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Mapping epistatic quantitative trait loci underlying
endosperm traits using all markers on the entire
genome in a random hybridization design

X-H He and Y-M Zhang
Section on Statistical Genomics, State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean
Improvement, Nanjing Agricultural University, Nanjing, China

Triploid endosperm is of great economic importance owing to
its nutritious quality. Mapping endosperm trait loci (ETL) can
provide an efficient way to genetically improve grain quality.
However, most triploid ETL mapping methods do not
produce unbiased estimates of the two dominant effects of
ETL. A random hybridization design is an alternative method
that may be used to overcome this problem. However,
epistasis has an important role in the dissection of genetic
architecture for complex traits. In this study, therefore, an
attempt was made to map epistatic ETL (eETL) under a
triploid genetic model of endosperm traits in a random
hybridization design. The endosperm trait means of random
hybrid lines, together with known marker genotype informa-

tion from their corresponding parental F2 plants, were used to
estimate, efficiently and without bias, the positions and all of
the effects of eETL using a penalized maximum likelihood
method. The method proposed in this article was verified by
a series of Monte Carlo simulation experiments. Results from
the simulated studies show that the proposed method
provides accurate estimates of eETL parameters with a low
false-positive rate and a relatively short running time. This
new method enables us to map triploid eETL in the same
way as diploid quantitative traits.
Heredity (2008) 101, 39–47; doi:10.1038/hdy.2008.23;
published online 7 May 2008
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Introduction

Endosperm, a result of double fertilization in
flowering plants, is a triploid tissue whose genetic
constitution is consequently more complex than that of
common diploid tissue. Endosperm traits, such as
protein and amino-acid content in wheat, amylose
content and gel consistency in rice, sugar content in
sweetcorn and starch and gum content in barley,
are of great economic importance because they are
directly related to grain quality. Mapping endosperm
trait loci (ETL) can provide an efficient way to genetically
improve grain quality (Hospital and Charcosset,
1997; Moreau et al., 1998; Peleman and Voort, 2003;
Servin et al., 2004). However, quantitative trait loci (QTL)
mapping methods are usually designed for traits that are
under diploid control (Lander and Botstein, 1989; Haley
and Knott, 1992; Martinez and Curnow, 1992; Jansen,
1993; Zeng, 1994; Kao et al., 1999; Xu, 2003, 2007; Zhang
and Xu, 2005a, b; Zhang, 2006). The development of a new
method for mapping ETL is thus warranted.

The key to understanding the genetic architecture of
endosperm traits is found in the study of the properties

of individual genes and their interactions. However,
classical statistical methodologies (Gale, 1976; Mo,
1987; Bogyo et al., 1988; Foolad and Jones, 1992; Pooni
et al., 1992; Zhu and Weir, 1994) generally focus on
partitioning the phenotypic variance of an endosperm
trait into genetic and nongenetic (environmental) compo-
nents, and limit the analysis of the genetic variation to
the collective properties of genes. With the advent of
molecular markers, QTL mapping became popular. Early
QTL mapping used diploid methods to analyze endo-
sperm traits (Tan et al., 1999; Wang and Larkins, 2001;
Wang et al., 2001). This simple treatment failed to take into
account the triploid nature of endosperm traits.
To overcome this problem, several approaches have

been proposed. Wu et al. (2002a, b) pointed out that
diploid QTL mapping models require modification to
encompass the trisomic inheritance of endosperm traits
and the generation difference between a maternal plant
and its corresponding endosperm. Such a model requires
simultaneous use of two successive generations (two-
stage hierarchical design). Theoretically, this can lead to
an increase in genetic information extraction from both
the maternal plant and its offspring embryo genomes,
and in resolution for ETL mapping, compared with a
single segregation generation (one-stage) design. Xu et al.
(2003) expressed the mean value of endosperm traits of
F2:3 seeds as a dependent variable and the expectations of
genotypic indicators for additive and dominant effects of
a putative ETL as independent variables for iteratively
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reweighted least-squares mapping. Recently, Hu and Xu
(2005) postulated that genetic expression of an endo-
sperm trait may be controlled simultaneously by triploid
endosperm and diploid maternal genotypes, and pro-
posed a statistical method for ETL mapping that
included maternal genetic effects. However, both of
these methods are problematic. First, they handle only
models with a single ETL. Only the effects of the putative
ETL at the current position are included in the model; all
other ETL effects are ignored. Thus, this model is biased
in estimating the effects and the positions of ETL
provided that multiple and epistatic ETL (eETL) control
the trait. Wu et al. (2002b) proposed a two-ETL genetic
model to detect eETL, but theirs is not a true multiple
eETL genetic model. Subsequently, Kao (2004) developed
a method of triploid multiple interval mapping (MIM)
that combined the triploid nature of endosperm with
their diploid MIM (Kao et al., 1999).

