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The problem of mapping quantitative trait loci (QTL) using genetic marker information is of
great interest to the mapping community. There are many statistical methods available for
detecting and/or locating QTL, all of which depend on assumptions about the distribution of
the quantitative trait values. The distribution of the trait values is affected by sample size,
genetic marker density, missing data patterns, environmental noise, etc., all of which affect the
distribution of the test statistic used to detect/locate QTL. Failure of the test statistic distribu-
tion to follow a standard statistical distribution is the subject of current research. In order to
declare a significant QTL effect it is necessary first to understand the behaviour of the test
statistic under the null hypothesis so that a critical value may be employed. In this paper we
discuss the choices available for obtaining critical values (threshold values) used in locating
QTL via interval mapping procedures. We investigate threshold values obtained by different
means (analytical approximations and empirical) for the same level of significance (type I error
rate) under a normality assumption (null hypothesis of no QTL). In addition, we explore the
effect of deviations from normality of the trait values on the threshold value by comparing
analytical approximations and empirical threshold values for simulated backcross and F2
experiments, along with an actual experimental F2 data set.
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Introduction

The mapping of quantitative trait loci (QTL) using
information from pairs of linked genetic markers
(interval mapping) has received a great deal of
attention and has been applied successfully by both
plant and animals breeders, as well as geneticists.
The basic approach of interval mapping (Lander &
Botstein, 1989, 1994) has been further generalized
by a number of authors (e.g. Haley & Knott, 1992;
Zeng, 1993, 1994; Haley et a!., 1994; Jansen, 1994;
Jansen & Stam, 1994; RebaI et a!., 1994a, 1995) to
allow the presence of QTL to be tested at every
location in a genome for a wide variety of segrega-
ting populations by exploiting the full power of high
density genetic linkage maps. Recent research
(Lander & Botstein, 1989, 1994; Feingold et a!.,
1993; Churchill & Doerge, 1994; Dupuis, 1994;
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RebaI et a!., 1994b; Kruglyak & Lander, 1995) on
the determination of threshold values used to
declare significant QTL has provided the mapping
community with both theoretical and empirical
threshold values. Each of these efforts recognizes
the importance of working with an accurate thresh-
old value, so that progress may continue in the area
of QTL detection and location.

The purpose of this paper is to consider the
choices (Lander & Botstein, 1989, 1994; Feingold et
a!., 1993; Churchill & Doerge, 1994; Dupuis, 1994;
RebaI et a!., 1994b; Kurglyak & Lander, 1995) avail-
able for obtaining threshold values for QTL detec-
tion tests via interval mapping, and to discuss their
adequacy and practical use. A review of interval
mapping using LOD score test statistics can be
found in Lander & Botstein (1989). We investigate
the effect of deviations from normality of the sample
trait values on the threshold value using LOD scores
by comparing the analytical approximations and the
empirical thresholds based on permutation tests for
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simulated backcross and F2 populations, along with
an F2 experimental maize population.

Threshold values

Proper detection of significant QTL (control of the
false positive rate) is an important problem which
has motivated many simulation-based investigations,
along with analytical approximations (Feingold et
al., 1993; Dupuis, 1994; RebaI et at., 1994b), as well
as empirical methods (Churchill & Doerge, 1994). In
the interval mapping approach a likelihood ratio (or
equivalent) test denoted T(x) is performed at every
position x (in practice each 1 cM) of a chromosome
and a QTL is declared present if the supremum of
the test values exceeds a predetermined threshold
anywhere on the chromosome or genome. A chro-
mosomewise threshold t is calculated so that for a
given per chromosome significance level t we have:

= Pr(supo<1<LT(x) t),

where L is the length of the chromosome in
Morgans. A number of approximations have been
derived to have analytical equations which permit an
easy computation of the threshold t for any signifi-
cance level . We will compare the performance of
different analytical threshold values (Lander &
Botstein, 1989, 1994; Feingold et a!., 1993; Dupuis,
1994; RebaI et at., 1994b) with each other, as well as
with the empirical threshold values of Churchill &
Doerge (1994).

