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Bayesian analysis for genetic architecture
of dynamic traits
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The dissection of the genetic architecture of quantitative
traits, including the number and locations of quantitative
trait loci (QTL) and their main and epistatic effects, has
been an important topic in current QTL mapping. We
extend the Bayesian model selection framework for mapping
multiple epistatic QTL affecting continuous traits to dynamic
traits in experimental crosses. The extension inherits the
efficiency of Bayesian model selection and the flexibility of
the Legendre polynomial model fitting to the change in
genetic and environmental effects with time. We illustrate
the proposed method by simultaneously detecting the
main and epistatic QTLs for the growth of leaf age in a

doubled-haploid population of rice. The behavior and
performance of the method are also shown by computer
simulation experiments. The results show that our method
can more quickly identify interacting QTLs for dynamic traits
in the models with many numbers of genetic effects,
enhancing our understanding of genetic architecture for
dynamic traits. Our proposed method can be treated as a
general form of mapping QTL for continuous quantitative
traits, being easier to extend to multiple traits and to a single
trait with repeat records.
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Introduction

The process of formation and development of a
biological trait may have different temporal and spatial
properties. Such a trait whose phenotype changes
with time or quantitative factor is known as a dynamic
trait. Biologically speaking, the change in phenotype of
the trait can be due to different genes that turn on or
off at various times. In other words, the dynamic trait
is governed by some genes whose genetic effects
change with time. Studying the changing laws of these
gene effects and their mutual relationships can enhance
our understanding of the genetic architecture of dynamic
traits.

The genetic mechanism of dynamic traits has been
observed in practice on mapping quantitative trait loci
(QTL) for some fixed time points in dynamic traits, with
separate analysis (Cheverud et al., 1983; Nuzhdin et al.,
1997; Verhaegen et al., 1997; Emebiri et al., 1998; Wu et al.,
1999), joint analysis (Jiang and Zeng, 1995; Korol et al.,
1995; Ronin et al., 1995; Eaves et al., 1996; Knott and
Haley, 2000) or conditional analysis (Yan et al., 1998a, b;
Wu et al., 2002). Subsequently, the research focus has
been gradually shifted toward betterfitting changing
laws in genetic effects of QTL genotypes and genes. Wu
and his colleagues (Ma et al., 2002; Wu et al., 2004a, b, c;
Wu and Lin, 2006) proposed a functional mapping
strategy constructed within the context of interval

mapping, where the mean vectors of QTL genotypes
within a time interval are modeled by a biologically
meaningful mathematical equation, and the covariance
matrix is modeled in terms of its time series autocorrela-
tion structure (Ma et al., 2002). Fitting the Legendre
polynomials to the time-dependent genetic effects of
markers outside the test interval, Yang et al. (2007)
presented a flexible nonparametric approach for compo-
site functional mapping of dynamic traits. Although
these functional mapping strategies have emerged as a
powerful tool for mapping dynamic trait loci, using
nonlinear biologically meaningful mathematical model-
to-model changes of QTL genotype effects may limit
their extension to a multiple QTL model. Moreover, there
is still a lack of biologically meaningful mathematical
models for most dynamic traits.

The Legendre polynomial has been extensively used
by animal geneticists and breeders to fit changes in
breeding values for milk production and other dynamic
traits (Kirkpatrick and Heckman, 1989; Kirkpatrick et al.,
1990; Schaeffer, 2004). This has stimulated several
usages of the Legendre polynomial in QTL mapping
for dynamic traits. For example, Yang et al. (2004) and
Huang et al. (2005) replaced the Logistic curve with the
Legendre polynomial and made functional mapping
suitable for dynamic traits with an arbitrary shape.
In Macgregor et al. (2005), the Legendre polynomial was
applied to QTL mapping for longitudinal traits in
pedigrees. They adopted the traditional random regres-
sion model in which the vector of polynomial regression
coefficients (genetic effects) for each animal is treated as a
random vector sampled from a multivariate normal
distribution. For line crosses, Yang et al. (2006) proposed
an interval mapping method for dynamic traits by using
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the Legendre polynomial to model the population mean,
QTL effects and time-dependent environmental effects.
On the basis of this interval mapping method, Yang and
Xu (2007) subsequently developed a Bayesian shrinkage
analysis framework to simultaneously map genome-
wide QTLs with multiple main effects for dynamic traits.

The dissection of the genetic architecture of quantita-
tive traits, including the number and locations of QTLs
and their main and epistatic effects, becomes an
important topic in current QTL mapping. In fact, the
unknown number of QTLs and the possibly huge
number of epistatic effects make the issue extremely
complex. A promising approach for solving the issue is
the Bayesian model selection framework, which has been
developed to identify epistatic QTL for regular quanti-
tative traits (Yi et al., 2005, 2007b) and for ordinal traits
(Yi et al., 2007a), but not for dynamic traits.

