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Controlling false positives in the mapping
of epistatic QTL
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This study addresses the poorly explored issue of the control
of false positive rate (FPR) in the mapping of pair-wise
epistatic quantitative trait loci (QTL). A nested test framework
was developed to (1) allow pre-identified QTL to be used
directly to detect epistasis in one-dimensional genome
scans, (2) to detect novel epistatic QTL pairs in two-
dimensional genome scans and (3) to derive genome-wide
thresholds through permutation and handle multiple testing.
We used large-scale simulations to evaluate the perfor-
mance of both the one- and two-dimensional approaches in
mapping different forms and levels of epistasis and to
generate profiles of FPR, power and accuracy to inform
epistasis mapping studies. We showed that the nested test

framework and genome-wide thresholds were essential to
control FPR at the 5% level. The one-dimensional approach
was generally more powerful than the two-dimensional
approach in detecting QTL-associated epistasis and identified
nearly all epistatic pairs detected from the two-dimensional
approach. However, only the two-dimensional approach could
detect epistatic QTL with weak main effects. Combining the
two approaches allowed effective mapping of different forms
of epistasis, whereas using the nested test framework kept
the FPR under control. This approach provides a good search
engine for high-throughput epistasis analyses.
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Introduction

A better knowledge of epistasis would greatly contribute
to our understanding of complex trait variation and the
evolutionary dynamics of biological systems (Carlborg
and Haley, 2004; de Visser and Elena, 2007; Phillips,
2008). With the advances of molecular genetics and
genomics, efforts have been made to develop methods
and tools for detecting statistical epistasis in different
population structures (Malmberg and Mauricio, 2005;
Xu and Jia, 2007; Zhang and Liu, 2007; Aylor and Zeng,
2008; Pattin et al., 2008). Research has explored a wide
range of topics including statistical modelling (Alvarez-
Castro and Carlborg, 2007; Moore et al., 2007; Sung and
Wijsman, 2007), model parameterization (Zeng et al.,
2005; Wang and Zeng, 2006; Alvarez-Castro et al., 2008),
search algorithm (Carlborg et al., 2005; Ritchie and
Motsinger, 2005; Kooperberg and Leblanc, 2008;
Mechanic et al., 2008), multiple testing (Jannink and
Jansen, 2001; Sen and Churchill, 2001; Storey et al., 2005;
Stich et al., 2007) and computing efficiency (Ljungberg
et al., 2004; Bush et al., 2006). A number of relevant
software tools have also been made publicly available
(Broman et al., 2003; Hahn et al., 2003; Yandell et al., 2007;
Yang et al., 2007; Le Rouzic and Alvarez-Castro, 2008).

There has been, however, a long-standing controversy
concerning the importance of non-additive effects
including epistasis. Much of the genetic variance within
populations seems to be additive, although epistasis can
also contribute to the additive variance (Hill et al., 2008).
Further, despite many reports of statistical epistasis,
there has only been limited success in identifying its
functional basis. This has led to scepticism about the
function epistasis has in populations, particularly given
the difficulty in interpreting and replicating the biologi-
cal consequences of interactions at just the pair-wise level
(Phillips, 2008). In such a situation, one may ask how
many of our findings are likely to be false positives.
Unfortunately, the answer to that question is not
immediately available because investigations on the false
positive issue in detecting epistatic loci are surprisingly
limited (Storey et al., 2005; Stich et al., 2007; Yang et al.,
2007). This could well be because most attention in
method development has been focused on increasing the
capacity of modelling and the power of detection.
The Bayesian approach (and similar approaches using

Markov Chain Monte Carlo algorithms) has been widely
adopted to detect epistasis since its first application in
2001 (Sen and Churchill, 2001; Yi and Xu, 2002; Yi et al.,
2003; Sung and Wijsman, 2007; Xu and Jia, 2007; Yandell
et al., 2007; Yang et al., 2007). Compared with other
approaches (for example, regression), the Bayesian
approach has some advantages including flexibility in
model selection and limited requirement of multiple
testing (Yi et al., 2003). However, it also has some
disadvantages in computational efficiency (Yi and
Shriner, 2008) and repeatability of mapping results.
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High-throughput analysis of many sets of data is
required to understand the global gene interaction
patterns in different species before the epistasis con-
troversy can be really settled (Phillips, 2008). Limited by
the daunting computing demand to cover high-dimen-
sional search space and handle multiple tests, the
majority of studies have investigated only a small set
of phenotypic traits selected on the basis of personal
interest. One way to increase the throughput is to use
Grid computing resources (Seaton et al., 2006). The other
is to develop fast and effective search algorithms
(Ljungberg et al., 2004; Pattin et al., 2008). Using pre-
identified loci as prior information to detect epistasis in
the one-dimensional scale was suggested to reduce the
search dimension and, hence, boost speed (Jannink and
Jansen, 2001; Carlborg and Haley, 2004; Evans et al., 2006;
Kooperberg and Leblanc, 2008). Nevertheless, relying on
the pre-identified signals was questionable because that
approach would miss out those loci with strong epistatic
interactions, but undetectable main effects (Xu and Jia,
2007; Phillips, 2008). The challenge is how to effectively
incorporate the one-dimensional scans driven by pre-
identified loci into a higher-dimensional search.

