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QTL detection power of multi-parental RIL populations
in Arabidopsis thaliana

JR Klasen1, H-P Piepho2 and B Stich1

A major goal of today’s biology is to understand the genetic basis of quantitative traits. This can be achieved by statistical
methods that evaluate the association between molecular marker variation and phenotypic variation in different types of
mapping populations. The objective of this work was to evaluate the statistical power of quantitative trait loci (QTL) detection of
various multi-parental mating designs, as well as to assess the reasons for the observed differences. Our study was based on an
empirical data of 20 Arabidopsis thaliana accessions, which have been selected to capture the maximum genetic diversity. The
examined mating designs differed strongly with respect to the statistical power to detect QTL. We observed the highest power to
detect QTL for the diallel cross with random mating design. The results of our study suggested that performing sibling mating
within subpopulations of joint-linkage mapping populations has the potential to considerably increase the power for QTL
detection. Our results, however, revealed that using designs in which more than two parental alleles segregate in each
subpopulation increases the power even more.
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INTRODUCTION

Quantitative traits, which include most fitness and agronomic traits,
show a continuous distribution of phenotypic values as they are
influenced by many genes, epistatic interactions and the environment
(Lynch and Walsh, 1998). A major goal of today’s biology is to
understand the genetic basis of such traits. This can be achieved by
means of statistical methods that evaluate the association between
molecular marker variation and phenotypic variation in different
types of mapping populations (for review, see Doerge, 2002; Sneller
et al., 2009).
For the development of biparental linkage mapping populations,

two accessions are used, which differ with respect to the trait of
interest. From a cross of these accessions, a segregating population is
derived. The genomes of the individuals of this population are mosaics
of the genomes of the parental genotypes due to the occurred
recombination events (Mackay et al., 2009). Many quantitative trait
loci (QTL) have been detected for different quantitative traits using
such biparental linkage mapping populations. With a few exceptions,
however, most of these QTL have not been successfully validated in
other populations (Bernardo, 2008). To overcome this problem, the
detection of QTLs using a set of genotypes with unknown ancestry,
which is called association mapping, has become popular (for review,
see Zhu et al., 2008).
The use of association-mapping populations allows the evaluation

of a high number of alleles in multiple genetic backgrounds.
The mapping resolution of the association-mapping populations
compared with the biparental populations is high, as the former
allow the utilization of historical recombination events (Mackay et al.,
2009). A problem of association-mapping populations, however, is
that some individuals might be more related to each other than

individuals are related on average, and this leads to false-positive
associations between the pheno- and genotypes (Breseghello and
Sorrells, 2006; Sneller et al., 2009). This problem cannot be completely
prevented even by considering the population structure in the statis-
tical analysis (Brachi et al., 2010). Furthermore, the loci that explain
the difference between subpopulations cannot be detected with such
approaches. Therefore, the concept for mapping in multi-parental
linkage mapping population was developed, which minimizes the
effect of population structure by crossing diverse individuals, but still
providing a high mapping resolution (Stich et al., 2007).
Rebaı̈ and Goffinet (1993) proposed the extension of the biparental

population to a four-parental population, in which the parents were
crossed in a half diallel. A method combining the strengths of linkage
mapping and association mapping was proposed in the field of animal
genetics (Mott et al., 2000; Churchill et al., 2004). In addition,
statistical methods for the analysis of multi-parental populations
were developed (Xu, 1998; Rebaı̈ and Goffinet, 2000; Jannink and
Wu, 2003). Subsequently, different mating designs were recommended
and used for the QTL detection in a plant genetics context (Blanc
et al., 2006; Paulo et al., 2008; Yu et al., 2008; Buckler et al., 2009;
Kover et al., 2009; Stich, 2009). These designs differ with respect to
their strategy, as well as the complexity of the required crosses. The
mating design underlying the nested association-mapping strategy (Yu
et al., 2008) is based on crosses between one parental inbred (PI) line
with all other PIs. In contrast, crosses between all PIs are required for
the diallel cross (Rebaı̈ and Goffinet, 1993). In the first step of the
Arabidopsis multi-parental recombinant inbred line (RIL) mating
design (Paulo et al., 2008), hybrid crosses between pairs of the PIs
were performed. The second step was a diallel cross between the F1
individuals. The multi-parent, advanced-generation inter-cross design
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(Kover et al., 2009) is based on a diallel cross of all PIs, followed by
four generations of random mating. Furthermore, sibling mating
within the biparental populations has proven to increase the mapping
resolution (Lee et al., 2002). The different approaches result in
mapping populations, which differ with respect to the number of
combined parental genomes per individual, the number of recombi-
nation breakpoints, and the allele frequencies. This in turn is expected
to influence the power to detect QTL. To the best of our knowledge,
however, the relative contribution of the individual factors to increas-
ing the power is unknown.
The objectives of this work were to evaluate the power of QTL

