method calculates posterior probabil-
ities for k clusters, assuming Hardy–Weinberg equili-
brium conditions within clusters, while minimizing
linkage disequilibrium. Runs were performed using a
burnin length of 200 000 iterations followed by a Markov
chain Monte-Carlo chain of equal length. These analyses
were performed on the complete data set for the study
system, including temporal replicates, and on a subset
containing samples from three weakly differentiated
populations in the centre of the system, those from Crabbes,
Middle Barachois Brook and Robinsons (CMR). For both
analyses, average posterior probabilities were calculated
from five independent runs, for k ranging from 1 to 7.

Effective population size per river (N̂e(s))
We used two methods to estimate the contemporary
effective population size of individual river populations.
First, we applied the linkage disequilibrium method
(Hill, 1981; England et al., 2006) to estimate (inbreeding)
N̂e(LD). This method assumes that samples are derived
from isolated populations, within which random mating
occurs. We employed the program LDNe (Waples
and Do, 2008) to estimate N̂e(LD) for each individual
river sample. Alleles with an observed frequency Po0.02
were omitted from analyses, to maximize the trade-off
between estimator bias and precision (Waples and Do,
2010). Confidence intervals associated with point estimates
were calculated following equation (12) in Waples (2006).

Second, we used the temporally replicated samples in
four out of five rivers to estimate (variance) N̂e(V) using
the temporal method (Nei and Tajima, 1981; Waples,
1989). To reduce potential bias due to age structure
(Waples and Yokota, 2007; Palstra and Ruzzante, 2008),
we only used samples separated by at least 20 years,
roughly four generations for Atlantic salmon in New-
foundland (Palstra et al., 2009). We used three different
variations to estimate standardized temporal genetic
variance (F) and N̂e(V): the moment-based estimators of
Pollak (1983) and Jorde and Ryman (2007) and the
pseudo-maximum likelihood method of Wang (2001).
Again, rare alleles (Po0.02) were excluded from ana-
lyses. The last method (Wang and Whitlock, 2003)
was also used to explore effects of gene flow on Ne

estimation. Here, samples from other rivers in the study
system were pooled to represent source populations.

The various contemporary Ne estimates assuming
closed populations were combined into single composite
estimates within each river, following the hierarchical
method recommended by Waples and Do (2010). First,
we estimated the harmonic mean of single sample
(Ne(LD)) estimates obtained within rivers (that is, from
temporally replicated collections), as well as the harmo-
nic mean of within-river estimates of Ne(V) obtained with
the three temporal methods mentioned above. Then, the
harmonic mean of these two independent Ne estimates
was calculated, to give a single estimate of N̂e(s) per river,
that were subsequently used in one of the methods to
estimate meta-Ne (see below).

Effective metapopulation size (meta-N̂e)
Effective metapopulation size (meta-N̂ewas calcu-
lated using three different approaches, for the weakly

differentiated cluster of Robinsons, Crabbes and Middle
Barachois (CMR), as well as for all five sampled rivers in
the study system.
First, we estimated meta-Ne by simply adding

the individual Ne estimates for each river (that is, SN̂e(s)).
This provided a first reference point to investigate the
effects of population subdivision on meta-Ne as esti-
mated using the following two methods.
Second, a ‘top-down’ approach was applied where

meta-Ne was estimated from pooled genetic data,
considering individual river samples as derived from a
single, though subdivided, population. We subsequently
refer to these estimates as meta-N̂e(pooled). Samples were
pooled only when they fell within one-generation length
(B5 years). We calculated the general magnitude of
meta-N̂e(pooled) following Waples and Do (2010) as
detailed for the per-river N̂e(s) estimates.
Third, we used the ‘bottom-up’ approach of Tufto and

Hindar (2003). This approach combines estimates of
effective size for individual populations (N̂e(s) calculated
previously) and patterns of connectivity, to calculate
meta-N̂e(T&H). Based on the population structure ana-
lyses, we defined a migration matrix based on a one-
dimensional stepping-stone model (Wright, 1943). Ide-
ally, assignment tests would have been used to estimate
contemporary connectivity, but the weak differentiation
among rivers prohibited this (see Faubet et al. (2007)).
Instead, we specified a migration matrix with symmetric
migration rates among adjacent rivers at the rate of
m¼ 0.05, reflecting average straying rates in this species
(Stabell, 1984). Meta-N̂e(T&H) was estimated through
minimizing the eigen-value of the resulting metapopula-
tion matrix (Tufto and Hindar, 2003), employing the R
library developed by J Tufto (available from http://
www.math.ntnu.no/~jarlet/migration/).
To address our second objective of examining the issue