This study was aimed to address the two questions of
how to control false positives and how to effectively use
the information of pre-identified loci in the mapping of
epistatic quantitative trait loci (QTL) using large-scale
simulations. As the issue of balancing false positive rate
(FPR) and power is entangled with multiple testing
methods and search algorithms, we adopted the follow-
ing measures to keep the problem tractable: (a) focusing
on pair-wise interactions in an F2 population structure;
(b) using the regression approach (Haley and Knott,
1992) to allow easy replication and interpretation;
(c) using the conventional epistasis partition given by
Jana (1971); (d) using exhaustive search to explore the
entire search space and (e) using the nested test frame-
work (Sen and Churchill, 2001) with modification to
derive thresholds and perform multiple tests. The
objectives are (1) to provide profiles of FPR and power
for detecting different forms and levels of epistasis and
(2) to find a solution to effectively combine one-dimen-
sional scans with a two-dimensional scan in mapping
epistatic loci. Ultimately, we hope to deliver a new
application running on the Grid infrastructure to allow
high-throughput epistasis analyses and produce results
with good quality and known FPR for functional studies.

Materials and methods

Genetic models and epistasis parameterization
The regression method (Haley and Knott, 1992) was
extended to map epistatic pairs of QTL (Carlborg and
Andersson, 2002; Carapuco et al., 2005). Considering only
one pair of loci denoted as L1 and L2, the genetic models
have the following simplified forms:

Model 1: y¼ mþL1þL2þL1þL2þ e (two loci with
epistasis)
Model 2: y¼ mþL1þL2þ e (two loci without epistasis)
Model 3: y¼ mþL1þ e (single locus model)
Model 4: y¼ mþ e (null model)

where y is the trait of interest, m is the model constant
and e is the random error term. Additive and dominance
genetic effects were modelled for each locus (a1 and d1 for

L1; a2 and d2 for L2). The interaction between L1 and
L2 (denoted as L1L2) was partitioned as a1� a2, a1� d2,
d1� a2 and d1� d2 genetic components following
Jana (1971).

Search algorithm
The search algorithm was developed to use effectively
the pre-identified QTL with significant marginal effects
(marginal-effect QTL) in detecting epistasis. The margin-
al-effect QTL are detected through a forwards selection
approach (ignoring the possibility of epistasis) and tuned
by retesting each QTL iteratively, while fitting the
remaining QTL as cofactors until the number of QTL
and their positions become stable (Wei et al., 2007). The
search algorithm is composed of two separate paths for
the identification of pairs of loci with epistatic inter-
actions (Figure 1):

� 1D_path—a one-dimensional genome scan for each
pre-identified marginal-effect QTL searching for
interactions with all other genomic positions. There
may be several independent one-dimensional genome
scans if more than one marginal-effect QTL has been
identified.

� 2D_path—a full two-dimensional genome scan search-
ing for epistatic interactions for loci at all combinations
of two positions in the genome irrespective of the
positions of pre-identified marginal-effect QTL.

Both paths used an exhaustive search at 1 centiMorgan
(cM) intervals to find the best pair of loci (that is with
the minimum residual variance or maximum aggregate
genetic variance) under Model 1 for each pair of chromo-
somes and test them for epistasis. Genome-wide thresh-
olds were derived in advance and a specific nested test
framework was used for each path to identify epistatic
pairs (see below).

Modified nested test framework
Sen and Churchill (2001) suggested a nested test frame-
work that included an overall test (Model 1 vs Model 4, 8
degrees of freedom) for the aggregate effect of a pair of
loci (that is the sum of the effects of each locus and their
interaction) and an interaction test (Model 1 vs Model 2,

1D scans to detect
marginal-effect QTL 

Derive genome-wide thresholds
for marginal-effect QTL

Derive genome-wide
thresholds for epistatic pairs

with marginal-effect QTL  2D scan to detect epistatic
pairs regardless of

marginal-effect QTL 

Final results

Derive genome-wide thresholds
for epistatic pairs regardless

of marginal-effect QTL 

1D scans to detect epistatic
pairs with marginal-effect QTL 

Figure 1 Flowchart of the search algorithm for detecting epistatic
QTL in two separate paths (1D_path to the left and 2D_path to the
right).
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4 degrees of freedom) for the interaction component.
The key property of this framework is that the interaction
test is nested in the overall test; only pairs that passed
the overall test would proceed to the interaction test and
the two loci in Model 2 must be the same as those in
Model 1. It was suggested to use permutation (Churchill
and Doerge, 1994) to derive a genome-wide threshold for
the overall test, but a nominal, tabulated, threshold for
the interaction test (Sen and Churchill, 2001; Sugiyama
et al., 2001).