In this study, we will extend the Bayesian model
selection for mapping interacting QTLs developed by Yi
et al. (2005, 2007b) to dynamic traits in experimental
crosses. The extension is realized by embedding the
Legendre polynomials in QTL effects and taking into
account the individual-specific time-dependent random
environmental effects in the genetic model. Our exten-
sion inherits the efficiency of the Bayesian model
selection and the flexibility of the Legendre polynomial
model fitting to change in genetic and environmental
effects with time, and can fairly quickly identify
interacting QTLs for dynamic traits in models with large
numbers of genetic effects, which are demonstrated by
analyzing the simulated data and real data on leaf age
growth in rice.

Methods

Genetic model
We start with a simple population including only two
segregating genotypes at each locus, such as a backcross
(BC), double-haploid lines or recombinant inbred lines.
For mapping the QTL of dynamic traits, phenotypes of
repeated measurements in time interval [t0, tm] and
molecular marker data need to be collected on n
individuals. Assume that there are q QTL responsible
for changing the trajectory of dynamic traits. The
phenotypic value yi(t) of individual i measured at time
t can be then described by the following multiple
interacting QTL model (Kao and Zeng, 2002):

yiðtÞ ¼mðtÞ þ
Xq
j¼1

gjxijbjðtÞ þ
Xq�1

j¼1

Xq
k¼jþ1

gjkzijkdjkðtÞ

þ xiðtÞ þ eiðtÞ

ð1Þ

where m(t) is the population mean at time t; bj(t) for j¼ 1,
2,y,q is the additive effect of the jth QTL at time point t;
djk(t) is the epistatic effect between jth QTL and kth QTL
for j¼ 1, 2,y,q�1; k¼ jþ 1, jþ 2,y,q; xij is a genotype
indicator variable for individual i at locus j and is
defined as 1 for one genotype and �1 for the other
genotype; zijk is the dummy variable for epistatic effect
between jth QTL and kth QTL on ith individual,
zijk¼ xijxik; g� is a binary variable for each genetic effect,
indicating whether the corresponding effect is included
(g�¼ 1) or excluded (g�¼ 0) from model (1); xi(t) is an
individual-specific time-dependent random environ-

mental effect, distributed as N (0, sx2(t)); and ei(t) is a
time-independent random residual error, following the
normal distribution with mean 0 and variance s2. Notice
that by inferring g�, the Bayesian model selection enables
the Markov Chain Monte Carlo (MCMC) sampling for
QTL parameters to be conducted in a reduced model
space (Carlin and Chib, 1995; Yi, 2004).
The Legendre polynomial of p orders is chosen to fit

the changing trajectories of the population mean, QTL
effects and residual error. Let c(t) be the basis of the
Legendre polynomial (see Yang et al., 2006) and stipulate
that m(t)¼c(t)m, bj(t)¼c(t)bj, djk(t)¼c(t)djk and xi
(t)¼c(t)xi, where m, bj, djk and xi are the pþ 1 vectors
of the regression coefficients. Model (1) can then be
rewritten as

yiðtÞ ¼cðtÞmþ
Xq
j¼1

gjxijcðtÞbj

þ
Xq�1

j¼1

Xq
k¼jþ1

gjkzijkcðtÞdjk þ cðtÞxi þ eiðtÞ
ð2Þ

Assume that xi is i.i.d.N(0, S), where S is a (pþ 1)� (pþ 1)
positive definite covariance matrix.
For simplicity of description, we assume that each

individual has m measurements at m different time
points and that the time points are common for all
individuals. However, our method can accommodate the
data from arbitrary time points. Let yi¼ [yi (t0) yi (t1) y
yi(tm)]T be a (mþ 1)� 1 column vector for the repeated
measurements of the dynamic traits, and define c¼
[cT(t0) cT(t1) y cT(tm)] as a (pþ 1)� (mþ 1) matrix.
In matrix notation, model (2) becomes

yi ¼cTmþ
Xq
j¼1

gjxijc
Tbj

þ
Xq�1

j¼1

Xq
k¼jþ1

gjkzijkc
Tdjk þ cTxi þ ei

ð3Þ

where eiðtÞ ¼ ½eit0 eit1 . . . eitm �
T is a (mþ 1)� 1 vector for

the environmental errors with eiBN (0, Is2), where I is an
(mþ 1)� (mþ 1) identity matrix. The conditional expec-
tation of model (3) given the fixed effects, such as
population mean and genetic effects, is

EðyiÞ ¼ Mi

¼ cTmþ
Xq
j¼1

gjxijc
Tbj þ

Xq�1

j¼1

Xq
k¼jþ1

gjkzijkc
Tdjk ð4Þ

and the variance–covariance matrix is

VarðyiÞ ¼ V ¼ cTScþ Is2 ð5Þ

for all i¼ 1, 2,y, n.