of how gene flow asymmetries, differences in the
effective size of individual populations and their inter-
actions affect meta-Ne, we used simulations that explore
the sensitivity of meta-N̂e(T&H) to uncertainty in N̂e(s).
First, we separately varied input values of N̂e(s) for each
river, from 50 to 150% of original estimates. Similarly, the
consequences of asymmetrical migration for meta-
N̂e(T&H) were explored under scenarios of positive
(dispersal from large populations, mL, higher than
dispersal from small populations, mS) and negative
(lower dispersal from larger populations) density-de-
pendent dispersal among rivers. In these simulations,
Highlands was considered a small river, Robinsons and
Flat Bay Brook were considered large, and Crabbes and
Middle Barachois were considered intermediate (with
dispersal intermediate between large and small). Simula-
tions explored a wide range of magnitudes of gene flow
(from m¼ 0.005 to m¼ 0.10) and imbalances therein
between mL and mS (from mS¼ 0.10mL to mS¼ 10mL) to
investigate the effects of gene flow asymmetry on meta-
N̂e(T&H).
As we could not sample all rivers in the study system,

we also explored the effects of non-sampled demes
(Figure 1) by incorporating them into meta-N̂e(T&H).
For this purpose, we approximated N̂e(s) of the seven
non-sampled rivers (note that three of these waterways
are very small and are unlikely to contain self-sustaining
salmon populations) using a linear model including
anadromous run size and drainage area (which were
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good predictors for N̂e(s) of rivers with data; r2¼ 0.78,
P¼ 0.02). This analysis assumed a simple one-dimen-
sional stepping-stone migration model with m¼ 0.05.

Meta-Ne estimation and bias
The presence of bias due to incoming gene flow on N̂e(s),
and population subdivision on meta-N̂e(pooled), was
investigated through simulations in EASYPOP (Balloux,
2001). We simulated metapopulations consisting of five
demes, characterized either by a one-dimensional step-
ping-stone model or by an island model. Deme sizes
were set to Ne¼ 500 (approximating the harmonic mean
of N̂e(s)), characterized by random mating and equal sex
ratios. We simulated 13 unlinked microsatellite marker
loci, with m¼ 10�4 (cf. Fraser et al., 2007) and a maximum
of 40 allelic states. Simulations were initiated with
maximal gene diversity and run for 2000 generations
(B10 000 years in Atlantic salmon). Population connec-
tivity was varied in these simulations (from m¼ 0.0005
to m¼ 0.20), with each scenario replicated 10 times. For
each replicate run, we calculated N̂e(LD) using LDNe
(Waples and Do, 2008) for each individual population
sample, as well as for the data pooled from all demes
(meta-N̂e(pooled)). Bias in the estimation of Ne due to
incoming gene flow was evaluated by comparing N̂e(LD)

with the expectation (Ne(s)¼ 500). Individual N̂e(LD)

estimates were then summed to obtain SN̂e(s) and were
also combined with the migration matrix defined for
each simulation, to estimate meta-N̂e(T&H). Under the
idealized settings of these simulations, meta-N̂e(T&H) is
expected to provide an unbiased estimate of meta-Ne

(Tufto and Hindar, 2003). Hence, bias for the other two
empirical meta-Ne estimates was assessed by comparison
with meta-N̂e(T&H). However, bias was also investigated
by assessing how meta-Ne estimates predicted the rate of
loss of neutral genetic diversity in the entire meta-
population, as observed over the last 20 generations
simulated.

Results

Basic descriptives
Genetic diversity among samples was moderate to high,
with expected heterozygosities per locus ranging from
0.675 (Ssa-12) to 0.917 (Ssa-171), and heterozygosity per
sample ranging from 0.749 (Middle Barachois-1973) to
0.835 (Middle Barachois-1998). The total number of
alleles per sample ranged from 85 (Middle Barachois-
1973) to 167 (Middle Barachois-1998), with a grand total
of 268 alleles available for further analyses. 17 out of
247 tests (6.9%) for Hardy–Weinberg equilibrium were
significant, a result expected by chance alone (at a¼ 0.05,
w2-test, df¼ 1, P¼ 0.24). No deviation was consistent
across loci or samples. MICRO-CHECKER indicated four
potential occurrences of null alleles, again not consistent
across samples, and we thus conclude that the allele
frequencies used for subsequent analyses were unlikely
to exhibit bias due to scoring or technical errors. See
Supplementary Appendix A for a complete overview of
gene marker characteristics.