Second, the existing methods do not produce unbiased
estimates of the two dominant effects of ETL. If the
genotype of a plant is QQ (or qq), all the endosperms of
the seeds on the plant will be QQQ (or qqq); if the
genotype of a plant is Qq, all the endosperms will be 0.25
(QQQþQQqþQqqþ qqq). This means that the first and
second dominant effects cannot be distinguished indivi-
dually, only collectively, so the result is equivalent to that
obtained from a diploid genetic model (Wen and Wu,
2006). Wen and Wu (2006) put forward a random
hybridization design to estimate the two dominant
effects of ETL without bias, but their method does not
consider epistasis.

Epistasis, the interaction between QTL, plays an
important role in the dissection of genetic architecture
for complex traits (Phillips, 1998; Carlborg and Haley,
2004). To date, several approaches have been developed,
including the MIM method (Kao and Zeng, 1997; Kao
et al., 1999), the least-squares multiple regression model
(Broman and Speed, 1999), the Bayesian shrinkage
estimation method (Xu, 2003; Wang et al., 2005; Zhang
and Xu, 2005b), stochastic search variable selection
methodology derived from George and McMulloch
(1993) (Oh et al., 2003; Yi et al., 2003a, b), the unified
Bayesian method (Yi, 2004), the penalized maximum
likelihood (PML) method (Zhang and Xu, 2005a) and the
empirical Bayes method (Xu, 2007; Xu and Jia, 2007).
Most of these are feasible methods for identifying
epistatic QTL. Although PML is an all-marker analysis
method, it has some advantages. It is simple to use, its
result is concise, its running time is much shorter than
that of the Bayesian analysis method (Zhang and Xu,
2005a) and it has been proved to be very effective
(Broman and Speed, 1999; Xu, 2003; Zhang and Xu,
2005a). Because of these advantages, we used the PML
method in our study.

We attempted to detect triploid eETL using a random
hybridization design and to estimate, without bias, all
effects of eETL, using the PML method.

Method

Experimental design
To form a randomly hybridized population, the parental
F2 population was divided into two groups (maternal
and paternal) of equal size. The order of the F2 plants in

each parental group was randomly permuted, and pairs
of plants with corresponding order numbers in the two
parental groups were crossed. This procedure was
repeated until sufficient hybrid lines were obtained. For
each hybrid line, the phenotypic value of the endosperm
trait and molecular marker information was required. To
obtain the phenotypic value of the trait, we measured the
mixture of seeds on the maternal plant for each hybrid
line to calculate the mean of the line. Molecular marker
information was derived from diploid tissues rather than
from the triploid endosperm, since the three genotypes
MMM, MMm and Mmm could not be distinguished from
one another for dominant markers; nor could genotypes
MMm and Mmm be distinguished for co-dominant
markers (Wu et al., 2002b). Therefore we predicted ETL
behavior using marker information from parental F2
plants. These endosperm trait means of hybrid lines and
known marker genotype information from the parental
F2 plants were used to map eETL.

Genetic model for random hybrid line mean of an

endosperm trait
Let n be the number of random hybrid (RH) lines and m
be the number of markers. We assume that there are no
maternal effects affecting endosperm trait expression
and that, in the RH population, there is one ETL residing
on each marker in the entire genome with two different
alleles (Q and q). All pair-wise eETL are considered. The
mean of hybrid line j, yj, for the trait is described by the
following genetic model

yj ¼ mþ
Xm
k¼1

ðxjkak þ zjk1dk1 þ zjk2dk2Þ þ
Xm
ros

½ðxjrxjsÞiaras

þ ðxjrzjs1Þiards1 þ ðxjrzjs2Þiards2 þ ðzjr1xjsÞidr1as
þ ðzjr1zjs1Þidr1ds1 þ ðzjr1zjs2Þidr1ds2 þ ðzjr2xjsÞidr2as
þ ðzjr2zjs1Þidr2ds1 þ ðzjr2zjs2Þidr2ds2 � þ ej

ð1Þ
where m is the population mean; ak is the additive effect
for locus k, which measures the average effect of
substituting Q for q; dk1 (dk2) is the first (second)
dominant effect for locus k, which measures the
departure of the substitution effect in QQ (qq) back-
ground; i.. is the epistatic effect between two loci (Kao,
2004); ej is the residual error with an assumed N (0, s2)
distribution; and x, z1 and z2 are dummy variables taking
values depending on the genotype combination of the
two parental F2 plants randomly hybridized (Table 1).

