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Overview of techniques to account for confounding
due to population stratification and cryptic
relatedness in genomic data association analyses
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Population-based genomic association analyses are more
powerful than within-family analyses. However, population
stratification (unknown or ignored origin of individuals from
multiple source populations) and cryptic relatedness (unknown
or ignored covariance between individuals because of their
relatedness) are confounding factors in population-based
genomic association analyses, which inflate the false-positive
rate. As a consequence, false association signals may arise in
genomic data association analyses for reasons other than true
association between the tested genomic factor (marker
genotype, gene or protein expression) and the study pheno-
type. It is therefore important to correct or account for these

confounders in population-based genomic data association
analyses. The common correction techniques for population
stratification and cryptic relatedness problems are presented
here in the phenotype–marker association analysis context,
and comments on their suitability for other types of genomic
association analyses (for example, phenotype–expression
association) are also provided. Even though many of these
techniques have originally been developed in the context of
human genetics, most of them are also applicable to model
organisms and breeding populations.
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Introduction

In genomic data association analysis, putative functional
links can be identified by relating the measurements from
single genomic data type to other data sources such as
observed phenotypes, gene or protein expressions, mole-
cular markers, functional classifications or cellular re-
sponses (for example, Risch and Merikangas, 1996; Jansen
and Nap, 2001; Jansen et al., 2002; Bhattacharjee et al.,
2008). Quantitative and qualitative traits are commonly
studied by using the methods developed for phenotype–
marker association analysis. These same methods can also
be used to find regulatory pathways or patterns control-
ling gene expressions (eQTLs) and protein expressions
(pQTLs) by treating the expression level of the gene or
protein as a classical quantitative phenotype (Jansen and
Nap, 2001; Bystrykh et al., 2005; Foss et al., 2007). Other
possible links can be identified by using phenotype–
expression and phenotype–protein association analysis as
well as simultaneous association analysis of multiple data
types (Hoti and Sillanpää, 2006; Bhattacharjee et al., 2008;
Sillanpää and Noykova, 2008; Bhattacharjee and Sillanpää,
2009). Complementary evidence provided by different

data sources can be joined together afterwards to study
supported overlapping genomic regions (Aune et al., 2004;
Bhattacharjee et al., 2008).

Genome-wide (population-based) association analysis
is generally considered to be a main tool to infer
causative links between genomic marker data and
phenotype (Risch and Merikangas, 1996; McCarthy and
Hirschhorn, 2008). This happens regardless of problems
such as genetic heterogeneity (Terwilliger and Weiss,
1998; Sillanpää and Bhattacharjee, 2006), winner’s curse
(Lande and Thompson, 1990; Beavis, 1998; Göring et al.,
2001; Xiao and Boehnke, 2009) and missing heritability
(Maher, 2008; McCarthy and Hirschhorn, 2008; Slatkin,
2009). A particular property of marker data is the
systematic spatial dependence along the chromosome.
In gene- and protein-expression data, the spatial depen-
dence of expression values at neighbouring genes (or
mass-to-charge ratios) is not well established. However,
it is possible that the normalization method used will
induce some spatial dependence to the expression data.
It is also common to assume the presence of some other
form of dependence in the data, namely that the
expressions of genes belonging to the same pathway
are highly dependent on each other. Exception for the
theme is provided by protein antibody microarrays (used
in studies of cancer immune responses) in which the
presence of spatial dependence is evident (Wu et al.,
2009). It is good to keep in mind differences between
data types, as they affect the applicability of the methods
reviewed in this study.
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In a population-based phenotype–marker association
study, we hope that study individuals are distantly
related at the small genome regions (containing the trait
loci) so that there is systematic linkage disequilibrium
generated by rare occurrence of recombination
events within these regions during a large number of
meioses in the ancestral pedigree. At the same time,
individuals in the study sample are assumed to be
mutually independent (unrelated or equally related to
each other). However, this assumption does not hold for
individuals showing more complex relationship struc-
tures, and the potential existence of such discrepancy in
the data is generally known as a cryptic relatedness
problem (for example, Devlin and Roeder, 1999; Voight
and Pritchard, 2005; Zhang and Deng, 2010). In cryptic
relatedness, relationships between individuals in the
sample are typically either completely known (for
example, pedigrees or families are available) or un-
known (for example, a sample of potentially related
individuals). The existence of individuals originating
from multiple source populations in the study sample
may create another problem known as population
stratification (for example, Lander and Schork, 1994;
Cardon and Palmer, 2003). In addition, in this case, the
population structure may be either known (for example,
a sample of very distinct populations) or unknown (for
example, a random sample of individuals from a single
or multiple sites).