Using the F ratio test statistics for model comparison,
the nested test framework was adopted here to deter-
mine the significance of epistasis. An epistatic pair is
declared if both tests are significant. Some modification
was made to apply the framework to the 1D_path in
which a marginal-effect QTL was known in advance
and fixed in Model 1 when searching for epistasis.
The overall test needs to ensure that the aggregate effect
of a pair involving the marginal-effect QTL explains
significantly more phenotypic variance than the marginal-
effect QTL alone. In this case, the overall test is compa-
ring Model 1 against Model 3, where L1 represents the
marginal-effect QTL in both models; this test thus takes
only 6 degrees of freedom. The interaction test is still
comparing Model 1 against Model 2 with L1 repre-
senting the marginal-effect QTL in both models and this
test takes 4 degrees of freedom as in the 2D_path.

Deriving genome-wide thresholds
Permutation (1000 replicates) was used to derive genome-
wide thresholds in advance. The DIRECT algorithm
(DIviding RECTangle), a fast global optimization
algorithm that finds the optima through systematically
dividing the search space into smaller rectangles, was
earlier adopted in QTL mapping studies (Ljungberg
et al., 2004). The DIRECT algorithm was applied here to
perform fast two-dimensional scans in permutations to
derive thresholds for the 2D_path. Exhaustive one-
dimensional genome scans were performed on per-
muted data to derive thresholds for each pre-identified
marginal-effect QTL in the 1D_path. The procedures are
outlined below:

� The 2D_path: For each permuted dataset a DIRECT
search was performed to identify the best pair of loci
under Model 1. This was tested against Model 4 to
calculate and store the F ratio for the overall test. Model
2 was then fitted with the same positions of L1 and L2
and used to calculate and store the F ratio for the
interaction test. The genome-wide thresholds for both
the overall and interaction tests were derived separately
from the corresponding lists of stored F ratios.

� For the 1D_path, thresholds were derived for each pre-
identified marginal-effect QTL. For each round of
permutation, the original QTL probabilities were fitted
for the identified QTL; then the one-dimensional
genome scan was performed with permuted geno-
types to find the L2 giving the minimum residual
variance of Model 1; the overall test was performed
by comparing the Model 1 against the Model 3 with
the QTL fitted to calculate and store an F ratio.
The QTL and L2 were then fitted to Model 2 to
calculate and store the F ratio for the interaction
test. The rest of the procedure was identical to that
of the 2D_path.

Simulation design
An F2 population was simulated in which the two
founder lines contributed 30 individuals each (50%
male). Fifteen founder sires from each line were each
mated to a different founder dam from the other line (8
progeny per dam) producing 240 F1 individuals. Thirty
F1 sires were randomly chosen and each mated to 3 F1
dams (6 progeny per dam) forming an F2 population
with 540 individuals. A genome of 20 chromosomes was
simulated with each chromosome carrying 11 micro-
satellite markers (four alleles with equal allele frequency
per marker) evenly spaced at 10 cM with a length of
100 cM giving a total genome length of 2000 cM. The
probability of crossovers between markers was gener-
ated using Haldane’s mapping function.
The total phenotypic variance (Vartot) consisted of four

components: additive genetic polygenic variance, non-
epistatic marginal-effect QTL variance, epistatic QTL
variance and random error variance. To mimic the
polygenic effects, 10 bi-allelic loci were simulated with
each at 0.5 recombination rate (that is not linked with any
of the simulated markers) and allele frequency of 0.5 in
the founder lines with additive genetic effects only,
accounting for 1% of the Vartot, giving a total polygenic
heritability of 10%. All QTL were simulated as bi-allelic
and fixed for alternative alleles in the founder lines. Each
non-epistatic QTL was assigned additive genetic effects
only, accounting for 3% of the Vartot. For each epistatic
pair of QTL, the eight genetic effects were simulated and
the total genetic variance of the pair (Varpair) and the
epistatic variance (Varepi) were calculated using the
equations given in Jana (1971). Three groups of simula-
tion scenarios were defined based on the epistatic
heritability (hepi2 ¼Varepi/Vartot), rather than the whole-
pair heritability (hpair2 ¼Varpair/Vartot). Each scenario
included polygenic effects, except when explicitly stated,
and was tested with at least 550 replicates.
The first group was non-epistatic in which six

simulation scenarios were designed to test how the
algorithm controlled FPR under different genetic back-
grounds in which epistasis was not present. These
scenarios were noGenetic—neither polygenic nor
marginal-effect QTL; 0QTL_noEpi—only polygenic, not
QTL; 1QTL_noEpi—one marginal-effect QTL; 2QTL_
noEpi—two marginal-effect QTL; 5QTL_noEpi—five
marginal-effect QTL; 8QTL_noEpi—eight marginal-effect
QTL. The total QTL variance was the sum of marginal-
effect QTL with a variance of 3% of the Vartot each, for
example, 24% in the 8QTL_noEpi scenario. Each marginal-
effect QTL was simulated at either 85 or 15 cM on one
of the chromosomes of 1, 2, 4, 6, 8, 17, 18 and 20 as
appropriate.
The second group was the core of the study in which

20 scenarios were defined to test the algorithm in
different combinations of epistasis forms and effect sizes
to produce profiles of FPR and power in a simplified
condition allowing at most one QTL per chromosome.
Each of the 20 scenarios had one non-epistatic marginal-
effect QTL positioned at 85 cM on chromosome 1 and one
epistatic QTL pair in which the first locus of the epistatic
pair was positioned at 15 cM on chromosome 2 and the
second at 85 cM on chromosome 3. The epistatic QTL
pair was simulated to have one of the six forms of
epistasis: complementary, duplicate, dominant, reces-
sive, inhibitory (Jana, 1971, 1972; Carlborg et al., 2000)
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and interaction only (that is additive� additive, without
main effects), with an epistatic heritability (hepi2 ) of either
2.5, 5 or 7.5% (Table 1).