Population structure
Genetic differentiation among samples, as measured by
pairwise FST (Weir and Cockerham, 1984) was very weak

to moderate. Among rivers, genetic differentiation
ranged from FST¼�0.0009 (Crabbes-2000 vs Robinsons-
2001) to FST¼ 0.069 (Middle Barachois-1982 vs Western
Arm Brook-1982). Temporal stability among samples
within rivers ranged from strong (FST¼�0.0012, Robin-
sons-1982 vs Robinsons-2000) to weak (FST¼ 0.0192,
Middle Barachois-1973 vs Middle Barachois-1980). Sig-
nificant isolation-by-distance patterns (Figure 2) were
observed over the entire range sampled from the High-
lands river in the south to the Western Arm Brook river
in the north, as well as at the local scale (within 50 km)
of the samples from the five rivers in the study system
(see Table 1 and Figure 1).

An analysis of molecular variance on the samples from
the study system suggested spatial and temporal
components of genetic variance of similar magnitudes.
When all five rivers were considered, 1.04% of genetic
variance could be attributed to variance among rivers,
with 0.33% attributed to variance among temporal
samples within rivers (both variance components sig-
nificant Po0.001). However, when these analyses were
repeated on the subset of samples from Crabbes,
Robinsons and Middle Barachois, the temporal variance
within rivers (0.29%, Po0.001) was slightly larger than
spatial variance among rivers (0.25%, P¼ 0.059). In both
cases, the percentage of variance explained was thus
extremely low. A similar result was obtained when
repeating the latter analyses on samples grouped into
age cohorts (0.30% among cohorts (Po0.001) and 0.26%
among rivers (P¼ 0.026)).

These results are closely mirrored in the Bayesian
clustering analyses of STRUCTURE. Analyses of samples
from Crabbes, Robinsons and Middle Barachois suggest
they form a single genetic cluster (highest posterior
probability for K¼ 1). Overall five rivers, the results
from STRUCTURE analysis suggest K¼ 5 is most likely,
but these clusters did not clearly correspond to the
individual rivers.

Together, the results of the population structure
analyses suggest a dynamic system with weakly differ-
entiated river populations, with connectivity best char-
acterized by a one-dimensional stepping-stone model
of gene flow, indicated by the isolation-by-distance
pattern observed (Figure 2). These results, therefore,

Figure 2 Isolation-by-distance and by-time relationships over rivers
within the study system (dark filled circles, r2¼ 0.33) and over all
rivers sampled (open circles, r2¼ 0.51).
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suggest the use of a stepping-stone model of connectivity
in subsequent analyses is appropriate.

Effective population size (N̂e(s)) per river
Based on single samples, estimates of Ne(LD) ranged from
188 (Middle Barachois-1975) to N (in several samples)
(Table 2). Ne(LD) estimates also displayed considerable
variation over time within the same river. Harmonic
mean N̂e(LD) per river ranged from 204 to N. Temporal
estimates of Ne(v) (Table 3) were possible for four rivers
and ranged from 38 (Flat Bay Brook) to 1110 (Middle
Barachois). The moment-based estimator of Jorde and
Ryman (2007) and the pseudo-likelihood approach
(Wang, 2001) yielded results that were qualitatively
consistent (Table 3). For each river, estimates of Ne(v)

using the temporal approach of Wang and Whitlock
(2003) including gene flow were smaller than those
assuming closed populations (see Supplementary
Appendix B), with gene flow estimates comparable to
dispersal rates typically observed in Atlantic salmon
(Stabell, 1984). Combining estimates of the temporal
methods assuming closed populations resulted in har-
monic mean Ne(v) estimates per river ranging from 54
(Flat Bay) to 849 (Middle Barachois) (Table 3).

Although the different estimators apply to slightly
different time scales and may thus not be strictly
comparable, they all provide independent indications
of the general magnitude of contemporary Ne of the
salmon populations in these rivers. Thus, composite N̂e(s)

estimates per river were 204 (Highlands), 433 (Crabbes),
496 (Middle Barachois), 1347 (Flat Bay) and 1646
(Robinsons).

Effective metapopulation size (meta-Ne)
SN̂e(s): First, summing the harmonic mean estimates for
individual rivers gave SN̂e(s)¼ 2575 for CMR and
SN̂e(s)¼ 4126 for all five study rivers. Logically, this
estimate is larger when all five rivers are included than
when only the three weakly differentiated central rivers
(CMR) are considered.

