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Combining QTL data for HDL cholesterol levels
from two different species leads to smaller
confidence intervals
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Quantitative trait locus (QTL) analysis detects regions of
a genome that are linked to a complex trait. Once a QTL
is detected, the region is narrowed by positional cloning
in the hope of determining the underlying candidate
gene—methods used include creating congenic strains,
comparative genomics and gene expression analysis.
Combined cross analysis may also be used for species
such as the mouse, if the QTL is detected in multiple crosses.
This process involves the recoding of QTL data on a
per-chromosome basis, with the genotype recoded on the
basis of high- and low-allele status. The data are then
combined and analyzed; a successful analysis results in a
narrowed and more significant QTL. Using parallel methods,
we show that it is possible to narrow a QTL by combining
data from two different species, the rat and the mouse.

We combined standardized high-density lipoprotein pheno-
type values and genotype data for the rat and mouse using
information from one rat cross and two mouse crosses. We
successfully combined data within homologous regions from
rat Chr 6 onto mouse Chr 12, and from rat Chr 10 onto mouse
Chr 11. The combinations and analyses resulted in QTL with
smaller confidence intervals and increased logarithm of the
odds ratio scores. The numbers of candidate genes encom-
passed by the QTL on mouse Chr 11 and 12 were reduced
from 1343 to 761 genes and from 613 to 304 genes,
respectively. This is the first time that QTL data from different
species were successfully combined; this method promises to
be a useful tool for narrowing QTL intervals.
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Introduction

Although quantitative trait locus (QTL) mapping is a very
useful approach for identifying regions on the genome
associated with a phenotype of interest, the mapped
intervals are often very broad and contain many genes.
The number of genes within the QTL must then be
narrowed using genetic and bioinformatic approaches
(DiPetrillo et al., 2005). These methods yield promising
results, substantially reducing the candidate gene number.
However, the steps are tedious and time consuming, and
the work required is commensurate with the starting
number of genes. Thus, any method that narrows the QTL
confidence interval, thereby excluding many less likely
candidate genes, saves time and money. A recent advance
in QTL mapping involves combining QTL cross data; in
this process, the data from different crosses are combined
when a QTL is identified in the same chromosomal region
and it is believed that the same gene underlies the QTL.

In a QTL located using genotype data from F2 mice
from a cross between inbred strains, a parental strain is
determined to be the ‘high-allele strain’ for that QTL by

the effect plot for the peak marker; the homozygous
genotype with the higher average phenotype carries the
high allele. When genotype data from different crosses
are combined, the high alleles are coded identically on
a per-chromosome basis and the original cross is used
as a covariate in analysis. Combining the data sets adds
power to the QTL analysis, and if the underlying gene is
the same, the resulting confidence interval is reduced.
This method has been used in other species such as
the pig (Uleberg et al., 2005), and it complements other
recent advancements in QTL mapping, such as the meta-
analysis of QTL logarithm of the odds ratio (LOD) values
(Wuschke et al., 2007; Schmidt et al., 2008) or the pooling
of assigned P-values along an entire QTL on the basis of
localized LOD scores (Peirce et al., 2007).

The level of homology between genomes of different
species is variable at both the species and genomic
level, depending both on the overall relatedness of the
two species at hand and on the underlying physiology
and genomic architecture that define the species. Closely
related species may share a similar genomic structure
with contiguous patches of nearly identical sequence
and shared clusters of genes. In the last decade, the
sequencing of the mouse (Waterston et al., 2002) and the
rat (Gibbs et al., 2004) has allowed for a detailed analysis
of the genomic divergence of the two species, revealing
areas of both high- and low-sequence conservation
(Hancock, 2004).
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For many phenotypes, QTLs are concordant among
different species. High-density lipoprotein (HDL) choles-
terol QTLs are homologous between humans and mice
(Korstanje and DiPetrillo, 2004; Wang and Paigen, 2005),
and kidney disease and hypertension QTLs are homo-
logous among rat, mouse and humans (Herrera et al.,
2006; Garrett et al., 2010). This QTL concordance suggests
an underlying shared contiguity of genetically mapped
loci, which opens up the possibility of expanding the
combining of crosses beyond the use of one species.
A successful combination is perhaps most likely the use
of data from the mouse and the rat, as the two species
are closely related, and research involving both in the
laboratory uses inbred strains and similar crossing
strategies.