We now use l to index the lth genetic effect (the
additive, the first and second dominant and epistatic
effects) for l¼ 1, y, q. We can rewrite model (1) as

yj ¼ b0 þ
Xq
l¼1

x
0

jlbl þ ej ð2Þ

where b0¼m, q¼ 1.5m (3m�1),

b ¼ fb1; 
 
 
 ; bqgT9fa1; d11; d12; 
 
 
 ; am; dm1; dm2; ia1a2 ; ia1d21 ;

ia1d22 ; id11a2 ; id11d21 ; id11d22 ; id12a2 ; id12d21 ; id12d22 ;


 
 
 ; iam�1am ; iam�1dm1
; iam�1dm2

; idðm�1Þ1am ; idðm�1Þ1dm1
;

idðm�1Þ1dm2
; idðm�1Þ2am ; idðm�1Þ2dm1

; idðm�1Þ2dm2
gT

and xl
0 ¼ {x1l

0 , y, xnl
0 }T is an n� 1 incidence vector

corresponding to the effect bl (8l¼ 1, y, q).
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Parameter estimation
The PML method (Zhang and Xu, 2005a) was used to
estimate the parameters in model (2). The method is
briefly described here; for technical detail the reader is
referred to the original study (Zhang and Xu, 2005a).

In the PML method, the objective function to be
maximized for parameter estimation is the penalized
likelihood function, that is, the product of the likelihood
function L(h|Y, M) and the penalty function P(h, n). The
former is

LðhjY; MÞ ¼
Yn
j¼1

jðyj; mj; s2Þ ð3Þ

where Y¼ (y1, y2, y, yn)T, M is marker information, and
j (yj; mj, s2) is a normal probability density function with
mean mj and variance s2; the latter is

Pðh; nÞ ¼
Yq
l¼1

½jðbl; ml; s2l Þjðml; 0; s2l =ZÞ� ð4Þ

where h¼ (b0, b1, y, bq, s2), n¼ (m1, y, mq, s12, y, sq2) is the
vector of hyperparameters, and Z40 is prior sample size
for accessing mk. Therefore, the penalized likelihood
function is

cðh; nÞ ¼ LðhjY; MÞPðh; nÞ ð5Þ
The PML estimates for both model parameters and

hyperparameters are

b0 ¼
1

n

Xn
j¼1

yj �
Xq
l¼1

x
0

jlbl

 !
ð6Þ

bl ¼
Xn
j¼1

x
02
jl þ s2=s2l

0
@

1
A�1

�
Xn
j¼1

x
0

jlðyj � b0 �
Xq
t 6¼l

x
0

jtbtÞ þ mls
2=s2l

2
4

3
5 ð7Þ

s2 ¼ 1

n

Xn
j¼1

yj � b0 �
Xq
l¼1

x
0

jlbl

 !2

ð8Þ

ml ¼ bl=ðZþ 1Þ ð9Þ

s2l ¼
1

2
½ðbl � mlÞ2 þ Zm2l � ð10Þ

The procedures for parameter estimation are the same as
those used by Zhang and Xu (2005a).

Statistical test
As noted by Zhang and Xu (2005a), the usual likelihood
ratio test (LRT) cannot be performed with the PML
method because of overparameterization. We proposed
the following two-stage selection process to screen the
markers (Zhang and Xu, 2005a). In the first stage, all
markers with |b̂/ŝ|410�6 are picked up. In the second
stage, the epistatic genetic model is modified so that only
effects past the first round of selection are included in the
model. Owing to the smaller dimensionality of the
modified model, we can use the maximum likelihood
method to reanalyze the data and perform the LRT. The
procedure for the LRT is as follows.
The overall null hypothesis is no effect of ETL at the

locus of interest, denoted by H0: a¼ d1¼ d2¼ 0 or H0:
Lu¼ 0, where L¼ {1 0 0; 0 1 0; 0 0 1} and u¼ {a d1 d2}T. If
we determine the maximum likelihood estimates of the
parameters under the restriction of Lu¼ 0 and calculate
the log-likelihood value of the solutions with this
restriction, we have L(ŷ|Lu¼ 0). At the same time, we
can also evaluate the log-likelihood value of the solutions
without restriction and obtain L(ŷ). Therefore, the LRT
statistic is