The third group of scenarios was used to validate the
algorithm in two more complicated conditions: (a) the
non-epistatic marginal-effect QTL was placed at 85 cM
on chromosome 2 in which the first locus of the epistatic
pair was simulated at 15 cM (linked loci); (b) in addition
to the simplified condition, a second epistatic pair was
simulated (with the same form and effect size of epistasis
as the first pair) at 85 cM on chromosome 19 and 15 cM
on chromosome 20 (two pair). Each epistatic pair was
simulated to have 5% hepi2 with one of the six forms of
epistasis giving six scenarios for either the linked-loci or
the two-pair condition.

Analysis of simulation results
Power and FPR: For non-epistatic QTL, a QTL was
counted as a true positive if mapped to the chromosome
in which it was simulated, otherwise it was considered
as a false positive. For epistasis, an epistatic pair was
regarded as a true positive if both loci each mapped to
the chromosome in which they were simulated,
otherwise it was considered as a false positive. FPR
was calculated per scenario as the percentage of the total
number of false positives out of the number of simulation
replicates. Power was calculated per non-epistatic QTL
or per epistatic pair as the percentage of the total number
of detected true positives out of the number of
simulation replicates. An average power was given
when multiple non-epistatic QTL were present. In the
two-pair epistatic scenarios, power was reported for
each pair.

Accuracy: The accuracy of locating each simulated non-
epistatic QTL or epistatic pair was assessed in two ways:
(a) exact (%)—the percentage of the total number
occurrence of locating the true positive QTL in the
simulated 10 cM marker interval (or the total number of
occurrence of locating both loci of the true positive
epistatic pair to the corresponding simulated marker
intervals) out of the number of simulation replicates and
(b) precision (cM)—the average distance between the
detected position and the simulated position for each
locus of a true positive epistatic pair. An average
accuracy was given when multiple non-epistatic QTL
were present. The exact (%) accuracy was reported for
each pair in the two-pair epistatic scenarios.

Overlap between 2D_path and 1D_path: Overlaps (that
is the epistatic pairs detected in both paths) existed
because scans conducted in the 1D_path were always

covered in a full two-dimensional scan, but tested using
different thresholds in the two cases. A QTL zone was
defined as a chromosome region around each marginal-
effect QTL in which any locus within the zone was
regarded as the QTL for sharing similar information.
Overlaps can be greatly avoided by skipping any QTL
zones searched in the 1D_path from the 2D_path search
space. The QTL zone length (for example, 10 cM on either
side of a QTL) is critical to determine the amount of
overlaps in the 2D_path as well as the overall FPR and
power after combining the 1D_path with the 2D_path
without QTL zones. Different QTL zone lengths of 10, 20,
30 and 40 cM were compared by re-analysing the
simulation results from the 2D_path to determine the
most effective length.

Results

Thresholds
The genome-wide thresholds derived for both the
2D_path and 1D_path were fairly consistent across
scenarios. For the 2D_path, the averaged genome-wide
thresholds were 5.28 and 8.22 (corresponding to a
nominal P-value of 2.2� 10�6 and 1.9� 10�6) for the
overall and interaction tests, respectively. For the
1D_path, the averaged genome-wide thresholds were
4.28 and 5.08 (corresponding to a nominal P-value of
3.2� 10�4 and 5.1�10�4) for the overall and interaction
tests, respectively. In both cases, the threshold applied
for the interaction tests were dramatically more string-
ent than the recommended nominal P-values of 0.01
(Sugiyama et al., 2001).

FPR and power profiles of mapping marginal-effect QTL
At least 1100 replicates were simulated for each non-
epistatic scenario to provide clear profiles of FPR and
power of detecting marginal-effect QTL used for map-
ping epistatic loci. On the basis of the 5% genome-wide
threshold, the FPR, average power, accuracy as well as
the number of marginal-effect QTL detected were
calculated for each scenario as appropriate (Table 2).
The results showed that given a QTL heritability of 3%,
there was around 50% power to detect a marginal-effect
QTL and about 30% probability to locate it in the right
marker interval.