Bayesian mapping
Similar to the cases for regular quantitative traits, the
Bayesian mapping framework implemented in MCMC
algorithms for dynamic traits mainly consists of six
consecutive parts: (1) to establish the likelihood function
for phenotypes according to the given genetic model
reflecting the relationship between phenotypes and
unknown parameters; (2) to specify the prior distribution
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for each unknown parameter; (3) to form the joint
posterior distribution by multiplying the likelihood
function from step 1 by all prior distributions from step
2; (4) to obtain the conditional posterior distribution for
each unknown parameter by fixing other parameters in
joint posterior distribution; (5) to draw MCMC samples
for each unknown parameter from the corresponding
conditional posterior distributions and (6) to analyze the
posterior samples for each parameter and statistically
characterize them. In contrast to regular quantitative
traits, however, Bayesian mapping for dynamic traits is
more complex because of the consideration of time
dependence of QTL effects and random environmental
effects on traits of interest.

Likelihood function: Denote the phenotypic observa-
tions y¼ {yi} for i¼ 1, 2,y, n, the unknown parameters
g¼ {gj gjk}, X¼ {xij zijk}, l¼ {lj} with lj being the position
of the jth QTL and y¼ {m bj djk xi S s2} for j¼ 1, 2,y, q;
k¼ jþ 1, jþ 2,y, q. The likelihood function is the
conditional distribution of y given g, X and y, which is
denoted by:

pðyjg; X; y; lÞ ¼
Yn
i¼1

pðyijg; X; y; lÞ / jVj�n=2

� exp
Xn
i¼1

ðyi �MiÞTV�1ðyi �MiÞ
" #

Prior distribution: Notice that the genetic effects of QTLs
on dynamic traits in models (1)–(3) are equivalent to
nesting the Legendre polynomial within the genetic
effects of QTL on regular quantitative traits. Therefore, in
Bayesian mapping for dynamic traits, choices of the
upper bound L and specification of the prior on g and l
should be the same as those for regular quantitative
traits. As described by Yi et al. (2005), we take L as
l0þ 3Ol0, where l0 is the prior expected number of QTLs
and is determined according to initial investigations with
traditional methods. The binary indicator g is assumed to
have an independent prior pðgÞ ¼

Q
w�

g� ð1� w�Þð1�g�Þ,
where w� is the prior inclusion probability for a certain
QTL effect and equals the predetermined hyper-
parameter wm for main effects or we for epistatic
effects, respectively. Priors on l are assumed to be
independent and uniformly distributed over the entire
genome, that is, QTL positions have a uniform prior
information.

The prior for the population mean m is N (m0, S0). We
can empirically set

m0 ¼ �b ¼ 1

n

Xn
i¼1

bi and

S0 ¼
1

n� 1

Xn
i¼1

ðbi � �bÞTðbi � �bÞ

where bi¼ (cTc)�1cTyi and is a vector of regression
coefficients obtained by fitting the individual dynamic
trajectory.

We propose the following hierarchical mixture prior
for each additive genetic effect,

bj � Npþ1ð0; SjÞ for j ¼ 1; 2; . . . ; p

with

Sj ¼ gjc cTV�1c
Xn
i¼1

x2ij

 !�1

and c being taken to n such that the prior variance of each
fixed effect stays approximately the same as n increases.
Similarly, we take the prior distribution for epistatic
effect as

djk � Npþ1ð0; SjkÞ for j ¼ 1; 2; . . . ; q;

k ¼ jþ 1; jþ 2; . . . ; q

with

Sjk ¼ gjkc cTV�1c
Xn
i¼1

z2ijk

 !�1

The random effects xi are assumed to have an
independent multivariate normal distribution, that is,
xiBNpþ 1(0, Sa) with the hyperparameter Sa being a
(pþ 1)� (pþ 1) matrix.

An inverse Wishart prior is chosen for the covariance
matrix of regression coefficients for random environ-
mental effect, denoted by SBIW (na, naSa) with na being a
hyperparameter.

The residual variance is assigned to be a scaled inverse
w2 distribution, that is, s20 � ICðve; 1

vese
Þ with ne and se

being hyperparameters.
Genotypes of missing markers were generated ran-

domly in each iteration on the basis of the probability
inferred jointly from the nearest nonmissing flank-
ing markers and the phenotype. The probability from
the missing marker locus is treated as the prior
probability. After incorporation of the marker (Locus)
effects through the phenotype, the probability becomes
the posterior probability, which is used to generate the
missing marker genotype from multinomial distribution.
The detailed calculation of posterior probabilities for
missing marker genotypes can be found in Wang et al.
(2005).

The joint prior of all parameters takes the product of
the priors of individual parameters.

MCMC algorithm: In general, the joint posterior density
derived from likelihood function and the joint priors of
all parameters are intractable analytically. However,
MCMC methods such as the Gibbs sampler (Gelman
et al., 1995) and the Metropolis–Hastings algorithm
(Metropolis et al., 1953; Hastings, 1970) can be used to
draw samples, from which features of marginal
distributions of interest can be inferred.