LR ¼ �2½LðŷjLu ¼ 0Þ � LðŷÞ� ð11Þ
Various other statistical tests can be carried out by

redefining the L matrix. To test the hypothesis of H1:
a¼ 0, for example, we define L1¼ {1 0 0}. The LRT statistic
is LR1¼�2 [L(ŷ|L1u¼ 0)�L(ŷ)].
For eETL, we may define L¼diag ({1 1 1 1 1 1 1 1 1 1 1 1

1 1 1})15� 15 and u¼b. In the same way, the significance
of epistatic effects can be tested. The significance thresh-
old of log of the odds (LOD) score is set at 3.0 where
LOD¼LR/4.605.

Simulation studies

Genetic design
We simulated RH populations, with a sample size of 300
in most cases. Twenty-one equally spaced markers were

Table 1 Values of dummy variables for x, z1 and z2 in random hybridization design of F2 plants

The kth marker genotype of F2 plant Genetic constitution for hybrid
line for endosperm trait at kth locus

x z1 z2

Maternal Paternal

MkMk MkMk QQQ 3
2

0 0

MkMk Mkmk
1
2 (QQQ+QQq) 1 1

2
0

MkMk mkmk QQq 1
2

1 0

Mkmk MkMk
1
2 (QQQ+Qqq) 1

2
0 1

2
Mkmk Mkmk

1
4 (QQQ+QQq+Qqq+qqq) 0 1

4
1
4

Mkmk mkmk
1
2 (QQq+qqq) �1

2
1
2

0

mkmk MkMk Qqq �1
2

0 1

mkmk Mkmk
1
2 (Qqq+qqq) �1 0 1

2
mkmk mkmk qqq �3

2
0 0
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simulated on three-chromosome segments 360 cM long.
We used three main ETL effects and one pair-wise
interaction effect, all of which overlapped with markers.
All three ETL effects were located at the center (60 cM) of
the chromosome. Their genetic parameters were: a1¼ 2.0
(marginal variance 5.00), d11¼ 5.2 (marginal variance
5.07) and d12¼�5.2 (marginal variance 5.07) for the first
ETL; a2¼ 3.0 (marginal variance 11.25), d21¼ 3.0 (margin-
al variance 1.69) and d22¼ 0.0 (marginal variance 0.00) for
the second ETL; a3¼ 1.0 (marginal variance 1.25) and
d31¼ d32¼ 0.0 (marginal variance 0.00) for the third ETL.
The eETL was the additive-by-additive interaction
between the second and third ETL (ia2a3 ) and its effect
was set to be equal to 1.50 (marginal variance 3.52). The
marginal genetic variances explained by the three main
effect ETL were 23.72, 15.19 and 1.25, respectively
(Appendix). The total genetic variance for the endosperm
trait (sg2) was 43.67. The environmental variance was
calculated by se2¼ (1�h2)sg2/h2 with h2 being a 0.50
heritability for most cases. A mixture of ten seeds from
each maternal plant for each hybrid line was simulated
for the endosperm trait to obtain the mean of the line. To
investigate the performance of the proposed method,
different cases were considered. Each case was replicated
200 times. For each simulated ETL, we counted the
samples in which the LOD statistic had passed 3. A
detected ETL within 20 cM of the simulated ETL was
considered as a true ETL. The ratio of the number of such
samples to the total number of replicates (200) repre-
sented the empirical power for this ETL. The false-
positive rate was calculated as the ratio of the number of
false-positive effects to the total number of zero effects
considered in a multiple-ETL genetic model.

Effect of ETL heritability on results of ETL mapping
In the first simulation experiment, we studied the
effect of ETL heritability on the results of ETL mapping.
The parameters simulated in this experiment, with the
exception of ETL heritability, were described in the
section on genetic design. By changing the size of
residual variance, the total heritability for an endosperm
trait was set at four levels: 0.20, 0.40, 0.60 and 0.80. The
true and estimated values for the effects and the
positions of ETL along with the empirical powers in
the detection of ETL are listed in Table 2. As expected,
the precision of the estimates of the effects and positions
of ETL and the empirical power increase as the
heritability increases. Note that the estimates for most
of the effects and positions of ETL are unbiased; all
coefficients of variance (CV) are below 30%; and the CV
falls below B10%, whereas the marginal variance of a
genetic effect accounts for 45% of the total phenotypic
variance. We also noted that, in the case of 0.20
heritability, the powers in the detection of d21, a3 and
ia2a3 are relatively low owing to low genetic variances and
explained by their corresponding effects (0.78, 0.57 and
0.69%). In addition, the false-positive rate is low.