FPR profile of mapping epistatic pairs in the non-epistatic

scenarios
For each non-epistatic scenario, the FPR of epistatic pairs
was measured for both the 2D_path and 1D_path using
the 5% genome-wide thresholds for the overall and

Table 1 Overview and names of the core simulation scenariosa

Epistasis form 2.5% hepi
2 5.0% hepi

2 7.5% hepi
2 10.0% hepi

2 12.5% hepi
2

Complementary Com2.5% (17.6) Com5.0% (35.0) Com7.5% (52.5) — —
Dominant Dom2.5% (6.8) Dom5.0% (15.6) Dom7.5% (25.0) — —
Recessive Rec2.5% (10.0) Rec5.0% (20.2) Rec7.5% (30.5) — —
Inhibitory Inh2.5% (10.9) Inh5.0% (21.7) Inh7.5% (32.5) — —
Duplicate Dup2.5% (4.2) Dup5.0% (8.3) Dup7.5% (12.5) — —
Interaction only Int2.5% (2.5) Int5.0% (5.0) Int7.5% (7.5) Int10.0% (10.0) Int12.5% (12.5)

aThe total phenotypic variance (Vartot) was 0.98; the epistatic heritability of a pair of loci (hepi
2 ¼ the epistatic variance of an epistatic pair/

Vartot); the whole-pair heritability (hpair
2 ¼ the total genetic variance of an epistatic pair/Vartot) in brackets.

Type I error in mapping epistatic loci
W-H Wei et al

404

Heredity



interaction tests (Figure 2). It was obvious that the FPR
values from the 2D_path were quite consistent across
scenarios. The 1D_path FPR, however, increased as the
average number of marginal-effect QTL increased and
departed from the target 5% dramatically when two or
more QTL were detected (Table 2). Considering that one-
dimensional genome scans were performed for each
marginal-effect QTL independently, the 1D_path thresh-
olds were adjusted in three steps: (1) the 5% genome-
wide F ratio threshold was converted to a nominal
P-value using appropriate degrees of freedom; (2) the
P-value was divided by the number of QTL detected and
(3) the corrected P-value was converted back to obtain an
adjusted F ratio threshold. After applying the adjusted
thresholds, the resulting 1D_path FPR was at the correct
level (the 1D_path_corrected series in Figure 2). The
adjustment procedure was applied from this point
onwards to analyse all the simulation results from
the 1D_path.

Analysing overlaps between the 1D_path and 2D_path
results using different QTL zone lengths (area around a
marginal-effect QTL that was not tested for epistasis
using the 2D_path) uncovered that increased FPR was
a concern in scenarios in which multiple marginal-effect
QTL were detected. When skipping QTL zones with a
length of 10 cM, the 2D_path FPR reduced from 1.82 to
1.36 in the scenario with five simulated QTL (5QTL_noE-
pi) and from 3.62 to 2.99 in the scenario with eight
simulated QTL (8QTL_noEpi). Increasing the zone length
to 20 cM or above made only limited difference in the
scenario with eight simulated QTL (further reduced the
2D_path FPR to 2.53) while causing considerable reduc-
tion of the 2D_path search space.

The final FPR values for each non-epistatic scenario
(the Final series in Figure 2) were calculated by
combining the new 1D_path FPR results from using the
corrected thresholds with the new 2D_path FPR by
skipping QTL zones with a length of 10 cM. These FPR
values were below or close to a target level of 5% across
scenarios. Thus, this way of integrating results from the
1D_path and 2D_path was applied hereafter to calculate
final results.

FPR and power profiles of mapping epistatic pairs in the

core scenarios
The FPR and power profiles of mapping epistatic pairs
are shown in Table 3 for the 20 core simulation scenarios
(Table 1). For each scenario, the FPR and power were
calculated for the 1D_path using the corrected 5%

genome-wide thresholds (‘1D_path’ columns, Table 3)
and the 2D_path using the 5% genome-wide thresholds
(‘2D_path’ columns). In addition, the 2D_path results
after skipping QTL zones with a length of 10 cM and the
final integrated results were calculated for each scenario
(‘2D_path no_QTL’ and ‘Final’ columns, respectively).
The final FPR values varied around the target 5% level

across scenarios (Table 3). Skipping QTL zones from the
two-dimensional search space made rather small reduc-
tion in FPR values, possibly because the 2D_path FPR
values were consistently low across scenarios already.
Most of the 1D_path FPR values were below 4% showing
that the threshold correction worked well in general.
There were, however, a few occasions in which the
1D_path FPR values were slightly 45% (thus the final
FPR values slightly above 7% in scenarios with inhibitory
or dominant epistasis) given only 550 replicates used per
scenario.
The power profiles were more complicated (Table 3).

Within a model of epistasis, the final power of detecting
epitasis increased as the hepi2 increased. At the same level
of hepi2 , the complementary (both loci were marginal-
effect QTL) scenario had the highest power value;
followed by the inhibitory, dominant and recessive (one
locus was marginal-effect QTL) scenarios; the duplicate
(one locus was marginal-effect QTL at a chance of 1 out 16)
and interaction-only (neither locus with main effects)
scenarios had the lowest power. However, that order was
almost reversed if we based the ranking on the whole-
pair heritability (that is hpair2 ): the interaction-only and
duplicate scenarios had higher power than the remaining
(Figure 3). For example, at 10% hpair2 , the interaction-only
scenario had about 80% power, whereas the comple-
mentary scenario had a power o10%.
In scenarios with complementary, dominant, recessive