detection of various multi-parental mating designs for Arabidopsis
thaliana on the basis of different scenarios, as well as to assess the
reasons for the observed differences.

MATERIALS AND METHODS
Our study was based on an empirical data of 20 A. thaliana accessions, namely

Bay-0, Bor-4, Br-0, Bur-0, C24, Col-0, Cvi-0, Est-1, Fei-0, Got-7, Ler-1, Lov-5,

Nfa-8, Rrs-7, Rrs-10, Sha, Tamm-2, Ts-1, Tsu-1 and Van-0 (Clark et al., 2007).

These inbreds were selected on the basis of polymorphisms in 876 genome-

wide distributed fragments from a sample of 96 A. thaliana genotypes to

capture the maximum genetic diversity (Nordborg et al., 2005). A total of

648 570 non-redundant single-nucleotide polymorphisms (SNPs) was available

for these inbreds (Clark et al., 2007). For this study, 653 sets of markers, each

comprising five closely linked SNPs, were selected from the total number of

SNPs (Supplementary File S1). The five SNPs of a haplomarker were located

within a physical map distance of 300–3000 bp. Each set of five SNPs was

considered to be one multi-allelic marker locus called the haplomarker. The 653

haplomarkers were evenly distributed throughout the physical map of

A. thaliana. Genetic map positions for the haplomarkers were lacking. There-

fore, the physical map position of the middle SNP of each haplomarker was

linearly projected on to the genetic map (Singer et al., 2006), resulting in an

average genetic map distance of B0.7 cM. The number of haplotypes per

haplomarker ranged from two to nine with an average of five.

Mating designs
The 20 A. thaliana accessions were used to examine eight different mating

designs using computer simulations.

In the first design, here referred to as the reference (REF) design, the PI line

Col-0 was crossed with the other 19 PI lines (Supplementary Figure S1). Each

hybrid was selfed for four generations to create a set of N RILs (Supplementary

Figure S2).

For the REF design with sibling mating (REFS), sibling mating was

performed for three generations among the progenies of each of the 19 F1
hybrids, which were designated in our study as subpopulations. Each of the

S¼19 sibling mating subpopulations consisted of five individuals. The 950

individuals of the third sibling-mating generation were selfed for four genera-

tions to create a set of N RILs (Supplementary Figure S2).

For the diallel cross (DC) design, each PI line was crossed with the other 19

PI lines, resulting in a total of 190 different F1 hybrids (Supplementary Figure

S3). Each hybrid was selfed for four generations to create a set of N RILs.

For the DC with sibling-mating design (DCS), sibling mating was performed

for three generations among the progenies of each of the 190 F1 hybrids, which

were designated in our study as subpopulations. Each of the S¼190 sibling-

mating subpopulations consisted of five individuals. The 950 individuals of the

third sibling-mating generation were selfed for four generations to create a set

of N RILs.

For the DC with random mating design (DCR), random mating was

performed for three generations among the progenies of all the 190 F1 hybrids

from the DC design. The 950 individuals of the third random mating

generation were selfed for four generations to create a set of N RILs

(Supplementary Figure S2).

For the four-way hybrids cross design (FHC), the 20 PI lines were crossed in

pairs to create 10 F1 hybrids. The 10 F1 hybrids were further crossed in pairs to

establish S¼5 subpopulations with a total of N four-way hybrids (Supplemen-

tary Figure S4). Each of the N four-way hybrids was selfed four times to

generate N RILs.

For the two-way hybrids DC design (THDC), the 20 PI lines were crossed in

pairs to create 10 F1 hybrids. The 10 F1 hybrids were crossed in a half diallel to

establish S¼45 subpopulations with a total of N four-way hybrids (Supple-

mentary Figure S5). N RILs were created by selfing these individuals for four

generations.