Effect of sample size on ETL mapping
In the second experiment, we evaluated the effect of
sample size on the results of ETL mapping. By changing
the number of RH lines, sample size was set at five levels:
100, 200, 400, 600 and 1000. The results from the
simulated experiments are listed in Table 3. They show T
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Table 3 Effect of sample size on results of ETL mapping in random hybridization design of F2 plants (200 replicates)

Sample size Statistic b0 s2 ETL1 ETL2 ETL3 ETL2�ETL3 False-positive rate (%)

a1 d11 d12 Posi. a2 d21 Posi. a3 Posi. ia2a3 Posi. Posi. a d iaa iad idd

True value 100.000 — 2.000 5.200 �5.200 60.00 3.000 3.000 60.00 1.000 60.00 1.500 60.00 60.00

100 Mean 100.728 8.250 2.070 5.875 �5.820 59.84 3.151 4.073 59.89 1.283 57.69 1.746 57.54 57.94 0.03 0.00 0.04 0.00 0.00
s.d. 1.297 1.765 0.536 1.681 1.722 1.84 0.418 . 1.57 0.238 9.42 0.529 12.63 8.36
Power 0.985 0.730 0.720 1.000 0.005 0.260 0.140

200 Mean 100.474 6.945 1.961 5.086 �5.039 59.97 3.102 3.218 59.94 0.952 58.75 1.387 58.94 58.84 0.11 0.04 0.07 0.00 0.00
s.d. 0.611 0.901 0.273 0.978 0.936 0.61 0.309 0.599 1.88 0.212 9.23 0.328 8.55 8.06
Power 1.000 0.995 0.995 1.000 0.345 0.720 0.760

400 Mean 100.095 6.450 2.010 5.123 �5.187 59.99 2.998 2.938 59.95 0.952 59.57 1.431 59.52 59.77 0.11 0.05 0.10 0.01 0.00
s.d. 0.326 0.480 0.197 0.532 0.519 0.22 0.186 0.448 0.44 0.175 3.63 0.216 3.13 1.78
Power 1.000 1.000 1.000 1.000 0.940 0.985 1.000

600 Mean 100.058 6.510 1.988 5.141 �5.204 60.00 3.005 2.866 60.00 0.973 59.93 1.475 59.96 60.07 0.11 0.09 0.09 0.02 0.00
s.d. 0.244 0.368 0.133 0.431 0.426 0.04 0.147 0.401 0.03 0.142 1.41 0.159 0.48 0.55
Power 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 Mean 100.012 6.570 2.004 5.172 �5.201 60.00 3.003 2.956 60.00 0.993 59.99 1.476 60.02 59.96 0.17 0.10 0.13 0.03 0.00
s.d. 0.186 0.311 0.108 0.353 0.326 0.02 0.109 0.302 0.00 0.118 0.63 0.131 0.25 0.33
Power 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Abbreviations: a, additive effect; d, dominant effect; i, interaction effect; s.d., standard deviation; ETL, endosperm trait locus; Posi., ETL position (cM).

Table 4 Effect of the number of seeds per maternal plant on results of ETL mapping in random hybridization design of F2 plants (200 replicates)

No. of seeds per plant Statistic b0 s2 ETL1 ETL2 ETL3 ETL2�ETL3 False-positive rate (%)

a1 d11 d12 Posi. a2 d21 Posi. a3 Posi. ia2a3 Posi. Posi. a d iaa iad idd

True value 100.000 — 2.000 5.200 �5.200 60.00 3.000 3.000 60.00 1.000 60.00 1.500 60.00 60.00

1 Mean 100.740 67.579 2.292 7.604 �7.397 59.51 3.049 6.486 59.14 1.551 56.52 2.300 60.77 60.77 0.11 0.00 0.12 0.00 0.00
s.d. 1.745 6.736 0.708 2.111 1.927 4.06 0.707 1.441 5.41 0.310 11.52 0.446 19.98 19.17
Power 0.785 0.455 0.490 0.980 0.010 0.115 0.130

3 Mean 100.712 22.778 1.908 5.227 �5.510 59.87 3.149 3.922 59.91 1.106 58.65 1.558 58.22 59.04 0.33 0.00 0.11 0.00 0.00
s.d. 0.937 2.118 0.405 1.481 1.404 1.10 0.357 0.693 0.64 0.327 13.78 0.398 11.37 11.22
Power 0.995 0.925 0.935 1.000 0.115 0.370 0.415