Meta-N̂e(pooled): Second, for the set of three weakly
differentiated rivers (CMR), the linkage disequilibrium
method gave meta-N̂e(pooled) ranging from 706 (samples
1980–1982 pooled) to N (samples 1998–2001 pooled)
(Table 2). We used these two pooled samples for the
temporal methods, which gave meta-N̂e(pooled) ranging
from 1071 to 2234 (Table 3). Second, we estimated ‘total’
metapopulation effective size by pooling, where possible,
genetic data from all rivers. Meta-N̂e(pooled) estimation for
all five rivers, using the linkage disequilibrium method,
was possible only for the combined samples from 1998 to
2001, giving meta-N̂e(pooled)¼ 729. Using this combined
sample (1998–2001) in the temporal approach with a
combined sample from CMR-1980 as t0, gave meta-
N̂e(pooled)¼ 443. Combining and weighting these esti-
mates (cf. Waples and Do, 2010) gave meta-N̂e(pooled)¼
2097 for CMR and meta-N̂e(pooled)¼ 665 for all five rivers.
Hence, with this ‘pooling rivers’ approach, meta-
N̂e(pooled) is larger for the three central rivers (CMR)
than it is for all five rivers.

Meta-N̂e(T&H) and comparisons: Third, the harmonic
mean per-river N̂e(s) values were used for the calcu-
lation of meta-N̂e(T&H). Assuming a one-dimensional
stepping-stone model with symmetrical gene flow
among neighbouring rivers, meta-N̂e(T&H)¼ 1835 for
CMR and meta-N̂e(T&H)¼ 2418 for all five rivers. Thus,
meta-N̂e(pooled) and meta-N̂e(T&H) generally gave
estimates of meta-Ne that were smaller than SN̂e(s), but
the extent of this difference appears related to the extent
of genetic differentiation among populations. In fact,
meta-N̂e(pooled) was similar to meta-N̂e(T&H) for CMR,
whereas overall five rivers, where population structure
was stronger meta-N̂e(pooled) was only 28% of meta-
N̂e(T&H).

Sensitivity analysis
Simulation was used to evaluate which individual deme
Ne estimates has the strongest influence on meta-Ne.
First, for the CMR cluster, the estimate for Crabbes
(having the smallest harmonic mean N̂e(s)) exerts the

Table 2 Linkage disequilibrium estimates of effective population size (N̂e(LD)) and associated confidence intervals, for each sample from each
river, based on harmonic mean sample size Ŝ

Sample Year Ŝ N̂e(LD) 95% CI ~̂NeðLDÞ
meta-N̂e(LD) 95% CI

Middle Barachois B. 1973 30.3 733 165–N 350
1975 89.3 188 134–279
1980 10.5 N 56–N
1998 98.2 984 302–N

Crabbes 1982 35.5 242 128–1409 712
2001 30.5 N 492–N

Robinsons 1982 50.6 452 198–N N

2000 40.6 N 150–N
2001 50.6 N 541–N

Mid. Bar.–Crabbes 1980–1982 96.5 4063 706 374–4339
Robinsons 1998–2001 220.3 N 1908–N

Highlands 1999 75.6 204 140–359 204
Flat Bay Brook 2000 26.8 373 95–N 1347

1994 23.4 N 284–N
2001 48.4 836 255–N

All rivers 1998–2000 370.8 729 559–1020

Abbreviation: CI, confidence interval.
Also given are the harmonic mean of individual N̂e(LD) estimates per river and linkage disequilibrium estimates and confidence interval
based on genetic data pooled across rivers (meta-N̂e(LD)).
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largest influence on meta-N̂e(T&H) (Figure 3, top). Con-
versely, over all five rivers, uncertainty about N̂e(s) of the
two outermost rivers (Highlands and Flat Bay Brook) has
the strongest influence on meta-N̂e(T&H) (Figure 3, bot-
tom). Second, for the CMR group, the difference between
meta-N̂e(T&H) and meta-N̂e(pooled) can be explained by
relatively small bias in any of the individual N̂e(s) values.
Conversely, over all five rivers (upward) bias in any of
the Ne(s) estimates appears unlikely to be the explanation

for the reduction in meta-N̂e(pooled) relative to meta-
N̂e(T&H).