The four-way hybrids DC design (FHDC) was examined in two scenarios.

For the FHDC10 design, 20 PI lines were crossed in pairs to create 10 F1
hybrids. These 10 F1 hybrids were crossed in pairs to establish five subpopula-

tions with 10 four-way hybrids per subpopulation. The four-way hybrids were

crossed in a half diallel such that each four-way hybrid was crossed with one

individual from the other subpopulations (Supplementary Figure S6) to

establish the S¼10 subpopulations. With this procedure, a total of N F3
individuals was generated from which N RILs were obtained by four genera-

tions of selfing. The FHDC100 design differed from the FHDC10 design by

involving 100 instead of 10 four-way hybrids per subpopulation.

The number of individuals per subpopulation S was calculated in a two-step

procedure. First, the minimum number of individuals per subpopulation was

calculated as IN/Sm, which is the integer part of N/S. Second, a number of

N�IN/Sm*S random subpopulations was assigned one additional individual.

The number of required generations, as well as the total number of individuals

across all generations differed considerably among the examined designs (Table 1).

The mating designs were compared on the basis of different scenarios, which

differed with respect to the population size N¼1250, 2500, 5000, heritability

and number of QTL. Choice of heritability and number of QTL will be

described in the following.

Genotypic and phenotypic values
A total of 50 simulation runs were performed for each of the examined mating

designs. For each run, three subsets of haplomarkers l¼25 50 100 were

randomly sampled without replacement from the linkage map and defined

as QTL. The maximum genotypic effect per QTL ak with k¼1,2, y l was

drawn randomly without replacement from the geometric progression ak¼a0q
k,

with a0¼100(1�q)/(1�ql) and q¼0.90 for 25 QTL, q¼0.96 for 50 QTL, and

q¼0.99 for 100 QTL (Lande and Thompson, 1990). The number of alleles per

QTL n was given by the number of haplotypes at the sampled haplomarker. The

effect of each QTL allele at a given locus was randomly drawn without

replacement from the arithmetic progression akm ¼ ak � ððm� 1Þak=ðn� 1ÞÞ
with m¼1,2,y,n, where the effect ak given from the geometric progression was

gradually reduced to zero and the number of steps was given by the number of

alleles n that are present at this locus. The genotypic value of an individual was the

sum of all of its QTL effects. From the genotypic values of the set of PIs, the

genotypic variance sg2 was calculated (Valdar et al., 2006), which was the same for

all mating designs. The phenotypic values of the RILs of each subpopulation were

generated by adding a realization from a normal distributionN(0,(1�h2)sg2/h2) to
the genotypic values of the RILs, where h2 denotes the heritability. For our

simulations, h2¼0.5, 0.8 was assumed.

All simulations were performed with the software PLABSOFT (Maurer et al.,

2007), which is implemented as an extension of the statistical software R (R

Development Core Team, 2009). The data can be found under the following

doi:10.5061/dryad.gn6hg74q.

QTL detection method neglecting population structure
The comparison of statistical analyses concerning the power requires an equal

empirical type I error rate a*. To meet this requirement, the following two-step

procedure for QTL detection was applied. First, a stepwise multiple linear

regression was used to select a set of cofactors, based on the Bayesian

information criterion. The model was:

y ¼ l+
X

c2C

Xn

j¼2

bcjxcj+e ð1Þ

where y is the vector of the phenotypic values of all RILs, l is the intercept

vector, C is the set of haplomarkers that are selected as cofactors, bcj is the

partial regression coefficients of the jth haplotype at the cth cofactor, xcj is an

incidence vector of the jth haplotype at the cth cofactor, and e is the vector of
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residual errors. To avoid overparameterization, the first allele effect for every

haplomarker was set to zero. The assumption for the QTL analysis was that the

number of haplomarkers was so high that each QTL has a haplomarker, which

is in complete linkage disequilibrium with the QTL. Therefore, all haplomar-

kers, including those treated as QTL, were included in the QTL detection

procedure.