We explored the possibility of narrowing HDL
cholesterol QTL by combining data from one rat cross
(Kovacs et al., 2000; Kloting et al., 2001) and two mouse
crosses (Drake et al., 2001; Cervino et al., 2005; Mehrabian
et al., 2005; Wittenburg et al., 2005). Our results show
that in parallel with the combination of QTL data sets
from the same species, it is possible to both increase
the statistical significance of a QTL and narrow the
confidence interval of the homologous QTL region using
combined data from two different species.

Materials and methods

QTL data sets
The WxDA data set: WOKW and DA rats were reci-
procally crossed to produce two F2 crosses of 76
(WOKW�DA) F2 and 74 (DA�WOKW) F2 male and
72 (WOKW�DA) F2 and 68 (DA�WOKW) F2 female
rats. Animals received a standard chow diet. Blood
samples were taken at 28, 30 and 32 weeks, and HDL
cholesterol levels were determined using a Roche Cobas
Mira Plus auto analyzer (Roche, Basel, Switzerland).
Values did not differ between the two crosses, and the
crosses were therefore combined. Details of this data set
were previously published by Kovacs et al. (2000) and
Klöting et al. (2001). In these papers, 126 microsatellite
markers were used for genome-wide genotyping; since
the publication, 19 additional markers have been geno-
typed for a total of 145 markers.

The PxD2 data set: PERA/EiJ and DBA/2J mice
were reciprocally crossed to produce 324 F2 progeny
(166 females and 158 males). All animals were fed
a chow diet until 6–8 weeks of age, followed by an
8-week atherogenic diet (Nishina et al., 1990). In all,
97 microsatellite markers were used for genome-wide
genotyping. Details of this data set were previously
published by Wittenburg et al. (2005).

The BxD2 data set: This data set has been described
by Drake et al. (2001), Cervino et al. (2005) and by
Mehrabian et al. (2005) and is publicly available at
http://www.diabetesgenome.org/thirdpartydata/lusis_
060424/. C57BL/6J female mice were crossed with DBA/
2J males, and F1 mice were crossed to produce 111 female
F2 progeny. The F2 females were fed a chow diet for 12
months and then fed an atherogenic diet for 16 weeks
before phenotypic measurements were taken. The mice
were genotyped using 139 microsatellite markers.

Placing rat markers on the mouse genome
To determine the version 3.4 (November 2004 update)
base-pair positions of the microsatellite markers used
in the WxD cross, marker IDs were used as input
using the batch version of University of California, Santa
Cruz (UCSC) genome browser’s Table Browser (http://
genome.ucsc.edu/cgi-bin/hgTables?command ¼ start).
Markers that were not available through the UCSC
genome browser were looked up individually in
Ensembl (http://www.ensembl.org); markers without
base-pair positions at that point were discarded from
the data set. Of the 145 markers, 138 were assigned
updated positions. UCSC’s web-based version of
the batch coordinate conversion tool LiftOver (http://
genome.ucsc.edu/cgi-bin/hgLiftOver) was used to
convert the rat genome positions to homologous mouse
genome positions (National Center for Biotechnology
Information build 37). Using this method, all but 10 of
the 138 markers were converted; the remaining markers
were positioned in Ensembl, and using Ensembl’s
Comparative Genomics tool, genes adjacent to the rat
marker and both homologous and contiguous to the
mouse genome were determined. The mouse position
of the nearest homologous gene in a contiguous sequence
of genes was used as the rat marker’s homologous
position. For example, using Liftover, base-pair positions
for rat marker D10Mgh12 are not homologous to the
mouse genome. However, the gene Lcp2 is adjacent
to D10Mgh12 at 19 019 978–19 066 754 bp and contiguous
to the other homologous mouse positions on Chr 11
at 33 947 144–33 992 281. Using the above methods, all
but three rat markers, namely, D2Wox32, D8Mit6 and
D10Mgh2, were aligned to the mouse genome.