Within the framework of the Bayesian Model selection,
the upper bound L on the number of QTLs is not only
given, but also the released sampling value for g� at
current iteration determined which genetic effect and
QTL position will be drawn or estimated at the next
iteration. This allowed us to conduct Bayesian sampling
for QTL parameters in a reasonably reduced model
space, thus greatly decreasing the computational de-
mand.

On the basis of marginal posterior distribution for each
parameter (shown in Appendix A), we implement
MCMC sampling by the following computationally
efficient process:
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(1) Evenly partition the entire genome into small
intervals (1 or 2 cM long) by a number of points
and restrict putative QTLs to these fixed points.
Estimate all expected values of indicator variables X
for putative QTL by using conditional probabilities
of their genotypes on two flanking markers.

(2) Divide the entire genome into L equal intervals and
put one QTL in the middle of each interval.

(3) Initialize all variables with some legal values or
values sampled from their prior distributions;

(4) Update the population mean m;
(5) Update the binary indicators g with an efficient

Metropolis–Hastings algorithm (Kohn et al., 2001; Yi
et al., 2007a);

(6) Update the additive QTL effects bj corresponding to
gj¼ 1;

(7) Update the epistatic QTL effects djk corresponding
to gjk¼ 1;

(8) Update the residual variance s2;
(9) Update the QTL position lj on those fixed points,

corresponding to g�¼ 1;
(10) Repeat steps (4)–(9) until the Markov chain reaches

a desirable length.

As the order of V equals the number of repeat
measurements for dynamic traits, it is hard to calculate
the inverse and determinant for V when there are a large
number of repeat measurements. In practices of MCMC
sampling, therefore, the inverse and determinant for V
need to be solved in the form of the reduced dimension.
The detailed derivation of the simplified formula is given
in Appendix B.

For analyzing the models with multiple interacting
QTLs and only multiple main-effect QTLs by using the
Bayesian model selection, we write the program to
implement MCMC sampling in Matlab, which can be
available from the authors on request.

Post-MCMC analysis: The posterior sample can be used
to infer the genetic architecture of quantitative traits,
including the number and locations of QTL and their
main and epistatic effects. Before doing these, we need to
monitor the mixing behavior and convergence rates of
MCMC algorithms by visually inspecting trace plots
of the sample values of scalar quantities of interest or
by using formal diagnostic methods provided in the
package R/coda (Plummer et al., 2006). Model averaging
accounts for model uncertainty provide more robust
inference compared with a single optimal model
approach (Raftery et al., 1997; Ball, 2001; Sillanpää and
Corander, 2002) and are therefore used to assess the
characteristics of genetic architecture by averaging
over possible models weighted by their posterior
probabilities. We can use various methods to graphi-
cally and numerically summarize and interpret the
posterior samples. The posterior inclusion probability
for each locus is estimated as its frequency in the
posterior samples; taking the prior probability into
consideration, we use Bayes factors (BFs) to show
evidence for inclusion against exclusion of each QTL
effect. The BF for a locus or QTL effect is defined as the
ratio of the posterior odds to the prior odds for inclusion
against exclusion of the QTL locus or effect (Kass and
Raftery, 1995). Generally, a threshold of BF is taken to 3 or

2 ln BF¼ 2.1, for declaring statistical significance for each
QTL effect (Kass and Raftery, 1995).

Real data analysis
A doubled-haploid (DH) population with 111 lines was
generated by crossing an indica rice variety Gui-630
and a japonica rice variety Taiwanjing. A linkage map
composed of 175 RFLP markers was constructed using
the DH population, covering a total length of 1225 cM
with average spacing of 7 cM (Weng et al., 2000). This
DH population was grown with replicates in a field
trial (Zhou et al., 2001). For each plant, the number of
developed leaves on the main stem was counted, and the
length of the developing leaf was measured every 3–7
days from day 30 after sowing until the full development
of the leaf. These measured data were used to estimate
the leaf age of a plant (y) using

y ¼ Number of developed leaves

þ Length of the developing leaf

Final length of the developing leaf

The time points of measurements counted by the
numbers of days after the seeds were t¼ (5 8 13 18 21
26 32 39).
We select the Legendre polynomial of order 2 to model

changes of population mean and genetic effects with
growth time on the basis of the changing law of
phenotypes of trait. The data are analyzed by adopting
the maximum likelihood method (Yang et al., 2006) and
Bayesian method, respectively.
Before Bayesian sampling, we partitioned each chro-

mosome with a 1-cM grid, which resulted in 1214
possible loci across the genome. The actual values for
the hyper parameters are Sa¼ Se¼ 0.5I, na¼ pþ 1 and
ne¼ 0. The initial values of all variables were sampled
from their prior distributions. For all Bayesian analyses,
the MCMC sampling ran for 200 000 cycles after
discarding the first 2000 burn-ins. The chain was thinned
by recording one sample in every 40 samples, yielding
5000 samples for posterior Bayesian analysis.
With interval mapping based on maximum likelihood