In the second step, a P-value for the association of each haplomarker i with

the phenotypic value was calculated. For this, an analysis of variance with a full

model against a reduced model was calculated. The full model was:

y ¼ l+
Xn

j¼2

bijxij+
X

c2C
c 6¼i

Xn

j¼2

bcjxcj+e ð2Þ

where bij is the partial regression coefficient and xij is the incidence vector of the

jth haplotype at the ith haplomarker. In the reduced model, the ith haplo-

marker was neglected. Model (2) indicates that for the analysis of variance of a

specific haplomarker, only those cofactors are used which are not identical to

the haplomarker under consideration. This constraint is inevitable to detect

also those QTLs for which a cofactor was selected in the first step.

The QTL detection was performed using the statistical software R (R

Development Core Team, 2009).

QTL detection method considering population structure
The following random model was used:

y ¼ l+g+e ð3Þ
where the random individual effects g are N(0, Kvg), K is the variance–

covariance relationship matrix, and vg is the additive genetic variance. The

relationship matrix was calculated from pedigree records or based on the

proportion of shared haplomarker for each pair of individuals (Zhao et al.,

2007). The random model was fitted using the statistical software ASReml

(Gilmour et al., 2009) and the R package GenABEL (Aulchenko et al., 2007).

For QTL detection, the above described two-step procedure was used, where

instead of phenotypic values, the residuals of the random model (3) were

considered as dependent variables (Aulchenko et al., 2007).

Power calculation
As the haplomarkers that were considered as QTLs were known, the power to

detect a QTL 1�b* was calculated as follows. For each scenario, the nominal

a-level was chosen in such a way that the empirical type I error rate a* was 0.5,
0.1, 0.01, 0.001, 0.0001 or 0.00001. The power for QTL detection 1�b* was

calculated on the basis of these a levels as proportion of correctly identified

QTLs from the total number of QTLs l (Stich, 2009).

For each scenario, a Kruskal–Wallis test was performed on the 50 replica-

tions to examine the presence of significant differences among all mating

designs. If this test was significant, a Mann–Whitney test was performed to

calculate the asymptotic P-values for pairwise differences. The pairwise differ-

ences (significance level Po0.05) were presented via letter-based comparisons

(Piepho, 2004).

Genome structure analysis
We calculated the number of recombination breakpoints as the average number

of alterations between the parental genomes along the genome of one

individual in the mapping population of the considered mating designs.

Furthermore, we inferred the number of PIs that contributed to the genome

of an individual of a mapping population. In both cases, identity by descent

was considered as the reference point. For all mating designs, the average of

measures across all individuals and all replications was calculated.

RESULTS

Mating designs
The lowest average number of recombination breakpoints per indivi-
dual was nine for the REF and DC designs (Table 2). For the REFS and
DCS design, sibling mating increased the number of recombination
breakpoints to 12.7. The highest number of recombination break-
points was observed with 20.2 for the DCR mating design.
The average number of combined parental genomes per individual

in the mapping population was two for the REF, REFS, DC and DCS
designs. The highest number of combined parent genomes was 9.4 per
individual for the DCR design.
The allele frequency of 2.3 of the five alleles at an average QTL was

0.05 (Figure 1). In the REF and REFS design, the frequency of most of
the alleles was 0.025, whereas for the other mating designs, values of
about 0.05 were observed. For the DCS, DCR, FHDC10 and
FHDC100, allele frequency changes due to genetic drift were observed
(Figure 1).

Method neglecting population structure during QTL detection
For the scenario with 5000 RILs and h2¼0.5, the power across all
mating designs decreased from the variant with 25 QTLs to the variant
with 100 QTLs from 0.72 to 0.27, whereas the variant with 50 QTLs
had a power of 0.57 (Figure 2; Supplementary Table S1). In the
scenario with h2¼0.8, the power to detect QTL was higher and ranged
across all mating designs from 0.91 to 0.64 for 25 to 100 QTLs,
respectively.
The reduction of the number of RILs from 5000 to 2500 and

1250 individuals led to a decrease of the power to detect a QTL for
all mating designs (Table 3). The power trends observed in the

Table 1 Number of individuals per cross and number of crosses, and selfings

REF REFS DC DCS DCR FHC THDC FHDC10 FHDC100

P 20� 20� 20� 20� 20� 20� 20� 20� 20�
F1 19# 19# 190# 190# 190� 10� 10� 10� 10�
F2 5000# 950� 5000# 950� 950� 5000# 5000# 50� 500�
F3 5000# 950� 5000# 950� 950� 5000# 5000# 5000# 5000#