Assigning genetic map positions to the rat markers
Rat genome genetic positions for the rat markers were
determined by interpolation to the single-nucleotide
polymorphism map recently published by the STAR
Consortium (Saar et al., 2008); the version 3.4 base-pair
positions and STAR map cM positions are publicly avail-
able online at http://www.well.ox.ac.uk/rat_mapping_
resources/SNPmaps.html. Marker base-pair positions
were interpolated to the STAR map using MATLAB
(Natick, MA, USA). The homologous mouse positions of
the rat markers were interpolated to the Revised Shifman
genetic map of the mouse (Cox et al., 2009) using the
Center for Genome Dynamic’s online Mouse Map Converter
(http://cgd.jax.org/mousemapconverter/). Mouse chromo-
some and base-pair positions were used as input, and sex-
averaged cM positions were selected as output.

Single data set QTL analysis
Individual QTL analyses were carried out on the WxD
rat data set using rat positions, and then on each single
mouse data set using mouse positions. QTL analyses
were carried out using R version 2.8.1 and R/qtl version
1.11–12 (Broman et al., 2003). X-chromosome genotyping
data were omitted. Genome scans were carried out using
the expectation-maximization algorithm (Lander and
Botstein, 1989) with 2 cM resolution, and significance
thresholds were determined by permutation testing
(1000 permutations). To determine the sex that contri-
buted more to a QTL, sex versus HDL effect plots were
created. Thereafter, the data sets were separated by sex
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and reanalyzed to determine the adjusted QTL peak and
confidence interval positions. For all analyses, 95%
confidence intervals were determined by Bayesian
analysis using the bayesint function in R/qtl, which
calculates an approximate interval (end points around
the maximum LOD) for a given chromosome using the
genome scan output. Allele effects were determined
using the effect plot function in R/qtl using the QTL
peak marker or marker nearest to the peak as the
reference marker.

Combining the rat and mouse QTL data sets and

multispecies QTL analysis
The rat marker names were listed in chromosome and
base-pair order in an Excel spreadsheet, along with the
rat genetic position, the homologous mouse position and
the mouse genetic position. In the spreadsheet, the QTL
peaks, confidence intervals and allele assignments for
both the rat and mouse individual crosses were shaded.
This allowed for the visualization of homologous and
contiguous rat and mouse markers within a mouse QTL.
Data were chosen for combination if the following
criteria were met: (1) a set of markers within a rat HDL
QTL significantly overlapped a mouse QTL on the basis
of homology, with at least half of the markers from each
species-specific QTL overlapping; (2) the markers were
contiguous in both genomes; and (3) the peaks of the
homologous QTL were close enough to suggest that the
QTLs from each species were caused by the same gene.
In each case, the homologous peak positions were either
adjacent or aligned in the same row in the Excel
spreadsheet. In some cases, markers within a rat QTL
were not included in the combined-species analysis. For
example, a rat QTL marker was excluded if it was within
a rat QTL but outside of a homologous mouse QTL.

The original rat HDL cholesterol values were con-
verted to the same unit as was used for mice (mg/dl).
Before combining data sets, the HDL phenotype was log
transformed and then standardized by a Z-score in R
within each cross. Data sets were combined on the basis
of mouse chromosome, as described in Wittenburg et al.
(2005), by coding high- and low-allele strains the same
and then combining the data sets into one file.