Lander & Botstein (1989, 1994) use the asymp-
totic distribution of the test statistic (LOD score)
based on an infinitely dense marker map and the
equation (backcross population, single chromo-
some): c(1+2Lt)2(t) where X2(t) is the inverse
cumulative distribution function of a x2 with one
degree of freedom.

The approximations of Feingold et a!. (1993),
Dupuis (1994) and RebaI et a!. (1994b) are based on
the asymptotic distributional properties of the
stochastic process generated by performing the
interval mapping test at each position, although the
RebaI et at. derivation assumes a finite number of
markers (intermediate map density). Equations for
these approaches (for backcross and F2) are found
in Dupuis (1994) and RebaI et al. (1994b).

An empirical approach based on permutation
theory (Fisher, 1935) developed by Churchill &
Doerge (1994), samples the distribution of the test
statistic (under the null hypothesis of no QTL) by
shuffling the original phenotypic data under a known
fixed genetic map, for the purpose of destroying any
genotypic—phenotypic correlation caused by a QTL,

and then analysing the (new) phenotypic data. This
resampling process (without replacement) is
repeated numerous times so that the distribution of
the test statistic (under the null hypothesis of no
QTL) may be randomly sampled and then used to
obtain a threshold value at a user-specified signifi-
cance level . Permutation-based methods have the
advantage of being distribution free, and thus they
do not depend upon a model to describe the actual
trait being studied, and are not limited by experi-
mental design.

The accuracy of each threshold method may be
evaluated by comparing each respective threshold
value to the maximum test statistic resulting from
the analysis of many resamplings from the null
distribution of no QTL, and then calculating the
proportion of times the maximum test statistic is
greater than the threshold value under investigation.
Since threshold values are calculated according to
some specified significance level, , the proportion
of times the maximum test statistic is greater than
the calculated threshold should be close to x.
Analytical methods may be compared directly
because they provide the proportion of maximum
test statistics greater than the respective calculated
threshold value. Intuitively, because the empirical
threshold value is developed from a specified
number of resamplings from the null distribution of
the trait values, the proportion of times the
maximum test statistic from each analysis is greater
than the estimated empirical threshold value will be,
by definition, less than or equal to ot.

Backcross and related populations

Populations where the QTL effect is characterized
by a single parameter (variance held constant) such
as backcross, doubled haploid lines or recombinant
inbreds (although there is a slight difference arising
from a differential effect of recombination) are of
interest to the mapping community. In cases such as
these, the QTL effect is described by the effect of an
allelic substitution.

We simulated a genetic map and phenotypic
measurements for each backcross experimental
design presented in Table 1. Genetic markers were
generated so that the distances between markers on
a single chromosome were randomly simulated to
ensure a length in cM and average marker density
close to the one desired. Phenotypic trait values
were simulated, under the null hypothesis of no
QTL, from a standard normal distribution as well as
from a gamma distribution (Gamma(1,2)). The
normal distribution represents the 'perfect' data
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Table 1 Comparison of empirical and approximate threshold values for different marker densities and chromosome
lengths in simulated backcross experiments using the LOD score test statistic

a cMb m' Empirical" &E R. approx.1 &, L.B. approx.h LB

Normally distributed trait
100 82.3 6 l.45 (2.20") 0.05 1.47 (2.15) 0.05 1.87 (2.65) 0.02
200 100.2 6 1.53 (2.26) 0.05 1.50 (2.18) 0.05 1.97 (2.74) 0.02
100 90.6 9 1.58 (2.27) 0.05 1.57 (2.26) 0.05 1.92 (2.69) 0.03
200 106.7 9 1.58 (2.29) 0.05 1.61 (2.12) 0.05 1.99 (2.77) 0.02
100 221.4 11 1.71 (2.25) 0.05 1.77 (2.47) 0.05 2.34 (3.10) 0.01
200 203.4 11 1.56 (2.21) 0.05 1.76 (2.45) 0.04 2.30 (3.06) 0.05