F4 5000# 5000# 5000# 5000# 5000# 5000# 5000# 5000# 5000#

F5 5000 5000# 5000 5000# 5000# 5000# 5000# 5000# 5000#

F6 — 5000# — 5000# 5000# 5000 5000 5000# 5000#

F7 — 5000# — 5000# 5000# — — 5000 5000

F8 — 5000 — 5000 5000 — — — —

Sum individuals 20019 26 919 20190 27 090 27090 25 010 25010 25 060 25510

Crosses (�) 19 1919 190 2090 2869 15 55 115 1015

Selfings (#) 15019 20 019 15190 20 190 20000 20 000 20000 20 000 20000

Abbreviations: DC, diallel cross; DCR, DC with random mating; DCS, DC with sibling mating; FHC, four-way hybrids cross; FHDC, four-way hybrids DC with 10 or 100 individuals per F2
subpopulation; REF, reference design; REFS, REF with sibling mating; THDC, two-way hybrids DC.
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scenarios with N¼1250 and N¼2500 were identical to those
with N¼5000, irrespective of the number of QTLs and h2 values
considered.
The power decreased with the empirical a* level, but the ranking of

the mating designs with respect to the power was largely unchanged
(Supplementary Figures S7–S13). The ranking of the mating designs
also remained constant across all examined QTL and h2 scenarios. The
DCR mating design showed the highest power and the REF design
showed the lowest power. The difference in power (a*¼0.01) between
these designs was significant (significance level of 0.05) for all
examined scenarios (Supplementary Tables S2–S9). The mating
designs with sibling mating (REFS and DCS) had a significantly
higher power than the same mating designs without sibling mating
(REF and DC).

Methods considering population structure during QTL detection
All mating designs with the exception of DCR were also examined
with QTL detection methods, considering the population structure
based on pedigree information. For all examined mating designs, the
power to detect QTL was lower for the methods considering popula-
tion structure than for that neglecting population structure (Table 3).
For all mating designs, the power of the analysis considering popula-
tion structure calculated from haplomarker information was lower
than for the analysis considering pedigree population-based structure
(Supplementary Figures S14, S15; Supplementary Tables S10, S11).
The ranking of the mating design was not influenced by the QTL
detection method.

DISCUSSION

Factors influencing the power to detect QTL
In our study, the power to detect QTL of the REF and DC design was
considerably lower than that observed by Stich (2009). This finding
can be explained by the different benchmarks of residual variance and
hence, of heritability used in these two studies when simulating
phenotypic values. Stich (2009) considered the genetic variance per
subpopulation, whereas we used the genetic variance of the PIs as the
basis for the simulation of phenotypic values. A second reason is the
number of degrees of freedom required in the stepwise regression in
our study due to the higher number of assumed alleles compared with

the study of Stich (2009). This leads to a decreased number of selected
cofactors, which in turn reduces the power to detect QTL.
In our study, we assumed that the haplomarkers were in complete

linkage equilibrium with the QTL, which increases the power in
comparison with experimental data where linkage is not complete.
This simplification, however, is the same for all examined mating
designs and thus, is expected not to influence the ranking of the
mating designs.
We observed a lower power to detect QTL for the approaches taking

population structure into account than for the approaches neglecting
this information (Table 3). This finding can be explained by the fact
that association between haplomarkers, which differ only in state
between subpopulations, and the phenotype cannot be as simply
detected when population structure is corrected for during the QTL
analysis (Yu et al., 2006; Sneller et al., 2009; Brachi et al., 2010). The
analyses considering population structure calculated from haplomarker
information were more effective in reducing the risk of false-positive
QTL than the analyses considering population structure calculated
from the pedigree information. However, our strategy for calculating
the significance threshold, which is described in detail in material and
methods, masks this advantage. Furthermore, our results suggested
that under a fixed empirical type I error rate, the former analysis leads
to a lower power compared with the latter analysis.
In contrast to studies based on experimental data, the QTL under-

lying the phenotypic variation are known in studies using computer
simulations. Therefore, in the latter case, it is possible to calculate the
significance threshold in such a way that it is not influenced by false-
positive associations due to population structure, as outlined in
materials and methods. This, however, makes a comparison between
the different QTL detection methods unfair. Nevertheless, it allows in
our study to compare different designs with respect to their QTL
detection power, despite their difference in the importance of popula-
tion structure. When analyzing experimental data of the examined
mating designs, however, population structure has to be considered to
control the nominal type I error rate (data not shown).
As the ranking of the examined mating designs with respect to the

power was largely constant across the studied scenarios, we discuss
in the following only on the results of the scenario with h2¼0.5, 50
QTLs, N¼5000, a*¼0.01, and considered the QTL detection method
neglecting the population structure.