The data were combined and analyzed one chromo-
some at a time. We followed the linear models and
analyses described in Li et al. (2005) (see equations 1–5)
for all QTL scans. R/qtl version 1.11-12 was used for QTL
analyses, and the expectation-maximization algorithm
with a resolution of 2 cM was used for the scan and for
determining significance thresholds with 1000 permuta-
tions. For the combined plots, significance thresholds
were based on the additive model. Only one covariate
was used in the analysis, representing either cross,
species or sex, as there were no nested factors to consider
within each covariate.

Determining the number of genes within the QTL

confidence interval
The National Center for Biotechnology Information build
37 gene lists for Mus Musculus for Chr 11 and 12 were
downloaded by Ensembl’s BioMart (http://www.
ensembl.org/biomart/martview); gene attributes selec-
ted for download were Ensembl Gene ID, Ensembl
Transcript ID, Associated Gene Name, Gene Start (bp),

Gene End (bp) and Description. The list of genes was
downloaded as a CSV file and then opened in MS Excel.
The gene list was sorted by Gene Start base-pair position
and all gene repeats were removed (reflecting multiple
transcripts per gene); such repeats were detected as
duplicate Ensembl Gene IDs. To determine the number
of genes within a QTL confidence interval, any gene with
a starting base-pair position within the confidence
interval was counted. To convert from cM to build
37 base-pair positions, we used the Mouse Map
Converter available on The Jackson Laboratory’s Center
for Genome Dynamics Website (http://cgd.jax.org/
mousemapconverter). We chose the sex-averaged cM
position as input. On comparing the gene lists within
the QTL confidence intervals before and after species
combination, the confidence interval resulting from
analysis with the species-additive covariate model was
chosen for the postanalysis interval.

Results

Results of the rat WxDA genome scan are shown in
Figure 1. Running the first genome scan with sex as a
covariate revealed the presence of multiple sex-specific
QTLs on Chr 2, 4, 6, 7 and 9. Plotting genome scans using
male and female data separately revealed the sex that
contributes to each sex-specific QTL detected in the
covariate analysis and also unveiled any sex effects not
detected in the first scan. Figures 1c and d show
additional sex differences on Chrs 1, 3, 5, 8, 10 through
14, and 17. Owing to the high incidence of sex-specific or
sex-influenced QTL, the male and female data from the
rat and mouse data sets were separated for individual
species analysis; only QTLs from these analyses were
considered for multispecies combination. The separation
of sexes also facilitates the analysis of the combined data,
as the influence of sex, species and cross covariates may
be assessed as one covariate. The genome scan plots for
the separate mouse crosses are not shown, as they were
published previously (Drake et al., 2001; Cervino et al.,
2005; Mehrabian et al., 2005; Wittenburg et al., 2005).

The markers listed for rat Chr 6 and 10 from the
WxDA data set, along with their rat genetic map
positions and mouse genetic map positions on Chr 12
and 11, are shown in Figure 2. The following rat–mouse
QTL HDL data combinations were tested:

1. Rat WxDA males (Chr 6; W, high allele)þmouse
BxD2 females (Chr 12; B, high allele)

2. Rat WxDA females (Chr 10; W, high allele)þmouse
PxD2 females (Chr 11; P, high allele)

Of these individual QTLs, the PxD2 Chr 11 QTL is the
only one that was previously published (Li et al.., 2005,
Wittenburg et al.., 2005). Rat Chr 6 and 10 QTLs were
suggestive (LOD¼ 2.05 and LOD¼ 2.2, respectively) and
not published previously.

Phenotypes were standardized by Z-score in the
individual QTL data sets and combined by identically
coding the high- and low-allele strains. The results of
the QTL analyses for the combinations are shown in
Figures 3 and 4. Table 1 lists the peaks, confidence
intervals and LOD scores for the original mouse
QTL, and for the additive and interactive QTL resulting
from the combination of data from different species.
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The numbers of genes within the original and species-
additive confidence intervals are shown in Table 1.