Simulations of the effects of gene flow asymmetry on
meta-N̂e(T&H) (Figure 4, left) suggest that positive
density-dependent (higher dispersal from larger popula-
tions) dispersal tends to increase meta-N̂e(T&H), whereas
negative density-dependent dispersal reduces meta-
N̂e(T&H). Importantly, meta-N̂e(T&H) is affected primarily
not by the magnitude of gene flow, but by the degree of
gene flow asymmetry among populations. These trends
are similar when smaller input values of N̂e(s) are used
(Figure 4, right). Therefore, over all five rivers, con-
cordance between meta-N̂e(pooled) and meta-N̂e(T&H)

requires strong negative density-dependent dispersal
(for example, mS¼ 10mL), smaller N̂e(s) values as input
(that is, the original estimates are biased upwardly) or a
combination of these two.

Finally, an extension of these analyses to all rivers in
the study system gave meta-N̂e(T&H)¼ 1913. Although
harmonic mean N̂e(s) was smaller than for the situation
where only five rivers were analysed, the number of
demes also increased, and the resulting meta-N̂e(T&H)

remains much larger than meta-N̂e(pooled) for the five
rivers. Upward bias in meta-N̂e(T&H) due to the omission
of some (small) rivers in its original estimation may thus
be unlikely to be an explanation for its large magnitude
relative to meta-N̂e(pooled).

Simulations of meta-Ne

Simulations using EASYPOP suggest individual popula-
tion Ne(LD) estimates can be biased upwardly, but only
when incoming gene flow is moderate to high (in
simulations with Ne(s)¼ 500 and m40.05 or FSTo0.01,
Figure 5, top panels). Thus, the discrepancy observed
between the two empirical meta-Ne estimation methods
for all five rivers might not be due to inflation in
meta-N̂e(T&H) caused by a general upward bias in the
underlying individual Ne(s) estimates.

Second, population subdivision may introduce down-
ward bias into meta-N̂e(pooled) estimates, but not into
estimates of meta-N̂e(T&H), since the latter method
explicitly accounts for structure. Results are similar for
the stepping-stone and island models and will thus be
presented as one (Figure 5, bottom panels). As genetic
differentiation among demes increases due to reduced
gene flow, meta-N̂e(pooled) estimates decrease exponentially,
compared with meta-N̂e(T&H) estimates. For both models
of population structure (stepping-stone or island), SN̂e(s)

Table 3 Temporal Ne estimates and confidence intervals, based on the moment-based F estimator of Pollak (1983) (N̂e(Pollak)), the moment-
based F estimator of Jorde and Ryman (2007) (N̂e(J&R)) and the pseudo-maximum likelihood method of Wang (2001)(N̂e(Wang)) for all temporal
comparisons, based on harmonic mean sample size Ŝ and time span t (in generation lengths)

Sample Years Ŝ t N̂e(Pollak) 95% CI N̂e(J & R) 95%CI N̂e(Wang) 95% CI ~̂NeðtemporalÞ

Crabbes 1982–2001 35.5 4 277 106–N 204 82–N 885 190–N 311
Middle Barachois B. 1975–1998 93.5 5 1109 383–N 545 329–1560 1256 485–N 849
Robinsons 1982–2001 65.1 4 597 216–N 788 371–N N 771–N 679
Mid. Bar.–Crabbes–Robinsons 1980–2001 111 4 1071 417–N 2076 606–N 2334 766–N 1413
Flat Bay Brook 1994–2001 31.6 1 38 19–110 51 20–N 105 54–768 54a

All rivers 1980–2001 153 4 443 255–903 576 344–1761 1099 609–3232 612

Abbreviation: CI, confidence interval.
Also given in the last column is the weighted and combined harmonic mean of temporal Ne estimates (

~̂NeðtemporalÞ) following Waples and Do
(2010).
aEstimate not included in subsequent analyses.

Figure 3 Relative sensitivity of meta-N̂e(T&H) to uncertainty in deme
Ne estimates, quantified by varying model input values of
individual deme Ne estimates (from 50 to 150% of N̂e(s)) for a
weakly differentiated subset of rivers (top, d¼ 3 consisting of
Crabbes, Robinsons and Middle Barachois Brook) and for all five
rivers (bottom, d¼ 5). Also given are the relative magnitudes of
meta-N̂e(pooled) to meta-N̂e(T&H) for both sets of samples (solid grey
lines).
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were consistently larger than meta-N̂e(T&H) (paired t-test,
two-tailed, P¼ 0.0014) but this difference appears
unaffected by the extent of genetic differentiation.