It is well known that population-based genomic data
association analyses generally suffer from confounding
because of population stratification (inability to divide
the variance into within- and among-population compo-
nents) and cryptic relatedness (inability to account for
varying within-population relationships among study
individuals). If not properly accounted for, spurious
associations may occur in the genomic data association
analyses because of these confounding factors (stratifica-
tion or cryptic relatedness) rather than real association
between the tested genomic factor and the trait value.
Population stratification is a more widely discussed topic
than cryptic relatedness. Yet, several papers on both
topics can be easily found in phenotype–marker associa-
tion studies (Lander and Schork, 1994; Cardon and
Palmer, 2003; Yu et al., 2006; Kang et al., 2008), and also in
phenotype–expression association studies (Gibson, 2003;
Kraft and Horvath, 2003; Kraft et al., 2003; Lu et al., 2004)
and clinical quantitative trait locus studies in which
phenotype is simultaneously explained by multiple data
types (Hoti and Sillanpää, 2006; Pikkuhookana and
Sillanpää, 2009). It may be noted that in some cases, for
example, in model organisms, population stratification
and cryptic relatedness may both be needed to be
corrected simultaneously (Yu et al., 2006; Kang et al.,
2008; Stich et al., 2008).

In the first section, we will cover the most common
approaches to controlling population stratification.
In the second section, we will consider approaches for
cryptic relatedness. Finally, we consider the use of
estimation-based variable selection and multilocus
association models and their robustness to these
confounding factors. In each point, the methods are
presented for determining phenotype–marker associa-
tion, but the suitability of each approach is also
commented for other types of genomic data association
analyses.

Approaches for population stratification

In principle, it is possible to minimize the risk of
population stratification by carefully selecting the study
material from a genetically isolated population, or by
using stringent ethnic origin criteria. Otherwise, in
population-based association studies, the current techni-
ques to overcome the problem of hidden population
structure (stratification) can roughly be divided into the
following categories: (1) stratified analysis, (2) genomic
controls, (3) structured association, (4) smoothing, (5)
principal component approach, (6) matching, (7) ap-
proaches based on relationship information and, finally,
(8) use of secondary samples. Even though most of these
approaches have been considered only together with
genetic marker data, they may be arguably applicable
with small changes also for other data types (that is, use
of gene and protein expressions as explanatory
variables). In the following, we shortly present the
underlying ideas behind these approaches.

Stratified analysis
If groups of individuals are known or have been
observed before the analysis, it is possible to study
within-group genomic associations, which are robust to
population stratification (Clayton, 2007). Completely
separate within-group (within strata) analyses will
decrease the overall statistical power because of small
sample sizes, but it is also possible to combine within-
group information in the test statistic or joint likelihood.
The family-based association test methods rely on this
principle by using family as unit for a known group
(Lange et al., 2002; Horvath et al., 2004).

Unfortunately, within-group membership information
or families are not always easy to collect and one can try
to approximate membership information (construct
approximate ‘families’) based on some other information
that is available, for example, self-identified ethnicity in
human data (see Tang et al., 2005), known location where
individuals’ grandparents lived, or estimate the most
likely ancestry (population assignment) or pairwise
relatedness based on an independent set of molecular
markers (for example, Lynch and Ritland, 1999; Pritchard
et al., 2000a; Weir et al., 2006). For within-population
stratified analyses, see the section ‘Structured associa-
tion’. It is, however, known that population-based
association studies even with related individuals are
statistically more powerful than family-based (within
family) association studies (Teng and Risch, 1999; Havill
et al., 2005; Aulchenko et al., 2007a; Hernandéz-Sánchez
et al., 2003). Thus, other ways of correcting for population
stratification than this may be more favourable.