Figure 3 shows the result of combining rat Chr 6 data
with mouse Chr 12 data. The interactive, additive and
noncovariate plots are all identical and overlaid, indicat-
ing that the QTL is probably not species specific. The
LOD is substantially higher than the original mouse QTL
and the confidence interval is narrowed from 44 to 22 cM.
The number of genes in the confidence interval is
reduced from 613 to 304 genes.

Figure 4 shows that combining rat Chr 10 data with the
mouse PxD Chr 11 female QTL data resulted in a
narrowing of the confidence interval and an increase in
LOD from 2.3 to 3.7 (additive model). The additive and
noncovariate plots are identical and overlaid. Although
the interaction LOD score is somewhat higher than the
additive model, the difference between them is not
significant (DLOD¼ 0.8). Thus, we conclude that QTL is
not species specific. The confidence interval was reduced
from 41 to 19 cM and the number of genes in the
confidence interval was reduced from 1343 to 761 genes.

Discussion

Previously, genotype data from multiple mouse QTL
data sets were successfully combined; if the QTL genes
are the same, or close to each other with the same mode

of inheritance and the same direction of the allele effect,
the combined analysis results in higher LOD scores and
narrower QTLs. Using the same methodology, we
combined HDL QTL data sets from two different species,
the rat and the mouse. Both combinations resulted in
a successful increase in statistical significance and a
narrowing of the QTL confidence interval. More impor-
tant than the positional effects, however, this narrowing
reduced the number of underlying candidate genes. The
mouse QTL on Chr 11 was narrowed from a confidence
interval spanning 41 cM to one spanning 17 cM, and the
QTL on Chr 12 was reduced from 44 to 22 cM. The
numbers of underlying candidate genes were reduced
by 43 and 54 %, respectively.

These results are the first report of a successful
combination of QTL data from two different species.
Although the methodology involved in combining cross
data was not novel, the steps required to prepare the data
sets for combination were thoroughly researched and
tested by us and may now be repeated. It is notable that
in clarifying the steps required for aligning rat and
mouse QTL at the marker level, several factors normally
considered in QTL analysis were omitted for simplicity
and for the value of testing by assumption. We designed
the data combinations so that sex, diet or any other
condition was a cofactor only in addition to species, that
is, the data sets may have been from different species and
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different sexes, but one data set never included both
male and female mice. Diet significantly contributes
to lipid metabolism, and the rats and mice from the
different crosses were not fed identical diets or for
the same time time periods before phenotyping (see
Materials and methods); however, its effects were not
considered in this study. In implementing this procedure
for actual positional cloning, a model with multiple
cofactors should be used.

If QTLs for the same trait are found in more than
one species, it is common when narrowing the QTL
to eliminate regions within the QTL that are not homo-
logous to QTL regions for the same trait in the other
species. This is especially true when the two species in
comparison are extensively studied, as in humans and

mice, or when the two species are very closely related,
as among rodents. We recommend that in parallel or in
conjunction with combining QTL data from multiple
crosses within a species, combining QTL data from
different species may be used along with all other QTL
narrowing techniques, including cross-specific haplo-
typing and genome-wide association studies based on
all strains. As previously suggested (Peirce et al., 2007),
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combining crosses complements the meta-analysis of
QTL significance values.