Finally, the rates of loss of neutral genetic diversity
observed in the simulated metapopulations generally
suggest these are predicted much more closely by meta-
N̂e(T&H) than by meta-N̂e(pooled). These simulations
therefore indicate that population subdivision (spatial
structure) introduces downward bias into empirical
estimation of meta-Ne when this structure is not
explicitly accounted for.

Discussion

In this study, we have examined the factors that affect
the estimation of the effective size of a metapopulation
(meta-Ne) using three approaches: simply adding the

estimates of individual population effective sizes
(SN̂e(s)), pooling all data before estimation (meta-
N̂e(pooled)) and using the methodology developed by
Tufto and Hindar (2003), which requires knowledge of
Ne(s) of individual demes and their connectivity within
the metapopulation system (meta-N̂e(T&H)). We have
examined the performances of these three methods
under conditions of high and low gene flow, gene flow
asymmetries encompassing positive and negative den-
sity-dependent dispersal, as well as the uncertainties in
the estimates of individual Ne(s). Our main findings can
be summarized as follows. Under very weak genetic
differentiation (that is, FSTo0.005) as exemplified by
the three weakly differentiated central populations in
our Atlantic salmon system (CMR rivers), estimates of
meta-N̂e(pooled) and meta-N̂e(T&H) were similar to each
other, but slightly smaller than the sum of individual

Figure 4 Sensitivity of meta-N̂e(T&H) to gene flow asymmetry. Shown are results for various gene flow scenarios, where dispersal from small
populations (mS) is varied relative to dispersal from large population (mL), over the range of gene flow rates commonly observed in Atlantic
salmon. mSo1.0 indicates positive density-dependent dispersal, mS41.0 indicates negative density-dependent dispersal and mS¼mL

indicates gene flow symmetry among neighbouring demes. Results of simulations are given for scenarios based on original N̂e(s) values (left
panel) and scenarios using 50% of N̂e(s) as input values (right panel).

Figure 5 Evaluation of potential bias in meta-Ne estimates. Given are comparisons between deme Ne(s) estimates and the expected value of
Ne(s)¼ 500 used in simulations (bias-N̂e(s) expressed as the ratio N̂e(s)/500), for a range of genetic differentiation among demes in the island
model (top left) and stepping-stone model (top right). Also given are comparisons of meta-Ne estimates based on pooled genetic data (xmeta-
N̂e(pooled)), on the model of Tufto and Hindar (2003) (� meta-N̂e(T&H)) and on the sum of individual deme estimates (J SN̂e(s)) for a range of
values of genetic differentiation among demes, for the island model (bottom left) and stepping-stone model (bottom right). Simulations
performed in EASYPOP and empirical Ne estimates calculated using software LDNe.
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population, or deme, effective sizes (SN̂e(s)). Conversely,
under stronger genetic differentiation among demes, as
observed for all five rivers, meta-N̂e(pooled) was 27% of
meta-N̂e(T&H) and 16% of SN̂e(s). These observations,
therefore, support the general expectation that popula-
tion subdivision reduces meta-Ne (cf. Whitlock, 2004).
However, the observed discrepancy between meta-
N̂e(pooled) and the meta-N̂e(T&H) methods requires an
explanation. We, thus, examined the roles of strong
negative density-dependent dispersal among popula-
tions, a general upward bias in individual river N̂e(s)

estimates, and their interactions. Our findings are
consistent with the notion that both asymmetrical gene
flow and unequal population sizes can reduce meta-Ne

(Whitlock and Barton, 1997; Whitlock, 2004). However,
the reductions in meta-Ne estimates are minimal under
conditions of positive density-dependent dispersal
(higher dispersal from larger populations). We discuss
in detail below, the possibilities that (1) individual
deme Ne(s) estimates may have been upwardly biased;
(2) meta-N̂e(pooled) estimates may have been downwardly
biased; (3) our results are affected by non-sampled
populations and/or (4) assumptions implicit to the
model of Tufto and Hindar (2003) may be violated in
Atlantic salmon.