(Yang et al., 2006), the five significant QTLs were detected
on chromosomes 1, 5, 9, 10 and 12, respectively. Under
the nonepistatic analysis, the number of significant QTLs
detected in interval mapping was taken as the prior
number of main-effect QTLs, and the upper bound of the
number of QTLs was then calculated as L¼ 5þ 3O5¼ 12.
The graph of the BFs is displayed as the bottom plot in
Figure 1. It can be seen that besides five QTLs identified
by interval mapping, four more clear peaks arise on
chromosomes 2, 3, 4 and 7. Moreover, all relative BFs of
the nine peaks found above are greater than the
significant threshold of 3.
The epistatic analysis also took the expected number of

main-effect QTLs to 5, as nonepistatic analysis did, and
the expected number of all QTLs was chosen as 8. The
maximum number of QTLs was then L¼ 8þ 3O8¼ 16.
The estimated population mean and covariance matrix

for random regression coefficients for the individual-
specific environmental effects are

m̂ ¼
11:28
2:78
�0:41

2
4

3
5

Bayesian mapping of dynamic traits
L Min et al

127

Heredity



and

Ŝ ¼
0:5767 0:1231 �0:0547
0:1231 0:0493 �0:0099
�0:0547 �0:0099 0:0053

2
4

3
5;

respectively. The estimated residual variance is ŝ2¼ 0.0083.
The profiles of the BF for each locus across the genome

are depicted in the top plot in Figure 2. Compared with
the relative profiles in Figure 1, 12 peaks can be found,
including the 9 loci detected by nonepistatic analysis.
Except for the peak on chromosome 11, others show
strong evidence for the presence of QTLs.

As shown in Figure 3, Bayesian epistatic analysis
found that four pairs of QTLs on chromosomes 1, 2, 3
and 4 perform strong interactions, and that the QTL pair
on chromosomes 3 and 10 and the one on chromosomes 4
and 8 have relatively high BF values, but the interactions
are nonsignificant. Note that the fourth QTL on chromo-
some 3 and the eighth QTL on chromosome 8 are not
found in nonepistatic analysis. Hence, we infer that the
fourth and eighth QTLs are detected in epistatic analysis,
mainly because of epistatic interactions.

Estimates for main-effect and for epistatic-effect QTL
parameters, including QTL positions, regression effects
and BFs, are shown in Tables 1 and 2, respectively. To
illustrate the effects of QTLs on dynamic traits, we depict
the changes in the main effects of 12 QTLs with
measurement time in Figure 4. These curves are
combined onto the three groups: convex (above), concave
(middle) and linear (below) ones. We find that the 10th
QTL and the 12th QTL on dynamic traits have strong
influences on the change in direct and inverse propor-

tion, respectively, with growth time, whereas the effects
of other QTLs do not result in distinct changes.

Simulation
We simulated a dynamic trait measured at eight time
points for 150 or 300 BC individuals. A genome
consisting of a single large chromosome of 600 cM was
simulated, which was covered by 61 evenly placed
markers. The growth pattern of the dynamic trait was
assumed to be controlled by the four additive QTLs and
two pairs of epistatic QTLs with their positions and
effects listed in Table 3. The order of the polynomial was
set at 3, which generated the ‘S’ shape growth trajectory
for phenotypes. The dynamic trait is measured at the
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Figure 2 Profiles of Bayes factor with Bayesian epistatic analysis.
Chromosomes are separated by the vertical dotted lines and marker
positions are indicated by the ticks on the horizontal axis.

Chromosome

3

4

2

1

3

4

2

1

C
hr

om
os

om
e

3 10984

Figure 3 The two-dimensional profile of Bayes factors for epistatic
effects on the selected chromosomes.

Table 1 Estimates for regression effects of main-effect QTLs
detected with Bayesian epistatic mapping analysis

QTL no. Chr-position b0 b1 b2 BF

1 1-19.6 0.171 0.054 �0.020 5.4
2 2-66.3 0.194 0.061 �0.020 4.6
3 3-13.3 �0.195 �0.009 0.027 3.5
4 3-129.4 �0.023 �0.005 0.001 3.2
5 4-67.5 �0.057 0.011 0.029 5.1
6 5-106.2 �0.010 �0.064 �0.002 5.3
7 7-44.2 �0.253 �0.054 0.024 12.3
8 8-15.1 0.156 0.027 �0.028 4.3
9 9-16.9 0.055 �0.041 0.011 3.3
10 10-23.8 0.412 0.087 �0.043 8.8
11 11-68.3 �0.110 �0.010 0.022 2.8
12 12-31.7 �0.312 �0.124 0.007 28.5

Abbreviation: QTL, quantitative trait loci.
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Figure 1 Profiles of Bayes factor with Bayesian nonepistatic analysis.
Chromosomes are separated by the vertical dotted lines and marker
positions are indicated by the ticks on the horizontal axis.