Skewed trait distribution'
100 88.5 6 1.41 (1.95) 0.05 1.47 (2.16) 0.04 1.91 (2.68) 0.01
200 89.4 6 1.40 (1.99) 0.05 1.49 (2.17) 0.04 1.92 (2.69) 0.01

aSample size, bleflgth of chromosome, cnumber of genetic markers, dChurchill & Doerge, 1994, 5% error rate using
empirical threshold value based on 1000 samples from the null distribution, RebaI et al., 1994, S% error rate using Rabal
et al.'s analytical threshold value based on 1000 samples from the null distribution, hLander & Botstein, 1989, 1994, '5%
error rate using Lander & Botstein's analytical threshold value based on 1000 samples from the null distribution, 15%
threshold value, kl% threshold value, Gamma (1,2).

situation having no outside effects from sample size,
missing data, segregation distortion, etc. The gamma
distribution represents some of these previously
noted effects by presenting extreme skewing in the
trait data, thus creating a long right tail in the
distribution. Based on complete marker and trait
data two sample sizes of 100 and 200 individuals
were considered under an increasing number (6, 9,
11) of genetic markers. Chromosomewise threshold
values were calculated for different chromosome
lengths and marker densities at 5 per cent and 1 per
cent significance levels using the LOD score test
statistic in an interval mapping procedure described
by Lander & Botstein (1989, 1994). Significance
threshold values for each of the backcross experi-
mental situations were calculated based on three
methods: (i) the empirical approach proposed by
Churchill & Doerge (1994) with 1,000 permutations,
(ii) the analytical approximation given by RebaI et
al. (1994b) and (iii) the analytical threshold of
Lander and Botstein (1989, 1994).

Results of the comparisons are given in Table 1.
For normally distributed traits or a large sample size
the analytical approximations proposed by RebaI et
al. (1994b) for medium marker densities (more than
10 cM), and by Lander & Botstein (1989) and Fein-
gold et a!. (1993) (results not shown) for infinitely
dense maps (say less than 10 cM) give threshold
values which are very close in magnitude to those
obtained by permutation (empirical threshold
values). When 1000 random samples from the null
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distribution are analysed and the maximum test stat-
istic from each of the analyses compared with each
of the threshold values being investigated (Table 1),
the proportion of times the test statistic is greater
than the respective threshold value provides an error
rate for the method. The RebaI et a!. approximation
achieves the appropriate significance level (c =0.05)
in all but the last simulation, and as one would
expect the empirical threshold value performs at the
specified significance level. The Lander and Botstein
threshold provides an upper bound of the actual
threshold (as it assumes an infinite information) and
gives a conservative test which ensures that the type
I error rate is less than the significance level.

In the limited simulation for skewed backcross
data drawn from a gamma distribution, the RebaI et
at. threshold provides a conservative threshold value,
and as mentioned previously the Lander and
Botstein threshold provides a conservative upper
bound on the actual threshold value. By definition,
the empirical threshold method performs at the
specified significance level.

F2 populations
An F2 population has two parameters which charac-
terize the additive and dominance action of the QTL
alleles, unless an additive model is assumed. This
characterization makes the covariance of the test
process difficult to compute (Dupuis, 1994; Kruglyak
& Lander, 1995). Two analytical approximations are
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available, one from Dupuis (1994) based on the
same approach as that of Feingold et al. (1993) and
one from RebaI et a!. (1994b). The empirical
approach (Churchill & Doerge, 1994) remains as
defined previously. We consider the same simulation
set up as in the previous section under an F2 experi-
mental design for the purpose of comparing thresh-
olds from (i) Churchill & Doerge (1994), (ii) RebaI
et a!. (1994b) and (iii) Dupuis (1994).

Results for the F2 simulation are given in Table 2.
For normally distributed trait data the RebaI et al.
approximate threshold value is close to the empirical
threshold, with the Dupuis approximation being
slightly smaller in magnitude. When 1000 samples
from the null distribution are analysed, and the
maximum test statistic compared with the actual
threshold value of each method, Table 2 shows the
empirical threshold method achieving a type I error
rate less than or equal to the specified significance
level, and that both the RebaI et al. and Dupuis
thresholds fail to achieve the appropriate lower
bound for all situations. Failure to achieve the
appropriate lower bound means that the porportion
of times 1000 random samples from the null
distribution produce a test statistic larger than the
respective threshold value is greater than the speci-
fied significance level used to calculate the analytical
threshold value. When skewed-trait data (gamma
distributed) are considered, both the empirical
thresholds and the Rebal et al. analytical thresholds
perform well, however Dupuis's analytical threshold

error rate fails to achieve the specified significance
level in each case.