Upward bias in individual Ne estimates
Role of age structure and gene flow: First, individual
Ne(s) estimates may have been biased upwardly. We
attempted to minimize bias due to age structure in the
temporal methods (Waples and Yokota, 2007; Palstra and
Ruzzante, 2008) by only considering longer time spans.
As we have done before (Palstra et al., 2009), we pooled
data from several consecutive years to attain allele
frequency estimates more closely reflecting those of the
entire population. Regardless, ignored age structure is
most likely to introduce a downward bias into Ne(s)

estimates (Waples and Yokota, 2007). Also, we generally
ignored gene flow, which may be particularly relevant
for the three central rivers exhibiting weak spatial
genetic differentiation (Crabbes, Middle Barachois and
Robinsons). The linkage disequilibrium method,
however, has been reported to be fairly robust to gene
flow (Waples and Do, 2010) and this is supported by our
simulations (Figure 5, bottom panels). Conversely,
estimates from the temporal method including gene
flow (Wang and Whitlock, 2003) were all lower than
those ignoring gene flow (Supplementary Appendix B).
Although the biological relevance of this temporal
approach remains uncertain (Hoffman et al., 2004;
Fraser et al., 2007; Palstra and Ruzzante, 2008), these
conflicting results suggest we cannot rule out the
possibility of upward bias in N̂e(s) and meta-N̂e(T&H)

caused by incoming gene flow. However, the fact that
meta-N̂e(pooled) and meta-N̂e(T&H) are very similar under
conditions of high gene flow (that is, the CMR cluster in
this study) suggests a general upward bias in N̂e(s) might
be an unlikely explanation for the patterns we observed.

Population subdivision and additional linkage

disequilibrium
Our EASYPOP simulations suggest that population sub-
division itself may introduce additional signals of link-
age disequilibrium or inbreeding, akin to Wahlund

effects (Wahlund, 1928), thereby introducing downward
bias into the meta-N̂e(pooled) estimation. Further support
for this downward bias comes from the observed
temporal rates of loss of genetic variance in the
simulated metapopulations, which always corresponded
much more closely to meta-N̂e(T&H) than to meta-
N̂e(pooled). This downward bias in meta-N̂e(pooled) may
thus provide one explanation for the observed discre-
pancy between the two empirical meta-Ne estimates
under conditions of low gene flow (that is, all five river
populations in this study).

In addition to the linkage effect above, meta-Ne

estimates based on pooled genetic data may have been
biased (downwardly) due to unbalanced and incomplete
sampling of rivers. Sampling limitations resulted in
estimates of N̂e(pooled) that were sometimes based on a
subset of the sampled rivers, which may have introduced
downward bias, particularly for the temporal methods.
Yet, it should have affected single sample estimates less
than two-sample temporal estimates, but the two
methods gave estimates of meta-Ne that were of similar
magnitude. Thus, we suspect additional linkage brought
on by the pooling of data from genetically divergent
populations may be a more important effect than
incomplete sampling.

Third, the present study only sampled five of nine
salmon rivers in the Bay of St George area (which also
has three other streams likely too small to hold their own
Atlantic salmon populations; J Brian Dempson, personal
communication). However, meta-N̂e(T&H) estimates, with
or without the unsampled populations, remained large
relative to meta-N̂e(pooled). Although future studies
should include these non-sampled rivers, we suspect
they are unlikely to account for the small value of meta-
N̂e(pooled) relative to meta-Ne(T&H).

Finally, the assumptions in the model of Tufto and
Hindar (2003) need to be reviewed. Application of this
model first requires knowledge of migration rates. We
necessarily had to adopt an approximation approach, as
actual migration rates among demes were unknown due
to the very weak genetic differentiation observed.
However, the most critical assumption of this model is
probably that the effective size of individual demes is
constant over time, hence leading to the convergence
of meta-Ne onto the eigen-value in this model. Yet,
fluctuations in population size over time represent one of
the main demographic factors reducing Ne below census
population size (Vucetich et al., 1997; Waples, 2002).
In the extreme case, local population extinction can
strongly reduce the effective size of a metapopulation
(Whitlock and Barton, 1997). These considerations may
limit the applicability of the model of Tufto and Hindar
(2003) to natural populations, although monitoring of
populations over time should reveal such extreme
population fluctuations. Violation of the assumption of
constant subpopulation sizes awaits further assessment,
for example with simulations, to better understand the
empirical utility of this estimator method.