Genomic controls
In the genomic control approach, one modifies (adjust)
the threshold P-value on the basis of a neutral set of
independent markers—null markers (genetic marker
panel) providing information on the adequate adjust-
ment factor (Devlin and Roeder, 1999; Banacu et al., 2002;
Zheng et al., 2006). The adjustment factor (l) describes
variance inflation, that is, reduction in effective sample
size (EN/l), where N is the original sample size (see
Hinds et al., 2004). The underlying assumption for this
method is that all the spurious association signals are
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smaller than the real signals, so that it is possible to
handle the problem by adequately adjusting the thresh-
old value. It is assumed that this external set of markers
does not include any trait-associated loci. The benefit of
this approach is that one does not need to make any
assumptions on the number of subpopulations. Different
variants of the genomic control approach have been
considered and compared by Dadd et al. (2009). An
improved version of this approach was presented by
Wang (2009), in which, instead of using a single
adjustment factor, one can use several of them. However,
it has been argued that the genomic control approach
suffers from weak statistical power when the effect of
population structure is large, as is common in model
organisms (Yu et al., 2006; Kang et al., 2008). In principle,
by using the genomic control approach, it should be
possible to construct a related genomic control adjust-
ment factor based on the neutral gene expression data,
which can then be applied for testing phenotype–
expression association.

Structured association
In the structured association, unknown population
membership probabilities are first estimated using
population assignment methods (for example, Pritchard
et al., 2000a; Dawson and Belkhir, 2001; Corander et al.,
2003; Falush et al., 2003; Alexander et al., 2009). These
probabilities are subsequently used in association
analysis (Pritchard et al., 2000b; Thornsberry et al., 2001;
Yu et al., 2006). Phenotype–marker association at candi-
date locus can be tested within subpopulations using
likelihood ratio test (Pritchard et al., 2000b; Thornsberry
et al., 2001). Alternatively, the association model can
include the subpopulation mean terms weighted with
individual membership probabilities (Yu et al., 2006).
Versions of the method in which both of these tasks
(estimation of population memberships and phenotype–
marker association) are carried out simultaneously exist
(for example, Satten et al., 2001; Ripatti et al., 2001;
Sillanpää et al., 2001; Hoggart et al., 2003). In all of these
structured association methods, population member-
ships are estimated on the basis of neutral set of
independent markers (genetic marker panel). For excep-
tion to this, see Sillanpää and Bhattacharjee (2006). It may
be noted that the structured association approach has
been recently extended to genome-wide sets of marker
loci (Alexander et al., 2009). Generally, it is easy to
include the subpopulation mean terms also in other
types of genomic (that is, phenotype–expression or
phenotype–protein) association models or in models that
consider marker and expression data jointly to explain
the phenotype.

Smoothing
The idea in the smoothing approach is that the signal is
smoothed along the chromosome according to an expo-
nential decay or some other spatial function, depending
on the genetic or physical map distances (Conti and
Witte, 2003; Sillanpää and Bhattacharjee, 2005; Tsai
et al., 2008). This is feasible for a tightly linked set of
markers that are in considerable linkage disequilibrium
with each other. In such a setting, neighbouring markers
are used to strengthen the weak but real association
signals and smooth the spurious association signals

downwards. A similar control approach for spurious
peaks has also been proposed for proteomics data sets, in
which protein intensity peaks are smoothed with respect
to the neighbouring locations (Du et al., 2006) and
according to the m/z distance between the positions
(Bhattacharjee et al., 2008). For a related smoothing
approach for expression data, see Sillanpää and Noykova
(2008).