Comparison of the examined mating designs
We examined the power of the REF design, which is similar to the
design used to establish the nested association-mapping population
(Yu et al., 2008; McMullen et al., 2009). This value was compared with
that of the DC design, which corresponds to the design described by
Rebaı̈ and Goffinet (1993). Across all examined scenarios, we observed
a higher power to detect QTL for the DC design than for the REF
design (Table 3, Supplementary Table S1). Our observation accords
with the findings of Stich (2009). This difference in power estimates
between the REF, and the DC design can be explained by differences
in genetic variance, which are caused by difference in allele frequen-
cies. The allele frequency differences are due to the crossing scheme
underlying the REF design, and the fact that not all parental genotypes
contribute to the same extent to the segregating population. The
alleles of the common parent have a high allele frequency, whereas the
alleles of the other parents occur less frequently. In the DC design,
however, crosses between all PIs are created and thus, the allele
frequency should remain unchanged compared with that of the PIs.
This explanation accords with the observed allele frequency pattern
(Figure 1).

Table 2 Mean number and s.d. of recombination breakpoints and

combined parental genomes per individual

Mating design No. of recombination

breakpoints

No. of combined

parental genomes

Mean s.d. Mean s.d.

REF 9.0 3.1 2.0 0.0

REFS 12.7 3.7 2.0 0.0

DC 9.0 3.1 2.0 0.0

DCS 12.7 3.7 2.0 0.0

DCR 20.2 4.5 9.4 1.5

FHC 13.1 3.7 4.0 0.2

THDC 13.1 3.7 4.0 0.2

FHDC10 17.2 4.2 7.4 0.7

FHDC100 17.2 4.2 7.4 0.7

Abbreviations: DC, diallel cross; DCR, DC with random mating; DCS, DC with sibling mating;
FHC, four-way hybrids cross; FHDC, four-way hybrids DC with 10 or 100 individuals per
F2 subpopulation; REF, reference design; REFS, REF with sibling mating; THDC, two-way
hybrids DC.
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Another interesting question is how the number of combined
genomes per individual influences the power. Therefore, the THDC
and FHC designs were examined. The THDC design is similar to the
Arabidopsis multi-parental RIL design (Paulo et al., 2008;
Huang et al., 2011), where the PIs are crossed in pairs to create
two-way hybrids, which were then crossed in a diallel. Instead of a
diallel cross, the FHC had a second generation of pairwise hybridisa-
tions. In all examined scenarios, the FHC design and the THDC
design had a higher power to detect QTL than the DC design (Table 3,
Supplementary Table S1). This difference can be explained by the
higher number of combined parental genomes per individual for
THDC and FHC than for the DC design (Table 2). This, in turn,
results in the combination of one QTL allele with more diverse genetic
backgrounds, which increases the power.

The THDC design showed a higher power than the FHC design
(Figure 2). The FHC and the THDC had the same number of
recombination breakpoints, as well as the same number of combined
parental genomes per individual (Table 2). However, as discussed
above for the REF and the DC design, the THDC design is based on
the combination of all PIs, which is not the case for the FHC design.
Therefore, the THDC design has a higher power than the FHC design.
The FHDC design is a combination of the Arabidopsis multi-

parental RIL design and the multi-parent, advanced generation inter-
cross design (Cavanagh et al., 2008). For all examined scenarios, we
observed a higher power for the FHDC10 and FHDC100 designs
compared with the THDC design, despite the only marginally
increased crossing effort (Table 3). The difference between the
FHDC and the THDC design can be explained by a higher number
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Figure 1 Histograms of the allele frequencies at an average QTL for the following mating designs compared with PI: REF, REFS, DC, DCS, FHC, THDC and

FHDC with 10 or 100 individuals per F2 subpopulation (FHDC10 or FHDC100).
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of combined parental genomes per individual as was discussed before
for THDC versus DC designs.
We observed a higher power for the FHDC100 than for the