Maize F2 population
We have also computed empirical and approximate
threshold values for experimental data from an F2
maize population with 106 individuals. The estima-
ted length of chromosome 2 is 132.8 cM using 12
RFLP markers. The distribution (cM) of these 12
markers is: {7.8 7.9 9.7 7.1 3.1 9 42.6 5.3 6.5 18.2
15.5}. On average 20 per cent of the marker data
are missing, whereas less than 7 per cent of the trait
data are missing. The distribution of the trait values
appears to follow a normal distribution. The results
are shown (Table 3) for a chromosomewise signifi-
cance level of 5 per cent (1 per cent). Empirical
threshold values are based on 1000 permutations of
the actual phenotypic traits.

Because the empirical threshold values reflect the
specifics of the data set it is not surprising that the
magnitude of the values is somewhat smaller than
both approximations. When compared to simulated
F2 threshold values (Table 2), the empirical thresh-
old values for a real data set are smaller, whereas
the magnitude of the analytical threshold values
remains unchanged. The differences between the
threshold values as seen in this example most likely
result from the proportion of missing marker data,
as well as the environmental specifics of the experi-
ment. For significance levels of 5 per cent and 1 per

Table 2 Comparison of empirical and approximate threshold values for different marker densities and chromosome
lengths in simulated F2 experiments using the LOD score test statistics

na cM" m' Empirical" E R. approx! & D. approx." &'

Normally distributed trait
100 107.8 6 2.l0 (2.90k) 0.04 2.12 (2.87) 0.04 2.00 (2.69) 0.06
200 103.8 6 210 (2.80) 0.05 2.11 (2.87) 0.05 2.00 (2.69) 0.06
100 119.3 9 2.30 (3.20) 0.05 2.26 (3.02) 0.06 2.16 (2.87) 0.06
200 97.3 9 2.20 (2.80) 0.04 2.24 (2.99) 0.04 2.15 (2.86) 0.05
100 188.1 11 2.40 (3.30) 0.05 2.39 (3.14) 0.06 2.25 (2.94) 0.07
200 201.3 11 2.50 (3.20) 0.04 2.40 (3.15) 0.05 2.25 (2.94) 0.08

Skewed trait distribution'
100 94.9 6 2.10 (3.20) 0.04 2.10 (2.86) 0.04 2.00 (2.69) 0.05
200 104.7 6 2.10 (2.90) 0.05 2.111 (2.87) 0.05 2.00 (2.70) 0.06

"Sample size, blength of chromosome, cnumber of genetic markers, dChurchill & Doerge, 1994, e5%error rate using
empirical threshold value based on 1000 samples from the null distribution, RebaI et al., 1994, S% error rate using Rabal
et al's. analytical threshold value based on 1000 samples from the null distribution, hDupuis 1993, '5% error rate using
Dupuis's threshold value based on 1000 samples from the null distribution, '5% threshold value, k1%threshold value,
'Gamma (1,2).
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Table 3 Comparison of empirical and approximate threshold values for 12
markers on a single maize chromosome of length 132.8 cM and 106 F2
individuals using LOD score test statistics

Empiricala R. approx. D. approx.e

190g (2.60h) 0.05 (0.0l) 2.30 (3.06) 0.02 (0.005) 2.27 (2.98) 0.03 (0.005)

a Churchill & Doerge, 1994, b5% error rate using empirical threshold value
based on 1000 samples from the null distribution, cRabaI eta!., 1994, d5% error
rate using Rabal et al.'s threshold value based on 1000 samples from the null
distribution, eDupuis 1994, f5% error rate using Dupuis's threshold value based
on 1000 samples from the null distribution, 5% threshold value, h 1% threshold
value, 1% error rate based on 1000 samples from the null distribution.

cent, Table 3 shows that the empirical method
performs at the specified significance levels, while
the analytical methods of both Rebal et a!. and
Dupuis provide conservative lower bounds.