Table 2 Estimates for regression effects of epistatic QTLs identified
with Bayesian epistatic mapping analysis

QTL pair Chr-position d0 d1 d2 BF

1 1-19.6� 4-67.5 0.184 0.026 �0.002 5.0
2 2-66.3� 3-129.4 �0.168 �0.060 0.035 3.7
3 3-13.3� 4-67.5 0.039 �0.022 �0.016 4.2
4 3-129.4� 4-67.5 �0.056 �0.060 �0.026 3.5

Abbreviation: QTL, quantitative trait loci.
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same 8 time points as in real data. The simulated
population mean was m¼ [45 44 �1 �7]T, covariance
matrix for individual-specific environmental error was

S ¼

1:042 0:171 �0:035 0:100
0:171 0:086 0:041 0:032

�0:035 0:041 0:087 0:052
0:100 0:032 0:052 0:076

2
664

3
775

and the residual variance was taken at 4.0.

In all analyses for simulated data, we set the prior
number of main-effect QTLs at 4 and the prior expected
number of epistatic QTLs at 2. The upper bound of the
number of QTLs was then L¼ 6þ 3O6¼ 13. The actual
values for the hyperparameters used here take the same
values as in real data analyses. The initial values of all
variables were sampled from their prior distributions.
The MCMC is run for 10 000 cycles as a burn-in period
(deleted) and then for an additional 150 000 cycles after
the burn-in. The chain is then thinned to reduce serial
correlation by saving one observation in every 50 cycles.
The posterior sample contained 3000 observations for the
post-MCMC analysis. Note that here the length of the
burn-in is judged by visually inspecting the plots of some
posterior samples across rounds and is set to enough
cycles for ensuring the MCMC convergence. The
simulation experiment is replicated 40 times for evaluat-
ing the statistical power of our proposed method. The
statistical power is calculated as the percentage of the
number of those simulations in which significant QTL is
detected.
The purpose of the simulation is to show the

performance of the method proposed herein in simulta-
neously detecting main-effect and epistatic QTLs under
different sample sizes. Therefore, we do not compare our
approach with other methods for only mapping main-
effect QTLs, such as the maximum likelihood approach.
Table 4 shows the estimates for regression effects of the
given QTLs in Table 3 and the relative statistical power of
QTL detection. Apparently, Bayesian mapping of gen-
ome-wide interacting loci for dynamic traits is able to
accurately estimate the regression effects of QTLs
detected. Furthermore, the estimation precision of para-
meters and statistical power of QTL detection, as
expected, improve with the increasing effect or genetic
contribution proportion of QTL and increasing sample
sizes. In addition, we find that the Bayesian model
selection for mapping QTLs of dynamic traits is sensitive
to QTLs with a relatively small genetic effect, compared
with the mapping results of QTLs with the same
regression effects but a lower residual variance in Yang
and Xu (2007).

Discussion

By assigning a maximum number of detectable QTLs
and using latent binary variables to indicate which main
and epistatic effects of putative QTLs are included in or
excluded from the model, Yi et al. (2005) first applied a
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Figure 4 Changes in main effects of QTL detected with time. The
above, middle and below are the convex, concave and linear
groups, respectively.

Table 3 The regression effects of additive and epistatic QTLs
simulated

QTL no. QTL type Position (cM) b0 b1 b2 b3

1 Additive 23 0.00 1.65 2.52 1.20
2 148 2.55 1.36 �2.02 �1.27
3 332 2.94 0.00 �1.08 1.72
4 522 2.00 �1.25 0.00 �1.28

d0 d1 d2 d3

5 Epistatic 23� 332 1.82 �0.80 �1.20 �0.80
6 148� 522 1.75 1.30 �1.45 1.17

Abbreviation: QTL, quantitative trait loci.
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Bayesian model selection method to identify epistatic
QTLs in experimental crosses. The approach allows
MCMC sampling for QTL parameters to be carried out
in the reduced model space, enhancing the computa-
tional efficiency of Bayesian mapping many epistatic
QTLs. Subsequently, Yi et al. (2007a) extended a Bayesian
model selection method for a single continuous trait to
an ordinal trait. In this study, we adopt a multivariate
version of the Bayesian model selection method to map
epistatic QTL for dynamic traits. By pre-estimating
indicator variables of putative QTL genotypes and
exploring the posterior for indicator variables of genetic
effects (Yi et al., 2007b), the Bayesian mapping method
can fairly quickly identify interacting QTLs for dynamic
traits in models with large numbers of genetic effects.