Principal component approach
The use of principal component analysis to correct
the stratification in structured populations has been
suggested (Patterson et al., 2006; Price et al., 2006; Zhu
et al., 2008). One proceeds by assuming that an external
set of neutral molecular markers is available and any of
them is not associated with the trait of interest. Principal
components are first estimated from the correlation
matrix of external marker genotypes of unrelated
individuals (Price et al., 2006). Then, the first few
principal components (explaining most of the underlying
variation) are used as regression covariates in the
association model, or are incorporated into a randomiza-
tion test (see Kimmel et al., 2007). On minor levels of
stratification, one can simply omit samples that appear as
outliers in principal component approaches. In the
related method of Epstein et al. (2007), instead of
principal components, one uses components from a
partial least-squares regression. Owing to their ease of
implementation, these methods are very popular in
human genetics, even if the correction given by them
may fail, especially if the external marker set used is not
large (for example, Epstein et al., 2007; Lee et al., 2008;
Wang, 2009). It should be relatively easy to apply these
corrections (estimated either from external marker or
from expression data) to phenotype–expression and
phenotype–protein–expression association studies.

Matching
During the design stage of the study, it is possible to
collect pairs of individuals (full sibs or cousins; one
case and one control individual) that are otherwise
similar (that is, individually matched) with respect to
covariates such as ethnic background, sex, age and so on
(Gauderman et al., 1999; Zondervan et al., 2002). Group
matching refers to a similar process in which instead of
individuals, groups are matched. Even if matching could
eliminate the problem of population stratification, one
potential problem is over-matching (that is, reduction of
statistical power by unnecessary matching on too many
factors, which creates matched units that are too much
alike also in their phenotypes). To consider matching in
quantitative traits, phenotypically discordant sib-pair
collection strategies may be used (cf. Risch and Zhang,
1995).

Special procedures for genetic ancestry matching that
are applicable to existing data sets have been proposed
lately on the basis of the information on non-genetic
variables (Lee, 2004) and marker genotypes (Hinds et al.,
2004; Luca et al., 2008; Guan et al., 2009). In Hinds et al.
(2004), ancestry was estimated by population assignment
methods, and in Luca et al. (2008) by principal com-
ponents. These methods considered different strategies
for genetic ancestry group matching and removing
‘unmatchable outlier individuals’. Guan et al. (2009)
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proposed the use of identity-by-state-based simple
(dis)similarity measures as a tool for individual genetic
ancestry matching. Luca et al. (2008) emphasized the use
of ‘control databases’ in genome-wide association studies
and considered a problem wherein cases are sampled in
a quite different region from that of the controls.

Generalization and application of these techniques to
other forms of genomic association analysis should be
relatively easy.

Use of relationship information
Affected trios: The transmission and disequilibrium test
(TDT) allows to control for confounding by studying
association in the presence of linkage (Spielman et al.,
1993). Originally TDT was developed as a confirmatory
second test to filter real associations out of spurious
signals. This original motivation is well justified because
TDT has lesser power than ordinary association testing
(Long and Langley, 1999). However, TDT is nowadays
commonly used as a general test of association. The basic
version of TDT assumes binary phenotype, biallelic loci
and uses data on affected trios (unrelated cases and their
parents). At a given locus, it tests whether a certain allele
is transmitted from heterozygous parents to the affected
offspring more often than expected under Mendelian
segregation, and the observed segregation distortion is
taken as evidence for the locus having something to do
with the affection status. TDT has been generalized to
quantitative traits (Allison, 1997; Rabinowitz, 1997;
Abecasis et al., 2000), multiallelic markers (Sham and
Curtis, 1995), marker haplotypes (Clayton, 1999) and to
several data structures (Spielman and Ewens, 1998;
Abecasis et al., 2000). As handling of nonrandom missing
genotype data in parents is problematic, a robust version
of TDT has also been developed (Sebastiani et al., 2004).