or inhibitory epistasis, the 1D_path found nearly every
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Figure 2 The FPR profiles of mapping epistatic pairs generated
from different search paths in different non-epistatic genetic
backgrounds and their controls. Along the x axis are six non-
epistatic scenarios (from the left) simulating a genetic background
with neither polygenic nor marginal-effect QTL effects, polygenic
plus either zero, one, two, five or eight marginal-effect QTL effects.
Within each non-epistatic scenario, any epistatic QTL pair detected
from either the 2D_path (a full two-dimensional genome scan
irrespective of pre-identified QTL, using 5% genome-wide thresh-
olds) or the 1D_path (one-dimensional genome scans for each pre-
identified QTL, using 5% genome-wide thresholds) counted as false
positives. The 1D_path_corrected FPR calculated by testing each
false positive pair from the 1D_path against stringent thresholds
corrected by the number of pre-identified QTL. The Final FPR
calculated by combing the FPR results from the 2D_path and the
1D_path_corrected after skipping any overlaps.

Table 2 False positive rate (FPR), power and accuracy in mapping
marginal-effect QTL in the non-epistatic scenariosa

QTLb FPR (%) Power (%)c Exact (%)c

noGenetic 0.1 5.4 — —
0QTL_noEpi 0.1 6.1 — —
1QTL_noEpi 0.5 5.4 48.2 28.4
2QTL_noEpi 1.0 4.5 48.5 27.4
5QTL_noEpi 2.6 3.7 51.1 28.1
8QTL_noEpi 4.4 4.2 54.8 35.0

aEach scenario used at least 1100 simulation replicates.
bThe average number of marginal-effect QTL detected per replicate.
cAveraged by the number of non-epistatic QTL simulated in a
scenario.
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epistatic pairs that could be detected and the 2D_path
found essentially the same ones, but fewer of them
(Table 3). In scenarios with duplicate epistasis, however,
both the 1D_path and 2D_path found around 50%
epistatic pairs uniquely (that is there was much less

overlap in the 2D_path)—nearly half of those found by
the 2D_path were not found by the 1D_path and a third
of those found by the 1D_path were not found by the
2D_path. In scenarios with interaction-only epistasis, the
2D_path contributed solely to the final power because
the 1D_path had no or rather limited power.

The accuracy in mapping epistasis improved as the
hepi2 increased (Table 4). The exact (%) results were in line
with the final power results across scenarios, that is the
chance of locating both loci into the simulated marker
intervals increased as the power increase. The average
precision (average distance between the mapped and
simulated positions) of each locus of an epistatic pair
detected from either the 2D_path or 1D_path was always
below 5 cM when hepi2 was 5.0% or 7.5%. Furthermore, the
majority of the QTL were mapped within 10 cM of the
simulated location implying that they were mapped to
either the simulated or the adjacent marker interval.
Almost all remaining QTL were mapped within 20 cM of
the simulated position. Such results suggested that the
FPR and power profiles would remain unchanged even
if the definition of a true positive epistatic pair had
included a restriction that the two loci each mapped to
the correct chromosome and within 20 cM of the
simulated position.

FPR and power profiles in the validation scenarios
Analyses of the 12 validation scenarios showed that the
2D_path and 1D_path behaved almost identically to the
core scenarios under the simplified condition. The final
FPR and power results from combining the 1D_path and
2D_path for each validation scenario are displayed in
Figure 4. Clearly, the FPR values of each validation
scenario were similar to those in Table 3 and controlled
around the 5% target level. The power profiles for the

Table 3 False positive rate (FPR) and power profiles of mapping an epistatic pair in the core scenariosa

FPR (%) Power (%)

1D_path 2D_path 2D_path no_QTLb Finalc 1D_path 2D_path 2D_path no_QTLb Finalc

Com2.5% 3.7 1.2 0.5 4.2 15.6 2.7 0.0 15.6
Com5.0% 2.0 1.6 1.3 3.3 69.3 32.2 0.0 69.3
Com7.5% 1.4 0.7 0.4 1.8 99.1 90.0 0.0 99.1
Dup2.5% 2.0 1.5 1.5 3.5 1.8 1.6 1.2 3.0
Dup5.0% 4.4 2.3 2.0 6.4 14.7 21.8 15.5 30.1
Dup7.5% 2.0 1.6 1.6 3.6 46.6 57.7 29.3 75.9
Dom2.5% 3.3 1.0 0.8 4.1 6.6 2.6 1.7 8.3
Dom5.0% 5.7 2.1 2.0 7.7 55.7 19.8 0.7 56.4
Dom7.5% 5.6 2.0 1.7 7.4 90.8 65.2 0.3 91.1
Rec2.5% 3.3 0.7 0.5 3.8 8.7 1.5 0.2 8.8
Rec5.0% 4.1 1.0 0.8 5.0 51.7 23.3 0.0 51.7
Rec7.5% 4.2 0.5 0.4 4.5 89.7 67.5 0.0 89.7
Inh2.5% 5.1 2.4 2.0 7.1 13.8 2.0 0.0 13.8
Inh5.0% 5.3 2.0 1.8 7.2 61.3 24.8 0.0 61.3
Inh7.5% 5.5 1.9 1.6 7.1 92.3 70.9 0.0 92.3
Int2.5% 1.8 0.4 0.4 2.2 0.0 0.9 0.9 0.9
Int5.0% 1.6 2.0 2.0 3.6 0.0 12.4 12.4 12.4
Int7.5% 0.9 2.9 2.7 3.6 0.0 46.8 46.8 46.8
Int10.0% 0.9 1.3 1.3 2.2 0.2 78.5 78.3 78.5
Int12.5% 2.3 2.0 1.8 4.1 0.2 92.8 92.6 92.8