FHDC10 design (Table 3). This difference can be explained by the

reduced effect of genetic drift, that is, the random changes of the allele
frequency, in the former than in the latter design. In the FHDC10
design, one of the allels at an average QTL got lost in some of the
replications (Figure 1).
For the designs with sibling mating (REFS and DCS), we observed a

higher power than for the designs without sibling mating (REF and
DC) in all examined scenarios (Figure 2). The increase in power by
sibling mating accords with earlier results (Rockman and Kruglyak,
2008), and is due to a slower increase of homozygosity by sibling
mating compared with selfing. This leads to a more genetic recombi-
nation in the segregating populations and thus, to a better resolution,
but also to a higher power in the detection of QTLs (Vales et al., 2005;
Rockman and Kruglyak, 2008). However, the increase in power by
sibling mating within subpopulations is small compared with the
random crosses of the DCR design.
The DCR design is similar to the design described by Kover et al.,

(2009), for which three generations of random crosses among all
progenies followed a diallel cross. Our results indicated that this
strategy has a higher power than the DCS design. This finding can
be explained by the higher probability that recombination leads to
new allele combinations for the DCR than for the DCS design. Our
explanation is in agreement with the observation that the detected
number of recombination breakpoints per individual differed con-
siderably (Table 2). This result indicated that populations with a high
number of combined parental genomes have a higher effective
recombination rate, which means that recombination occurs more
often between genomes of different parents. Furthermore, the finding
that the DCR design requires the same effort for establishing the
population as the DCS design suggests that the DCR is a very
promising approach for creating multi-parental RIL populations.

CONCLUSIONS

Our results indicate that crossing all PIs in a diallel and creating
segregating populations from each F1 hybrid is a promising way of
creating a multi-parental population for QTL detection. However, a
diallel cross of PIs followed by hybrid crosses or random crosses
among the F1 increases the number of combined parental genomes
and results in an even higher power. Sibling mating increases the
number of recombinations, but not the number of combined parental
genomes, and is therefore less effective than the former described
crossing strategies. A crossing strategy like the REF design results in
populations with low power and is only useful in specific situations,
for example, when the genetic diversity must be reduced to allow
testing all entries in the same field experiment. The similar ranking of
the examined mating designs across all studied scenarios suggests that
our results are broadly applicable.
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Table 3 Power to detect QTLs and the corresponding s.e. across

replications, for different population sizes (N), for QTL detection

approaches, NPS or CPS, calculated from the P or M information

Mating design Value NPS CPS�P CPS�M

N¼1250 N¼2500 N¼5000 N¼5000 N¼5000

REF Power 0.22 0.31 0.42 0.34 0.30

s.e. 0.010 0.011 0.015 0.015 0.007

REFS Power 0.24 0.35 0.46 0.39 0.31

s.e. 0.010 0.013 0.015 0.018 0.008

DC Power 0.29 0.37 0.50 0.39 0.34

s.e. 0.012 0.013 0.013 0.016 0.008

DCS Power 0.30 0.43 0.57 0.45 0.38

s.e. 0.012 0.015 0.013 0.016 0.007

DCR Power 0.42 0.55 0.68 Not

applicable

0.43

s.e. 0.013 0.017 0.014 0.008

FHC Power 0.36 0.44 0.56 0.53 0.37

s.e. 0.010 0.012 0.014 0.016 0.007

THDC Power 0.35 0.48 0.60 0.54 0.40

s.e. 0.011 0.014 0.015 0.014 0.007

FHDC10 Power 0.37 0.51 0.65 0.62 0.40

s.e. 0.013 0.014 0.012 0.013 0.006

FHDC100 Power 0.40 0.54 0.66 0.64 0.42

s.e. 0.013 0.012 0.013 0.015 0.007

Abbreviations: CPS, considering population structure; DC, diallel cross; DCR, DC with random
mating; DCS, DC with sibling mating; FHC, four-way hybrids cross; FHDC, four-way hybrids DC
with 10 or 100 individuals per F2 subpopulation; M, marker; NPS, neglecting population
structure; P, pedigree; QTL, quantitative trait loci; REF, reference design; REFS, REF with
sibling mating; THDC, two-way hybrids DC. A total of 50 QTL and a heritability of 0.5 was
assumed. The empirical type I error rate a* was 0.01. For the DCR design, random mating was
performed across all subpopulation and thus, no P-based population structure exists.
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