Although rat and mouse are closely related rodents,
this study represents a useful approach for combining
data from other species, even from less related species
such as mouse and human—if the species are extensively
studied and if there is an appropriate arrangement of
contiguous loci, as required in the selection of the data
sets combined in this analysis. In attempting a mouse–
human study, we would need to address the differences
in overall metabolism in theoretical speculation and in
data analysis. For example, in humans, females on an
average have higher HDL cholesterol than do males, but
in mice the opposite relationship is true. Such sex
or other covariate differences in physiology are usually
considered after one-species analyses are complete,
when individual candidate genes are investigated.
In combining QTL data within a species, we assume
that allelic effects are parallel, which allows us to
combine the data. A successful combination, that is, the
achievement of a higher LOD and narrower confidence
interval, provides substantial evidence that the two QTLs
share the same underlying gene. We have shown that
such success is possible with two closely related species,
and because the rat and mouse are both closely related
and physiologically similar, it is not a far stretch to draw
the same conclusion. If the two species were different
regarding HDL metabolism, as in mice and humans,
narrowing the QTL by combined data analysis suggests
the same underlying gene. However, because the physio-
logical differences are not considered in the combined
QTL analysis, any successful combination is based
on a multidimensional assumption. The underlying
differences in physiology are so complex in their poly-
genicity and dependent pathways that the data analysis
would possibly need to coincide with physiological
modeling. It may be possible to quantify metabolic
differences between species on the basis of such
modeling and then standardize the phenotype before
combining QTL data accordingly.

In addition to metabolic differences, genomic function
at the level of recombination must be considered. In
the analysis presented here, homologous QTL with an
underlying contiguous sequence of loci were combined.
As differences in recombination rate between the rat and
mouse were not taken into account during the analysis,
a likely result is the skewing of the genetic map created
in the context of the mouse. Recombination rates should
be consulted as data from more divergent species are
combined.

In summary, sex, diet, species, physiology and
genomic differences are all factors to be considered

when analyzing combined QTL data sets. In the
examples that we present, we use a simplified one-
covariate model, encompassing all possible differences
between the two data sets. Most important, we have
described detailed methods for combining data sets
from two different species. The successful combi-
nations we achieved reveal a promising addition to the
process of QTL narrowing. Had a combination not been
successful, we would not have been able to declare that
the individual QTL were species –specific, as they could
also be diet, physiology, sex (in one case) or genome
structure specific. We recommend using a multico-
variate model when analyzing combined data sets for
QTL narrowing.

Advances in comparative genomics contribute
greatly to the understanding of animal development
and physiology. Incorporating such knowledge is
essential for the construction of genomes, proteomes
and metabolic networks, and for theorizing and eluci-
dating the mechanisms of molecular and phenotypic
evolution. The near completion of entire genome
homology maps, such as the one available between the
rat and the mouse, allows for the ability to combine data
in a way that is useful both intellectually and statistically.
The methods introduced here recognize the decade-long
explosion of empirical advancements and the resulting
field of bioinformatics.

Beyond the alignment of homologous markers and
genes, the integration of QTL data for analysis adds
a new level to species homology, because theories
of shared physiology may be tested mathematically.
Although statistical significance is both arbitrary and
necessary for experimental validity, the increase in
statistical significance (LOD) seen in these combinations
is overshadowed by the potential insight gained into the
underlying shared genome organization. The candidate
genes underlie the QTL, but the replication and expres-
sion of those genes are dictated by the underlying
DNA sequence and chromosome mechanics.
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Table 1 Peaks, confidence intervals and LOD scores for the original mouse QTL, and for the additive and interactive QTL resulting from the
combination of data from different species

Rat WxDA
QTL

Original mouse
QTL

Species-additive
covariate model

Species-interactive
covariate model

Chr Sex High
allele

Cross Chr Sex Peak
(cM)

LOD 95% CI
(cM)

High
allele

#
genes

Peak
(cM)

LOD 95% CI
(cM)

#
genes

Peak
(cM)

LOD 95% CI
(cM)

6 M W BxD2 12 F 22.1 1.8 6–50 B6 613 26.1 3.1 16–38 304 26.1 3.1 16–38
10 F W PxD2 11 F 35.5 2.3 13–54 Pera 1343 42.6 3.7 29–48 695 33.5 4.5 29–46

Abbreviations: Chr, chromosome; CI, confidence interval; LOD, logarithm of the odds ratio; QLT, quantitative trait locus.
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