Factors affecting the effective size of metapopulations
This study adds some new insights into the factors
shaping the effective size of metapopulations in Atlantic
salmon. First, metapopulation effective size in this
species appears to be (much) smaller than the sum of
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the deme sizes (SN̂e(s)) and this reduction increases with
increasing genetic differentiation among demes. Results
presented here also suggest asymmetrical migration may
be an important factor, or requirement for, observations
of reduced meta-Ne. Kuparinen et al. (2010) reported that
the effectively smallest population had the strongest
effect on meta-Ne, mainly because it also had the highest
emigration rate, hence corresponding to a scenario of
negative density-dependent dispersal. Our simulations
confirm that negative density-dependent dispersal pat-
terns can strongly reduce meta-Ne, more so than positive
density-dependent dispersal can. It is not known, how-
ever, how prevalent such connectivity patterns are in the
wild. Based on demography and neutral conditions, one
would expect positive density-dependent dispersal, and
so far this pattern is supported by empirical genetic
analyses (for example, Hansen et al., 2007, but see Palstra
et al. (2007)). Although our results are most easily
explained by a combination of negative density-depen-
dent dispersal and a general upward bias in Ne(s)

estimates (Figure 4, left), these two requirements may
be somewhat mutually exclusive. For example, Ne(s)

estimates for presumably larger populations are unlikely
to be biased upwardly due to incoming gene flow from
relatively smaller populations.

Genetic differentiation itself can also introduce down-
ward bias into the empirical estimation of Ne for a
subdivided population, when this subdivision is ignored
in analyses. The results from simulations (Figure 5)
were also observed in a meta-analysis of empirical data
(Supplementary Appendix C). Hence, this bias appears
present under empirical settings, and will increase with
increasing genetic differentiation among demes. Only
when connectivity among demes is very high (simula-
tions: FSTo0.005; Figure 5, bottom panels) might meta-
N̂e(pooled) provide relatively unbiased indications of
meta-Ne. Downward bias already becomes relevant
under limited genetic differentiation (FSTB0.01, Figure 5,
top panels). This inference thus argues against the
general use of meta-N̂e(pooled), thereby unfortunately
removing a reference point for assessing the performance
of other meta-Ne estimators. The development of addi-
tional empirical approaches to estimate meta-Ne thus
seems both timely and desirable.

Overall, this study provides some support for the
suggestion (Palstra and Ruzzante, 2008) that estimates of
the N̂e/N ratio for widespread marine organisms may be
downwardly biased by population subdivision. Interest-
ingly, Hoarau et al. (2005) reported that their low N̂e/N
ratio for North Sea plaice could be explained by
inbreeding. This inference may essentially be correct,
with the distinction that population subdivision (that is,
inbreeding), may have introduced a downward bias into
N̂e, in addition to inbreeding effects reducing Ne through
biological processes. This highlights the general need to
make a distinction between factors affecting the beha-
viour of the population parameter Ne and those affecting
its empirical estimation.

Finally, this study has some implications for the
perception of the regulation of genetic variance required
to maintain evolutionary potential. In salmonid fish
and other organisms, the magnitude of estimates of
contemporary Ne for many individual populations
generally suggests that these may be too small to
maintain long-term adaptability (Palstra and Ruzzante,

2008). Conversely, contemporary meta-Ne estimates
presented here are much closer to benchmark magni-
tudes of Ne (Franklin and Frankham, 1998; Lynch and
Lande 1998; Willi et al., 2006) and also to long-term
Ne estimates (for example, Fraser et al., 2007; Palstra et al.,
2007). The genetic variance maintained in a metapopula-
tion is shaped by long-term processes, whereas the
effective size of a local population may be primarily
sensitive to evolutionary processes occurring on the scale
of one or a few generations (Waples, 2010). Hence, low
contemporary Ne estimates for local populations do not
necessarily imply low adaptability when the genetic
variance is principally maintained at the higher hier-
archical level of a metapopulation. Continuing species
declines and habitat fragmentation will, however, affect
the relevance of this conclusion.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgements

Don Caines, J Brian Dempson, Geoff Veinott and Arthur
Walsh (Fisheries and Oceans Canada) generously pro-
vided archived scale samples and background informa-
tion on the study system. Abby van der Jagt assisted with
the molecular genetic analyses. Robin Waples is thanked
for providing feedback on a number of queries and for
sharing an unpublished manuscript. Four anonymous
reviewers provided many constructive comments on
earlier versions of this manuscript. This work was
supported by an NSERC Discovery grant to DER.

References

Balloux F (2001). EASYPOP (Version 1.7): a computer program
for population genetics simulations. J Hered 92: 301–302.

Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004)
GENETIX 4.05, Logiciel sous Windows TM pour la génétique des
populations 1996–2004. 04. Laboratoire Génome, Populations,
Interactions, CNRS UMR 5000, Université de Montpellier II:
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