Generally, there are three types of epistatic interaction
between QTLs: (1) where both QTLs are the main effect;
(2) where both QTLs are not the main effect and (3)
where only one QTL is the main effect. In mapping
practice, Bayesian model selection can sensitively detect
them by regulating dependence priors on genetic
architecture indicators (Yi et al., 2007a, b). However, the
epistatic QTLs for leaf age growth are found only
between main-effect QTLs in our real data analysis.

In fact, the orders of polynomials for all effects in
model (1) are unknown. We can only determine the order
of polynomial for the population mean according to the
shape of phenotypic trajectories of dynamic traits. In
implementing our proposed method, we simple chose
the Legendre polynomial functions of the same order as
for population mean to fit change in QTL genetic effects
and time-dependent environmental effects with time.
The shape of the population mean or each effect depends
on different estimates for corresponding polynomial
regression coefficients. Naturally, one would ask whether
the order of the Legendre polynomial for each effect is
indeed the same. The choice for each submodel in model
(1) will be required to answer the issue. We may first

choose the highest possible order and use it for all QTL
effects and time-dependent environmental effects. For
each QTL effect, we then take each regression coefficient
in the nested polynomial to a different indicator variable
and infer the significance of these regression coefficients
by calculating the related BF value in post-MCMC
analysis. For time-dependent environmental effects,
however, it is difficult to infer many individual-specific
regression coefficients as for QTL effects because of the
large number of regression coefficients. In this case, we
can adopt Bayesian model selection for random covar-
iance matrix in mixed model (Chen and Dunson, 2003;
Kinney and Dunson, 2007) to determine the order of the
Legendre polynomial for time-dependent environmental
effects. Once some appropriate submodels are chosen for
the population mean, all QTL effects and time-depen-
dent environmental effects by using the described
procedures above and the optimal multiple interacting
QTL model for dynamic traits will be established. In
choosing the submodel of each QTL effect and Bayesian
model selection for the random covariance matrix, the
priors and posteriors for many new unknown variables
need to be specified and deduced under multiple
interacting QTL models for dynamic traits. These are
being implemented in our research plan.

In addition, how to model residuals is also a noticeable
question. Functional mapping recommended a para-
metric residual covariance structure by using the time
series autocorrelation structure. The autoregressive mod-
el with order 1 [AR(1)] and one unknown parameter is
often used in functional mapping. However, there
appears to be no efficient way to sample the autore-
gressive coefficient in a covariance matrix within the
Bayesian framework. Our investigation found that the
specifying uniform distribution as a prior for autore-
gressive coefficient and the sampling method proposed
by Gianola et al., 2003 do not work in Bayesian functional
mapping. In fact, the covariance structure described by

Table 4 Mean estimates and s.d. (in parentheses) of QTL regression effects and statistical power of QTL detection

Sample size
150

QTL no. Position (cM) Estimate Power (%)

b0 b1 b2 b3

1 21.3 (3.6) �0.06 (0.43) 1.69 (0.53) 2.48 (0.61) 1.15 (0.33) 65
2 147.3 (2.8) 2.67 (0.23) 1.43 (0.36) �1.96 (0.59) �1.30 (0.53) 75
3 334.1 (2.3) 3.04 (0.42) 0.03 (0.29) �0.92 (0.53) 1.83 (0.51) 90
4 524.7 (3.1) 1.93 (0.31) �1.32 (0.51) 0.05 (0.26) �1.19 (0.49) 85

d0 d1 d2 d3

5 22.1 (3.3)� 334.7 (2.9) 1.74 (0.22) �0.96 (0.43) �1.16 (0.49) �0.95 (0.63) 75
6 147.4 (3.5)� 523.9 (2.3) 1.79 (0.38) 1.25 (0.47) �1.37 (0.26) 1.23 (0.19) 75

300 b0 b1 b2 b3

1 21.9 (3.3) 0.02 (0.31) 1.66 (0.42) 2.49 (0.58) 1.18 (0.38) 75
2 148.5 (2.7) 2.59 (0.21) 1.40 (0.33) �2.01 (0.62) �1.31 (0.48) 90
3 333.7 (2.1) 2.98 (0.38) 0.02 (0.31) �1.06 (0.46) 1.77 (0.39) 100
4 520.5 (3.0) 2.02 (0.26) �1.27 (0.47) 0.03 (0.26) �1.24 (0.52) 95

d0 d1 d2 d3

5 23.3 (3.2)� 332.1 (3.0) 1.87 (0.29) �0.87 (0.33) �1.17 (0.44) �0.89 (0.35) 90
6 148.6 (3.1)� 522.3 (2.3) 1.77 (0.033) 1.26 (0.29) �1.43 (0.53) 1.19 (0.41) 85

Abbreviation: QTL, quantitative trait loci.
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cTScþ Is2 is more flexible than the parametric structure
because we can actually choose a different degree of the
polynomial to fit a covariance structure with a different
degree of complexity. Moreover, we can easily sample
the covariance matrix S from a closed form of marginal
posterior distribution.