5 Mean 100.410 13.429 1.943 5.185 �4.919 59.95 3.141 3.335 59.83 0.991 57.27 1.423 58.43 58.32 0.11 0.05 0.11 0.00 0.00
s.d. 0.666 1.194 0.313 1.059 1.055 0.50 0.306 0.569 1.23 0.279 10.71 0.325 9.04 7.64
Power 1.000 0.995 0.990 1.000 0.325 0.660 0.765

10 Mean 100.273 6.655 1.951 5.094 �5.176 60.00 3.057 2.965 59.87 0.950 59.44 1.416 59.14 59.25 0.14 0.05 0.10 0.00 0.00
s.d. 0.480 0.611 0.208 0.735 0.762 0.17 0.259 0.532 1.04 0.214 5.89 0.267 5.80 5.49
Power 1.000 1.000 1.000 1.000 0.710 0.950 0.975

20 Mean 100.075 3.244 1.991 5.149 �5.157 60.00 3.010 2.843 59.74 0.949 59.67 1.459 59.87 59.81 0.08 0.06 0.08 0.00 0.00
s.d. 0.299 0.330 0.144 0.447 0.431 0.12 0.147 0.442 1.86 0.151 2.47 0.178 1.75 2.96
Power 1.000 1.000 1.000 1.000 0.955 0.995 0.995

Abbreviations: a, additive effect; d, dominant effect; ETL, endosperm trait locus; i, interaction effect; Posi., ETL position (cM); s.d., standard deviation.
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the general behavior of QTL mapping: as sample size
increases, the result improves (as judged by the decrease
in the standard deviation and the increase in empirical
power). When sample size is above 400, accurate
estimates and high power can be achieved, even for
small genetic effects d21, a3 and ia2a3 (marginal heritabil-
ities are 1.95, 1.44 and 1.73%, respectively).

Effect of the number of seeds per plant on ETL mapping
This simulation experiment aims to evaluate the effect of
the number of seeds per maternal plant on the results of
ETL mapping. We set the number of seeds per plant at
five levels: 1, 3, 5, 10 and 20. The results are given in
Table 4. We found that, when the number of seeds per
plant was more than 10, all parameters were accurately
and precisely estimated. Indeed the power was high,
even when there were only three seeds. Therefore, the
results are robust.

Effect of sampling strategy on ETL mapping
The effect of sampling strategy on the results of ETL
mapping was investigated. We evaluated five schemes of
sampling strategy: 600� 5 (5 seeds were sampled from
each of 600 F2 maternal plants), 300� 10, 200� 15,
150� 20 and 100� 30. The results of 200 replicated
simulations are summarized in Table 5. We observed
the expected trend of an increase in power as the number
of hybrid lines increased; the number of hybrid lines was
more important than the number of seeds per maternal
plant. The reason for this may be that a larger number of
hybrid lines can provide more marker information.

A simulated example of a large genome
Finally, we simulated a large genome 1260 cM long to
explore the performance of the proposed method in real
data analysis. The genome consisted of 12 chromosomes,
each covered by eight evenly spaced markers with a
15 cM per marker interval. The simulated parameters are
listed in Table 6 for main effects and in Table 7 for
epistatic effects. By changing the size of the residual
variance, the total heritability for an endosperm trait was
set at 0.60. The total number of ETL effects included in
the model was 1.5� 96� (3� 96�1)¼ 41 328. We in-
creased the sample size to 600. The number of effects
was about 68 times as large as the sample size.
Obviously, it was overloaded. At this juncture, a two-
stage method was proposed. In the first stage, a full
model that included all of the main and pair-wise
epistatic effects was divided into many reduced models,
each with all of the main effects and proportion of the
epistatic effects. It was feasible to estimate the para-
meters of each reduced model using the PML method. In
this way, individual effects apart from zero could be
discerned. In the second stage, we modified our epistatic
genetic model so that only effects past the first round of
the selection were included in the model and we could
use the PML method to reanalyze the data. The results
are listed in Tables 6 and 7. They show that all ETL are
detected with the exception of an eETL with a dominant-
by-dominant effect, and that the effects and positions of
the detected ETL are close to their corresponding true
values. For the undetected eETL, the genetic variance
explained by its effect is relatively low. In addition, three
false-positive eETL with additive-by-additive epistaticT
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effects were identified. However, their effects are small,
and their LOD values for LRT are about 5 (data not
shown)—much less than those for true ETL. Thus, the
new method works well.