aEach scenario with one non-epistatic QTL and one epistatic pair.
bOmitting regions of 10 cM on either side of the marginal-effect QTL pre-indentified from the 2D_path results.
cCombined results from the 1D_path and those from the 2D_path after omitting regions of 10 cM on either side of the marginal-effect QTL
pre-indentified.
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linked-loci and the two-pair conditions were very similar
to each other and to that for the core scenarios with 5%
hepi2 . The power of each linked-loci scenario was nearly
identical to that of the corresponding core scenario,
indicating that the algorithm was robust to handle
linked-loci situations. Small power reduction was
observed in some two-pair scenarios in contrast to the
linked-loci scenarios possibly because of the threshold
correction as the number of marginal-effect QTL detected
in a two-pair scenario almost doubled and consequently
the penalty almost doubled as well.

Discussion

In this large-scale simulation study, we examined
different aspects of the issue of false positive detection
of epistatic loci. We showed performance differences
between the 2D_path and 1D_path in mapping different
forms and levels of epistasis and produced clear profiles
of FPR and power that were validated in more
complicated simulation scenarios. In addition, we found
that both the 2D_path and 1D_path had strengths and
weaknesses in detecting certain forms of epistasis. The
strength in one happened to be the weakness of the other.
The two paths can be effectively combined by skipping
any QTL zones with a length of 10 cM from the 2D_path
search space.

It was shown throughout the study that a good control
of FPR was achieved by applying the pre-derived
genome-wide thresholds to the nested overall and
interaction tests based on the modified nested test
framework. In a parallel simulation study using the
same simulation scenarios and scales, we evaluated an
alternative approach that considered only the interaction
test in both searching and testing for epistasis, but found
hard to control FPR in general (results can be made

available on request). The modification of the nested test
framework seemed to be very important in increasing
power of detection of epistasis associated with pre-
identified QTL by allowing the one-dimensional scans
for epistatic pairs as implemented in the 1D_path and
improving the overall search speed because one-dimen-
sional scans were faster than a two-dimensional scan,
and the two-dimensional search space would be reduced
as a result of the skip of the QTL zones. The framework
can be applied to other population structures to help
control false positive signals of epistasis. Nevertheless,
the theoretical foundation of the framework (for
example, the expected FPR level in the 1D_path or
2D_path) requires further work.
The trade-off between FPR and power has always been

challenging in multiple testing situations (Rice et al.,
2008). Considering the difficulty and expense in identify-
ing the functional consequence of a statistical epistasis
(Phillips, 2008), a low FPR level is important to
encourage biologists engagement in functional epistasis
studies. Using the 5% genome-wide thresholds (with
correction for the 1D_path), we controlled the FPR close
to the 5% conventional level. Using less stringent
thresholds, for example, 5% genome-wide threshold for
the overall tests, but 10% genome-wide thresholds for the
interaction tests, resulted in a slight increase of power,
but considerably higher FPR (results not shown) and
thus is not recommended.
The F2 population size of 540 is common in normal

linkage studies, but could be small for epistasis analysis
as suggested by Carlborg et al. (2006). Our results
(Figure 3) showed that for a population of 540 F2,
the power to detect an epistatic pair explaining 10%
phenotypic variance was about 80% if the pair had an
interaction-only form (hepi2 ¼ 10%), 40% if it had a dupli-
cate form (5.0%ohepi2 o7.5%), 20% if it had a dominant