The multiple interacting QTL model for dynamic traits
proposed herein can be treated as a general form of the
model for analyzing the genetic architecture of contin-
uous traits. For instance, letting c¼ 1 and xi¼ 0 in scale,
that is, only one measurement on each individual, leads
to multiple interacting QTL models for single continuous
quantitative traits; taking c to an identity matrix of m
order and xi to a zero vector results in a multiple
interacting QTL model for multiple continuous quanti-
tative traits; and ff xi is assigned to nonzero in the two
cases above. The multiple interacting QTL models for a
single continuous quantitative trait and multiple con-
tinuous quantitative traits are also able to make use of
repeat records on the phenotypes. Corresponding
Bayesian model selection approaches can be likewise
obtained by taking c and xi to different values or
matrices.
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Appendix A

Posterior distributions for unknown parameters
The marginal posterior distribution of m, given all other
parameters, is a multivariate normal with the mean

ðncV�1cTÞ�1cV�1
Xn
i¼1

ðyi �Mi þ cTmÞ

and the covariance matrix (ncV�1cT)�1.
The marginal posterior distribution of bj is also a

normal, of which the mean is

b̂j ¼ 1þ 1

c

� �Xn
i¼1

x2ijcV
�1cT

" #�1

cV�1

�
Xn
i¼1

xijðyi �Mi þ gjxijc
TbjÞ

and the covariance matrix is

Ŝj ¼ 1þ 1

c

� �Xn
i¼1

x2ijcV
�1cT

" #�1

for j ¼ 1; 2; . . . ; p

Likewise, the marginal posterior distribution of djk can be
expressed as a normal distribution with a mean

d̂jk ¼ 1þ 1

c

� �Xn
i¼1

z2ijkcV
�1cT

" #�1

cV�1

�
Xn
i¼1

zijkðyi �Mi þ gjkzijkc
TdjkÞ

and the covariance matrix

Ŝjk ¼ 1þ 1

c

� �Xn
i¼1

z2ijkcV
�1cT

" #�1

for j ¼ 1; 2; . . . ; q; k ¼ jþ 1; jþ 2; . . . ; q

The marginal posterior distribution of xi subjects to
normal distribution with a mean

ScV�1ðyi �MiÞ

and a covariance matrix

S� ScV�1cTS

where the marginal posterior distribution of S is

IWðva þ n;
Pn

i¼1 xix
T
i þ SaÞ.

For the residual variance s02, the corresponding
marginal posterior distribution is a scaled inverse w2

with parameters neþn and ðve þ nÞse þ ð
Pn

i¼1 e
T
i eiÞ

�1;
where ei¼ yi�Mi�cTxi.

The marginal posterior distribution of g� is a Bernoulli
with a probability

pðg� ¼ 1Þ ¼ wR

ð1� wÞ þ wR

where, w¼wm and R ¼
ffiffiffiffiffiffi
c

cþ1

p
expð� 1

2 b̂
T
j Ŝ

�1
j b̂jÞ (j¼ 1,

2,y,p) for the additive; w¼we and R ¼
ffiffiffiffiffiffi
c

cþ1

p
expð� 1

2 d̂
T
jkŜ

�1
jk d̂jkÞ (j¼ 1, 2,y, q; k¼ jþ 1, jþ 2,y, q) for

the epistatic. The Metropolis–Hastings algorithm is also

used to sample g� with acceptance rate 1�w
w

wR
1�w

� �1�2g
.

All aforementioned parameters have explicit forms so
that samples can be directly drawn from their corre-
sponding distributions by adopting the Gibbs sampler
algorithm. The parameters without closed conditional
posterior distribution forms, such as l and X, will be
sampled by using the Metropolis–Hastings algorithm.
We sample QTL positions in L variable intervals whose
boundaries are the positions of adjoining QTLs and
restrict the minimal distance between two QTLs to be
5 cM. The Metropolis–Hastings algorithm is required to
calculate an acceptance rule for accepting the proposed
value over the current value. A detailed formula of the
MH acceptance rule can be found for l and X in Yang
and Xu (2007).
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Appendix B

Simplification of the inverse and determinant for V
According to the formula proved by Henderson et al.
(1959)

ðZDZT þ RÞ�1 ¼ R�1 þ R�1ZðZR�1ZT þD�1ÞZTR�1

if we let R¼ Is2, Z¼c and D¼S, then the inverse of V
can be simplified as

V�1 ¼ s�2 þ s�2cðcTcs�2 þ S�1ÞcTs�2

For the determinant of V,

jVj ¼jcTScþ Is2j
¼jIs2ðS�1 þ cTcs�2ÞSj
¼jIs2jjS�1 þ cTcs�2jjSj
¼s2mjS�1 þ cTcs�2jjSj

Apparently, only the inverse and determinant for pþ 1
order matrices are required to be calculated in solving
the inverse and determinant of V.
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