Pseudo-control data: Another relationship information-
based approach to control for confounding is the so-
called pseudo-control approach, in which a sample
containing only affected cases (and their parents) is
collected and the artificial control sample is derived
indirectly on the basis of parental genotypes and
haplotypes. At each locus, pseudo-control individuals
have genetic material that was not transmitted from the
parents to the cases (for example, Falk and Rubinstein,
1987; Terwilliger and Ott, 1992; Lander and Schork, 1994;
Gauderman et al., 1999; Greenland, 1999). The benefit of
deriving the control sample in this way is that one
obtains well-matched controls and avoids spurious
associations because of ethnic confounding, that is,
closer kinship among the affected samples (Terwilliger
and Weiss, 1998). This pseudo-control approach has been
generalized also to multilocus association analysis and
single-tail sampling with quantitative traits (Sillanpää
and Hoti, 2007).

Pedigree data: More general approaches use pedigree
data, in which linkage information and association
information are combined (George et al., 1999; Lund
et al., 2003; Pérez-Enciso, 2003; Meuwissen and Goddard,
2004; Meuwissen and Goddard, 2007; Gasbarra et al.,
2009; Hernandéz-Sánchez et al., 2009), resulting in a
strong signal at true positions. Linkage information
confirms only the real associations and one obtains

weaker signals at the spurious positions, which provides
a way to control confounding in association studies.

In pedigree-based linkage analysis, founder indivi-
duals are generally assumed to be unrelated. However,
association information is also available in pedigrees,
when founders are related. Thus, combined analysis tries
to model also relationships between pedigree founders.
To do so, some assumptions (for example, from effective
population size) are often made from founders and/or a
recent history of the population (see for example,
Meuwissen and Goddard, 2001).

Correction methods using relationship information are
not easy to generalize to gene- or protein-expression data
because these approaches are based on the discrete
nature of the marker data and the linkage concept.

Use of secondary samples
The idea behind this approach is that analysis is carried
out jointly for two samples of data from the same study
population, but with different study designs: one
containing a population-based sample of individuals
(the association signal from these data suffers from
confounding) and the other sample comprising related
individuals (the association signal from these data is
robust to confounding; see above). As the overall signal
is a synthesis of the individual signals of two data sets, it
is likely to be relatively robust to confounding (for
example, Epstein et al., 2005; Kazeem and Farrall, 2005).
In addition, this ‘meta-analysis’ approach improves the
statistical power by combining information from multi-
ple data sets. For a review and comparison of different
secondary sample approaches, see Glaser and Holmans
(2009) and Infante-Rivard et al. (2009). Alternatively, it is
possible to analyse these two samples (with association
and linkage) separately and study the overlap between
the results (Manenti et al., 2009), or carry out association
testing conditionally on the linkage results (Cantor et al.,
2005).

As the use of secondary samples to correct for
population stratification relies on two separate samples,
issues relating to the presence of heterogeneity cannot be
fully ruled out (see Sillanpää and Auranen, 2004). In
addition, as this correction method is based on the use of
relationship information and marker linkage, this meth-
od is not easy to generalize to gene- or protein-
expression data. A variant in which two samples are
combined and population stratification is corrected for
by using the principal component approach (Zhu et al.,
2008) should also be applicable for gene- or protein-
expression data.

Approaches for cryptic relatedness

It is good to keep in mind that population stratification
and cryptic relatedness are two different problems and
correction methods typically consider only a single
problem at a time. Exceptions to this were the stratified
analysis, genomic controls and the use of relationship
information subsections above. Especially useful in this
respect may be the approaches in which linkage
information and association information are combined.
Otherwise, the current techniques to overcome the
problem of cryptic relatedness in population-based
association analysis can be divided into the following
categories: (1) infinite polygenic model, (2) regression
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covariates, (3) test-statistic accounting for relatedness
and (4) genomic controls. These techniques can be
generalized quite easily to the other genomic data
analyses. In the following, we shortly describe the ideas
behind these methods.

