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How accurate can genetic data be?
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M
olecular markers come in differ-
ent flavours—blood groups, allo-
zymes, RFLPs, AFLPs, RAPDs,

STRs, SNPs, you name them. Whether
the focus is on specific populations or
on worldwide patterns (Cavalli-Sforza
et al., 1994), genetic data have become
prominent in recent decades and have
fundamentally changed our views on
human evolution and prehistory. But
what if some of these markers were
biased? What if genetic markers, far
from being more objective than other
types of data, were producing a dis-
torted view of human diversity, and, as
a consequence, of human origins? And
if that were the case, would it be
possible to identify the best and least
biased data sets around? These impor-
tant questions are at the heart of an
article by Romero et al. (2008) recently
published in Heredity.

In technical terms, the issue ad-
dressed by Romero et al. is called
ascertainment bias and it has been
around for some time (Garrod, 1902).
It refers to a statistical bias introduced
during the collection (or ascertainment)
of data, and started to catch the eye
of human population geneticists some
15 years ago (Bowcock et al., 1994). In
population genetic studies the main
cause of ascertainment bias is an eco-
nomic one. Genetic markers are usually
selected on the basis that they should be
polymorphic (that is, variable) in a
reference sample. Understandably, their
costly development is rarely carried out
on large samples and, once identified,
it would be hard to imagine colleagues
who would be happy to spend their
research budget genotyping whole po-
pulations at markers for which most
individuals will be identical.

The first and most obvious conse-
quence of this selection process is that,
by eliminating the least variable mar-
kers, genetic diversity is overestimated.
In itself this is not necessarily a major
problem, if one keeps track of the
markers that were eliminated. A second
consequence is that genetic diversity is
usually inflated in the reference popula-
tion/s as shown by Bowcock et al. (1994)
in humans. This effect was particularly

strong in Europe compared to other
regions with nuclear RFLPs (restriction
fragment length polymorphism), allo-
zymes and blood groups, but weak or
absent in microsatellites. They wrote
that ‘a reasonable explanation [y] is the
bias introduced by their initial selection
in Europeans.’ They added that this
‘bias is likely to be less serious for
markers with large numbers of alleles
such as microsatellites’. Interestingly,
this second ascertainment problem is
very general. Using cattle and sheep,
Ellegren et al. (1997) elegantly showed
that microsatellite markers developed in
one species produced shorter repeats
and lower diversity estimates in the
other species. Importantly, this ex-
plained why humans appeared to have
longer microsatellites than other apes
without invoking directional selection
in humans.

A third and more subtle consequence
of ascertainment bias arises even when
the reference sample comprises indivi-
duals from the whole species range, as
is the case in the protocols used for
single-nucleotide polymorphism (SNP)
discovery in humans. The critical issue
is that the number of individuals in the
so-called ‘discovery panel’ is usually
very small. Thus, rare alleles tend to be
missed and selected SNPs typically
have alleles with similarly high or
medium frequencies (SNPs are typically
biallelic). This is problematic because
many demographic events leave specific
signatures in the allele frequency dis-
tribution. For instance, population bot-
tlenecks tend to eliminate rare alleles,
whereas expanding populations exhibit
more loci with rare alleles. Similarly,
directional or balancing selection also
either favour one allele or maintain the
allele frequencies at some equilibrium
value, respectively. In other words, this
type of ascertainment bias can mimic
balancing selection or demographic bot-
tlenecks. It can thus either generate false
signatures or mask existing ones.

What makes the study of Romero
et al. important is that they not only try
to identify biases in genomic data sets
but they also suggest a way to identify
‘unbiased’ data sets. As an example,

Romero et al. cite a study by Ray et al.
(2005) who tried to infer the region of
origin of modern humans using a large
single-tandem repeats (STRs) data set
and massive spatial simulations. Ray
et al. (2005) found that the most likely
region of origin was North Africa, a
region for which there was no known
support from archaeological or anthro-
pological data. Their guess was that a
bias similar to that identified by Bow-
cock et al. (1994) was somehow shifting
the centre of origins towards Europe or
regions genetically close to Europe.
After correcting for this bias, East Africa
became the most likely region.
Although Ray et al. (2005)’s final result
is very sensible, Romero et al. were not
fully convinced that the STR markers
used were biased in any particular way.

Romero et al.’s results can be divided
into three main points. First by compar-
ing three existing genomic data sets,
namely 783 STRs, 2834 SNPs and 210
insertion deletion polymorphisms (in-
dels), they showed that there are sig-
nificant differences between them, and
hence not all may properly reflect hu-
man neutral diversity. Then, by generat-
ing a new set of 16 STR markers in the
least biased way possible, they used
these new STRs as a benchmark against
which the three genomic data sets could
be compared. Finally, their comparisons
showed that the genomic data set least
biased was the STR data that Ray et al.
had used.

Does that mean, as the authors claim,
that the 783 STR markers ‘suffer no
discernable bias’? We need here to go
back to the selection process followed to
generate the 16 STRs. Romero et al.
actually started by identifying 70 inde-
pendent STRs. The difficulty to obtain
reliably amplifying loci led to the
elimination of 46 loci. Among the 24
remaining loci, eight (one-third) proved
to be nearly monomorphic, and were
discarded from the rest of the analyses.
It is thus fair to ask whether discarding
these loci would not affect parameter
inference beyond the obvious overesti-
mation of genetic diversity in human
populations. In fact, there are good
reasons to think that this would create
a bias when populations have either
gone through a bottleneck or a popula-
tion expansion, because the very
proportion of monomorphic loci is
providing us with information on such
events as I noted above. This had
already been noticed by Beaumont
(1999) in a bottlenecked population
and has since been confirmed on other
real data sets. As a quick test I also
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performed some simulations (not
shown), in which I had a set of 24 loci
from which I then selected two sets of 16
loci: one by discarding the eight least
variable loci, and the other by discard-
ing eight loci randomly. I found that in
an admixture model the admixture
proportions did not seem to be biased,
whereas in the population size change
models the selection of the 16 most
variable loci seemed to produce biases
for some parameters, but not all. Alto-
gether the previous studies and these
(admittedly very limited) simulations
thus suggest that even the STRs identi-
fied by Romero et al. are likely to
produce some biases.

To conclude, Romero et al. have
clearly demonstrated that significant
problems exist with both indels and
SNPs, and they have also shown that

the STRs are probably the best loci
available today (but see Nielsen et al.
(2004) for possible corrections for SNPs).
One should probably take with a pinch of
salt their claim that their STRs were
unbiased or that the biases identified by
Ray et al. (2005) were not real. But clearly,
Romero et al.’s study is a significant step
towards proper population genetics infer-
ence.
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