Discussion

Genetic improvement of grain production and quality is
a major aim in plant breeding. Endosperm is a main part
of grain seed and many endosperm traits are directly
related to grain quality, so endosperm traits are of great
importance. To uncover their genetic architecture, several
methods of mapping ETL have been proposed (Wu et al.,
2002a, b; Xu et al., 2003; Kao, 2004; Hu and Xu, 2005; Wen
and Wu, 2006). These triploid-based methods are all
superior to diploid methods for ETL mapping. The
method described here, however, offers advantages over
triploid-based methods. As in Kao (2004) method, it
allows for a model that includes all main and pair-wise
epistatic effects, in contrast to other methods in which
only a single ETL genetic model is considered (Wu et al.,
2002a, b; Xu et al., 2003; Hu and Xu, 2005; Wen and Wu,
2006). In our new model, biased estimates will not occur
if there are linked or eETL. However, our method differs
from Kao (2004) method, in which genetic model
determination relies on the adoption of a critical statistic
whose true distribution is very difficult to determine.
The usual technique is the permutation test (Churchill
and Doerge, 1994; Kao, 2004), which is very time
consuming. In our new method, model selection is
unnecessary, and the best model can always be captured
(Zhang and Xu, 2005a). Along with Wen and Wu (2006)
method, our method can provide unbiased estimates for
the first and second dominant effects and corresponding

epistatic effects. However, our method differs in that
theirs handles only a model with a single ETL. In
addition, our method is economical and easy to imple-
ment. Although Wu et al. (2002b) and Kao (2004)
proposed a more advanced two-stage design (with
marker information collected from maternal plant and
seed embryo), it is difficult to put into practice. The
reasons are technical difficulty, imprecise single-seed
phenotype measurement, and the high cost of marker
assay. In our method, bulked endosperm trait measure-
ment is used for phenotype data, and F2 plant tissue for
marker data.
Another major concern is how the PML method deals

with a multiple ETL model that potentially can assume
one ETL residing on each marker position. A number of
questions arise in this regard. First, what are those
markers’ false-positive rates? The results in Tables 2–5
indicate that if a marker is not associated with a trait, its
genetic effect on the locus shrinks to nearly zero. The
same result is seen in the simulated experiment with a
large genome, and in Zhang and Xu (2005a). Therefore,
the false-positive rate is low.
Second, how do we analyze real data? The procedure

necessitates pretreatment to deal with dominant and
missing markers and marker density. Marker imputation
techniques may be used in the case of incomplete
information marker data (Xu, 2007). They involve the
calculation of the conditional probability of marker
genotypes using a multipoint method (Jiang and Zeng,
1997), and the sampling of a complete imputed data set
for the marker genotypes. Usually, 10–20 imputed data
sets are generated (Sen and Churchill, 2001; Xu, 2007).
The reported result is the mean of estimates for each
imputed data set. When marker density is too high,

Table 6 Simulated and estimated ETL positions and effects from a single data set of a large genome

ETLa Chromosome True parameter Estimate LOD

Posi. a d1 d2 Posi. a d1 d2 a d1 d2

ETL1 1 45.00 2.000 0.000 0.000 45.00 1.957 0.000 0.000 133.75 — —
ETL2 3 240.00 0.000 2.000 0.000 240.00 0.000 1.698 0.000 — 18.56 —
ETL3 3 300.00 1.000 2.500 �2.500 300.00 0.980 2.679 �2.441 39.77 24.98 23.04
ETL4 4 375.00 0.000 0.000 0.000 375.00 0.000 0.000 0.000 — — —
ETL5 5 465.00 0.000 0.000 0.000 465.00 0.000 0.000 0.000 — — —
ETL6 8 765.00 0.000 0.000 2.000 765.00 0.000 0.000 2.135 — — 24.78
ETL7 10 1020.00 0.500 �2.500 0.000 1035.00(a) 0.437 �2.556 0.000 10.33 40.04 —

1020.00(d1)
ETL8 11 1110.00 �2.000 0.000 0.000 1110.00 �1.990 0.000 0.000 143.40 — —

Abbreviations: a, additive effect; d, dominant effect; ETL, endosperm trait locus; LOD, log of the odds; Posi., ETL position (cM).
aThe same is true for Table 7.