Infinite polygenic model
The classical approach to correcting for relatedness in the
sample is to include a polygenic component into the
population-based genomic association analysis model
(for example, George and Elston, 1987; Jannink et al.,
2001; Lu et al., 2004; Yu et al., 2006; Bradbury et al., 2007;
Pikkuhookana and Sillanpää, 2009). This practice is also
known as the measured genotype approach. Because
of the availability of large high-throughput association
data sets, it is more popular to use a recent variant of
this approach, called GRAMMAR (Amin et al., 2007;
Aulchenko et al., 2007a, b), in which residual dependen-
cies are first precorrected from data and repeated
(phenotype–marker) association analyses are carried
out for adjusted residuals using rapid methods. Even
though this approach was presented for marker data, it is
straightforward to use it (or measured genotype
approach) in concert with other types of genomic (for
example, phenotype-expression or other) association
analysis. Nevertheless, the precorrection approach
suffers from model misspecification. It underestimates
uncertainty in polygenic effects, and may reduce the
statistical power (cf. Martinez et al., 2005). Moreover,
estimation of variance components is known to be
unstable when sample sizes are small (Misztal, 1996;
Burton et al., 1999; Pikkuhookana and Sillanpää, 2009). In
any case, the GRAMMAR approach has been shown to
outperform many of the competing methods introduced
for pedigree-based association analysis (see Aulchenko
et al., 2007a). For unknown relationships, a relationship
matrix can be first estimated using various methods
(for example, Milligan, 2003; Leutenegger et al., 2003;
Blouin, 2003; Weir et al., 2006; Frentiu et al., 2008).
Interestingly, the use of a simple identity-by-state allele-
sharing matrix has recently been found to provide an
efficient alternative to more sophisticated methods in
correcting for cryptic relatedness-induced confounding
(Zhao et al., 2007; Kang et al., 2008). See also van de
Casteele et al. (2001) and Bink et al. (2008).

Regression covariate approach
An alternate approach to correcting for relatedness is to
use the method of Bonney (Bonney, 1986; Thomas, 2004).
This method approximates the influence of the infinite
polygenic model by having phenotypes of the parents,
the spouse and sibs of the participant as regression
covariates in the model (Bonney, 1986). Pikkuhookana
and Sillanpää (2009) compared the performance of these
two approaches (infinite polygenic model and regression
covariates) in Bayesian genomic association models and
found the regression covariate approach to perform
better for smaller genomic data sets. It may be noted that
their model considered the effects of marker genotypes
and gene expressions jointly in explaining the pheno-
type. Although this approach provides a framework for
including phenotypes from ungenotyped parents into
the analysis (cf. Purcell et al., 2005), it cannot be applied

in case of the unknown relatedness, as the phenotypes of
the relatives are generally not available.

Test statistic accounting for relatedness
The test statistics often used for population-based
association analysis assume the independence of indivi-
duals in the sample. Test statistics for population-based
phenotype–marker association testing among related
individuals (correlated family data) have been intro-
duced, for example, for (between-family) association in
family-based design (Teng and Risch, 1999) or for a more
general design using all the related and unrelated
individuals (Slager and Schaid, 2001). A similar kind of
test based on family-based (within-family) association
analysis has been developed for expression data (Kraft
et al., 2003). In case of unknown relationships, one can
start by estimating the family structure (or pairwise
relatedness) using an additional set of molecular markers
(for example, Gasbarra et al., 2007; Bink et al., 2008).
However, one should be careful here whether the test
statistic is measuring population-based or within-family
association. Unlike within-family association, popula-
tion-based association analysis with related individuals
suffers from population stratification, but has more
statistical power than family-based (within family)
association analysis, which was considered in the section
‘Stratified analysis’ (Teng and Risch, 1999; Slager and
Schaid, 2001). With modifications, it is possible to derive
suitable test statistics accounting for relatedness in
population-based association for gene- or protein-
expression data.

Genomic controls
Even though genomic control has been introduced to
control for population stratification, it has also been
suggested for handling cryptic relatedness (Devlin and
Roeder, 1999; Banacu et al., 2002; Yan et al., 2009). In this
method, variation inflation is corrected by adjusting the
test statistic based on the information from unlinked null
markers. This works also in case of unknown relatedness
because unlike the infinite polygenic model, one does not
need to estimate the pairwise relationships first. The
genomic control approach has also been suggested to be
useful for additional correction after the infinite poly-
genic model is fitted (Amin et al., 2007).