Discussion

Deviations from normality of the trait distribution
and sample size are both factors which affect the
distribution of the test statistic (in this situation the
LOD score), and ultimately affect the threshold
level of the interval mapping test used in QTL
detection. When trait distributions deviate from
normality and/or the sample sizes are small, approx-
imate values based on the asymptotic distribution
properties of the test statistics may not be appro-
priate, and empirical approaches should be consid-
ered. The results of this paper support the findings
that even if the assumptions do not hold (skewed
distribution), the analytical approximations behave
relatively well. These findings are most likely related
to the robustness of interval mapping to deviations
from normality (C. Cierco, personal communication
to A.R.). In practice, one can see the benefits of
using either analytical or empirical methods for
obtaining threshold values.

The values obtained by the approximations
proposed by RebaI et al. (1994b) are most appro-
priate for intermediate density maps (a marker every
10 cM or more), and the others (Lander & Botstein,
1989; Feingold et a!., 1993; Dupuis, 1994) approriate
for high density maps (a marker evey 10 cM or less).
These thresholds (see previous citation) should
provide stringent values that ensure that the type I
error rate is less than the significance level chosen
by the user (conservative). The values obtained are
appropriate for the standard interval mapping
approach but would be usable, under some condi-
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tions, for the multiple QTL approach proposed by
Jansen & Stam (1994) (see Jansen, 1994) and could
be applied after some specific calculations to
nonparametric tests of interval mapping (Kruglyak
& Lander, 1995). Further work in each of these
areas is needed in order to specify the specifics of
each application.

Kruglyak & Lander (1995) recommended that the
dense-map threshold always be used, regardless of
the actual density of the map, in order to minimize
the false positive rate. However, the use of specific
approximations as proposed by RebaI et a!. (1994b)
will give more appropriate thresholds for intermedi-
ate density maps without the loss in power of the
tests consistent with the use of a stringent threshold.
The asymptotic approximations based on distribu-
tional properties of stochastic processes (Feingold et
a!., 1993; Dupuis 1994; Mangin et al., 1994; RebaI et
a!., 1994b) are without doubt a powerful tool for
further analytical investigations of the threshold
problem (especially when mapping multiple QT1), as
well as other developments for QTL parameters
(location and effect).

The empirical threshold values obtained by
permutation of the actual phenotypic trait data,
although computationally intensive, may be
calculated for any experimental design under an
unlimited number of experimental situations (e.g.
sample size, marker density, environmental variance,
non-normal trait distribution, etc.). No restrictions
are placed on the marker density of the genetic map,
and as the experimental trait values are permuted
across the individuals in the sample, the specifics of
the experiment are retained. The number of permu-
tations used in each application of this paper was
limited to 1000. Upwards of 10 000 permutations are
more appropriate if an accurate 1 per cent threshold
value is desired.
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Missing data, either genotypic or phenotypic,
greatly influence the quality of the parameter esti-
mates (e.g. recombination, additive effects, domi-
nance effects, etc.). Each of the analytical
calculations discussed in this work is based upon
perfect data; no account is made for missing data.
Although perfect data represent a realistic approach
through simulation, they are rarely obtainable
experimentally. The difference in the magnitude of
threshold values (empirical vs. analytical) as seen in
the maize example most likely results from the
percentage of missing data per marker scored, and is
certainly worthy of further investigation.

The QTL mapping community continues to bring
challenging problems to the forefront of QTL
research, and although there is no one correct
threshold value to use in every situation, it is our
long-term hope that the comparisons made in this
paper will serve as a direction to the application and
conclusions drawn. Certainly, as the scope of QTL
detection/location is extended to include multiple
QTL, interactions, and fine scale location of QTL,
issues relating the relevance of application to the
conclusions drawn still await proper statistical
attention.
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