Table 7 Simulated and estimated positions and effects of interacting ETL from a single dataset of a large genome

Epistasis Type of interaction True parameter Estimate LOD

Posi. A Posi. B Effect Posi. A Posi. B Effect

ETL1�ETL2 Additive-by-additive 45.00 240.00 �1.000 45.00 240.00 �0.986 30.93
ETL2�ETL6 Dominance-by-additive 240.00 765.00 3.000 240.00 765.00 2.988 57.26
ETL3�ETL6 Dominance-by-dominance 300.00 765.00 1.000 300.00 765.00 Missing —
ETL3�ETL7 Additive-by-additive 300.00 1020.00 1.000 300.00 1020.00 0.908 28.69
ETL4�ETL5 Additive-by-additive 375.00 465.00 1.500 375.00 465.00 1.654 66.23

Abbreviations: LOD, log of the odds; Posi., ETL position (cM).
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choosing one marker from the cluster of markers avoids
a high degree of multicollinearity (Zhang and Xu, 2005a).
When the marker is too sparse, a virtual marker (treated
as missing data) may be inserted.

Third, is the number of markers that can be applied
using the PML method limited? It is preferable to gather
more samples or reduce the number of effects considered
in the model (Zhang and Xu, 2005a; Hoti and Sillanpää,
2006). If the number of markers is large, however, the
number of effects in the model is enormous—more than
40 000 in the simulated experiment with a large genome.
In this case, a two-stage method, taking about 22 h, is
recommended. The results in Tables 6 and 7 show that
this works well, and a further study is under way.

Fourth, how can we fine-map ETL? Although our
method, a type of marker analysis, is inadequate for fine-
mapping, its strategy has been proved to be very
effective (Broman and Speed, 1999; Xu, 2003; Zhang
and Xu, 2005a), and we can use the result derived from
this method as a starting point for other methods based
on a multiple-ETL model, such as Kao (2004) method.
Combining the two methods can provide stable model
determination and high resolution. Moreover, extension
to ETL with epistatic effects, making use of the
PML framework, is under way and may be used to
fine-map ETL.

It should be noted that in our study an additive-by-
additive effect was simulated for most cases. This is
because the effect has a relatively high proportion of
genetic variance (Appendix) and is easily detected.
Larger sample sizes are recommended to explore other
kinds of epistatic effects.
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Appendix

Assuming that an endosperm trait is controlled by two unlinked QTL, Q1 and Q2, the genetic variance in the
population of random hybridization lines of F2 plants is

s2g ¼
5

4
a21 þ

3

16
d211 þ

3

16
d212 þ

5

4
a22 þ

3

16
d221 þ

3

16
d222 þ

25

16
i2a1a2

þ 5

16
ði2a1d21 þ i2a1d22 þ i2d11a2 þ i2d12a2Þ þ

15

256
ði2d11d21 þ i2d11d22 þ i2d12d21 þ i2d12d22Þ

þ 1

4
ða1d11 � a1d12 þ a2d21 � a2d22Þ þ

5

8
ða1ia1d21 þ a1ia1d22 þ a2id11a2 þ a2id12a2Þ

þ 1

16
a1ðid11d21 þ id11d22 � id12d21 � id12d22Þ þ

1
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a2ðid11d21 � id11d22 þ id12d21 � id12d22Þ

þ 1
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ðd11 � d12Þðia1d21 þ ia1d22Þ þ

1

16
ðd21 � d22Þðid11a2 þ id12a2Þ

þ 1

16
ia1d21ðid11d21 � id12d21Þ þ

1

16
ia1d22ðid11d22 � id12d22Þ þ

1

16
id11a2ðid11d21 � id11d22Þ

þ 1

16
id12a2ðid12d21 � id12d22Þ þ

5
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ia1a2ðia1d21 � ia1d22 þ id11a2 � id12a2Þ

þ 3

32
½d11ðid11d21 þ id11d22Þ þ d12ðid12d21 þ id12d22Þ þ d21ðid11d21 þ id12d21Þ

þ d22ðid11d22 þ id12d22Þ� �
1

8
ðd11d12 þ d21d22Þ �

1

32
½d11ðid12d21 þ id12d22Þ

þ d12ðid11d21 þ id11d22Þ þ d21ðid11d22 þ id12d22Þ þ d22ðid11d21 þ id12d21Þ�

þ 1

32
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1
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ðia1d21 � ia1d22Þðid11a2 � id12a2Þ

� 1

128
ðid11d21 id11d22 þ id11d21 id12d21 þ id11d21 id12d22 þ id11d22 id12d21 þ id11d22 id12d22 þ id12d21 id12d22Þ
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