Table 4 Accuracy of mapping epistatic pair in the core scenariosa

Exactb (%) Locus 1 precision (cM)c Locus 2 precision (cM)c

1D_path 2D_path 1D_path 2D_path

Com2.5% 10.1 3.0 (96.8, 3.2) 2.7 (100, 0.0) 3.4 (95.7, 4.3) 1.9 (100, 0.0)
Com5.0% 64.2 1.7 (100, 0.0) 1.8 (100, 0.0) 1.7 (99.8, 0.2) 1.7 (100, 0.0)
Com7.5% 96.6 1.3 (100, 0.0) 1.3 (100, 0.0) 1.3 (100, 0.0) 1.3 (100, 0.0)
Dup2.5% 1.5 5.1 (88.9, 11.1) 3.8 (100, 0.0) 4.3 (88.9, 11.1) 3.9 (100, 0.0)
Dup5.0% 15.8 4.2 (85.9, 14.1) 3.8 (93.3, 6.7) 4.9 (85.9, 12.9) 4.0 (89.6, 10.4)
Dup7.5% 41.9 4.8 (89.5, 9.8) 4.0 (92.8, 6.5) 4.7 (90.2, 9.0) 3.5 (94.1, 5.6)
Dom2.5% 3.3 4.3 (88.6, 11.4) 4.0 (87.5, 12.5) 8.8 (80.0, 14.3) 8.1 (75.0, 12.5)
Dom5.0% 35.1 2.8 (98.5, 1.5) 2.3 (98.3, 1.7) 4.6 (91.0, 7.1) 4.2 (93.4, 4.1)
Dom7.5% 66.7 1.7 (99.7, 0.3) 2.0 (99.4, 0.6) 3.5 (95.7, 4.1) 3.7 (94.9, 4.8)
Rec2.5% 4.6 6.4 (81.1, 18.9) 6.4 (88.9, 0.0) 3.2 (97.3, 2.7) 4.9 (77.8, 22.2)
Rec5.0% 32.4 5.2 (84.4, 14.1) 4.8 (86.5, 11.3) 1.9 (100, 0.0) 1.9 (110.0, 0.0)
Rec7.5% 62.9 4.4 (92.1, 6.0) 3.9 (94.4, 4.8) 1.7 (99.6, 0.4) 1.5 (99.7, 0.3)
Inh2.5% 7.3 2.7 (100, 0.0) 3.5 (100, 0.0) 5.2 (87.7, 12.3) 4.3 (100, 0.0)
Inh5.0% 39.8 2.2 (99.4, 0.6) 1.9 (100, 0.0) 4.4 (91.3, 7.0) 3.4 (96.6, 3.4)
Inh7.5% 72.3 1.6 (99.9, 0.1) 1.5 (100, 0.0) 3.4 (95.6, 4.0) 3.3 (96.3, 3.3)
Int2.5% 0.0 — 5.0 (100, 0.0) — 8.1 (80.0, 20.0)
Int5.0% 6.7 — 4.9 (89.9, 10.1) — 4.2 (91.3, 8.7)
Int7.5% 24.1 — 4.4 (91.1, 8.5) — 4.3 (89.9, 10.1)
Int10.0% 45.3 — 3.9 (92.6, 7.1) — 4.0 (93.1, 6.4)
Int12.5% 58.9 — 3.5 (95.5, 4.5) — 3.6 (94.8, 4.9)

aEach scenario with one non-epistatic QTL and one epistatic pair.
bThe percentage of the number of true positive epistatic pairs in which both loci mapped to the simulated marker interval out of the total
simulation replicates.
cThe average distance between the mapped and simulated QTL positions for significant epistatic pairs given for each QTL separately; the first
(second) number in brackets is the percentage of distances p10 cM (410 and p20 cM) out of the total number of true positives.
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form (2.5%ohepi2 o5.0%) and o10% if it had either reces-
sive or inhibitory or complementary form (hepi2 o2.5%).
These results suggested that it was relatively easy to
find strong epistasis (for example, hepi2 47.5%), but
difficult to detect weak ones given the population
size. Our observations are roughly in line with earlier
studies: four interaction-only pairs detected from an F2
mouse population (size is 510, 166 females) explained
about 36% of the total variation in litter size (that is
hepi2 ¼ 9% on average) (Peripato et al., 2004); most epistatic
pairs detected for obesity-related traits using 513 F2 mice
had a hepi2 42% despite the relatively relaxed thresholds
that were used (Stylianou et al., 2006). Increasing the
population size is a good option to increase power
(Carlborg et al., 2003; Ma et al., 2009). For example,
according to our additional simulation results (Supple-
mentary Figure S1), when increasing the population
size from 540 to 840, scenarios with 2.5% hepi2 at least
doubled the power, and scenarios with 5.0% hepi2 at the
population size of 840 had power comparable to those
with a hepi2 of 7.5% at the size of 540.

Even at the population size of 540, the accuracy of
mapping epistatic pairs, without any backwards or
forwards tuning in place yet, was generally good across
all epistasis forms in the context of an F2 population and
increased as epistasis gets stronger. Those accuracy
results suggested that the simple regression approach
and the non-orthogonal epistasis partition might be
sufficient to correctly map epistatic pairs. Considering
that the regression models are easy to extend and fast to
compute, the modelling approach we adopted here
remains competitive in mapping epistasis.

The whole simulation study cost was 410 CPU years,
but was computed in a couple of weeks by distributed
computing technologies, so is high throughput in itself.
On the basis of the work in this study, the task of high-
throughput epistasis analyses becomes achievable at
least in populations derived from structured crosses.
Skipping the QTL zones in the two-dimensional scan
would effectively reduce the search space of the scan
and, hence, the overall computing time. By combining
the 2D_path and 1D_path, the algorithm is balanced
between search efficiency and speed thus suitable to be
used as the search engine for high-throughput epistasis
analyses. Considering that the genome-wide threshold
values were consistent across scenarios at a given
genome size, it is possible to derive those thresholds in
advance for different genome and population sizes and
use them directly to save permutation time in multiple
epistasis analyses (Broman et al., 2003).

In summary, using the modified nested test framework
to perform nested tests for epistasis in the search process
controlled by the combined search algorithm (Figure 1)
allowed effectively mapping different forms of epis-
tasis while keeping FPR under control. Once integrated
with distributed computing resources, the new distrib-
uted application can support high-throughput epistasis
analysis.
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