Use of estimation-based variable selection
and multilocus models

It may sound strange that by using estimation-based
variable selection and multilocus models (without a
correction term), one can automatically reduce the
number of false positives in genomic data association
analyses. However, there is increasing evidence that
Bayesian or frequentist multilocus modelling approaches
are flexible enough to automatically account or self-
correct for population stratification in binary traits
(Setakis et al., 2006), ordinal and censored traits (Iwata
et al., 2009), as well as in quantitative traits (Iwata et al.,
2007). In case of cryptic relatedness and quantitative
traits, the self-correction property of Bayesian multilocus
association approach was found by Pikkuhookana and
Sillanpää (2009). The robustness of the multilocus asso-
ciation approach to these problems results presumably
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from the fact that, during the estimation (variable
selection) process, other genetic components, few at
a time, could capture or explain a small amount of
confounding variation (see Pikkuhookana and Sillanpää,
2009). This is essentially so because in these approaches,
variable selection is done simultaneously with the effect
estimation (Kilpikari and Sillanpää, 2003; O’Hara and
Sillanpää, 2009) and large candidate panels jointly have
the potential to explain many types of variation. For a
close connection between the multilocus association
model and a polygenic model with realized relationship
matrix, see Hayes et al. (2009). However, additional
studies on the self-correction property of these ap-
proaches are needed before one can say anything
definitive on this, for example, on how much variability
in the markers is needed for self-correction approach to
be effective. In two-genotype data analysis (in which
there is only a single estimable effect coefficient at each
locus), Iwata et al. (2007) found that the use of a
correction term in the model still provides some
additional advantages over self-correction. However, it
is likely that using single-nucleotide polymorphism data
and by fitting two estimable coefficients (for three
genotypes) can provide more variability and again more
ability for self-correction in the model. As a conclusion, I
wish to emphasize that there are good reasons why
future studies on genomic data association analysis
should focus on or at least pay much more attention to
better characterizing the benefits and pitfalls of these
estimation-based multilocus approaches. It is also well
known that the use of multilocus models improves
statistical power and helps avoid problems due to model
misspecification, such as biased position estimates, and
occurrence of ‘ghost QTLs’ (see, for example, Sillanpää
and Auranen, 2004).
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518

Heredity



Wang K (2009). Testing for genetic association in the presence of
population stratification in genome-wide association studies.
Genet Epidemiol 33: 637–645.

Weir BS, Anderson AD, Hepler AB (2006). Genetic relatedness
analysis: modern data and new challenges. Nat Rev Genet 7:
771–780.

Wu J, Patwa TH, Lubman DM, Ghosh D (2009). Identification of
differentially expressed spatial clusters using humoral re-
sponse microarray data. Comput Stat Data Anal 53: 3094–3102.

Xiao R, Boehnke M (2009). Quantifying and correcting for the
winner’s curse in genetic association studies. Genet Epidemiol
33: 453–462.

Yan T, Hou B, Yang Y (2009). Correcting for cryptic relatedness by
a regression-based genomic control method. BMC Genet 10: 78.

Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF
et al. (2006). A unified mixed-model method for association

mapping that accounts for multiple levels of relatedness. Nat
Genet 38: 203–208.

Zhang F, Deng H-W (2010). Correcting for cryptic relatedness in
population-based association studies of continuous traits.
Hum Hered 69: 28–33.

Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C et al.
(2007). An Arabidopsis example of association mapping in
structured samples. PloS Genet 3: e4.

Zheng G, Freidlin B, Gastwirth JL (2006). Robust genomic
control for association studies. Am J Hum Genet 78:
350–356.

Zhu X, Li S, Cooper RS, Elston RC (2008). A unified association
analysis approach for family and unrelated samples correct-
ing for stratification. Am J Hum Genet 82: 352–365.

Zondervan KT, Cardon LR, Kennedy SH (2002). What makes a
good case-control study. Hum Reprod 17: 1415–1423.

Population stratification and cryptic relatedness
MJ Sillanpää
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