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Genetic diversity in partially selfing
populations with the stepping-stone

structure
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A method to compute identity coefficients of two genes in the stepping-stone model with
partial selfing is developed. The identity coefficients in partially selfing populations are
computed from those in populations without selfing as functions of s (selfing rate), m (migra-
tion rate), N (subpopulation size), n (number of subpopulations) and u (mutation rate). For
small m, 1/N and u, it is shown that approximate formulae for the identity coefficients of two
genes from different individuals are the same as those in random mating populations if we
replace N in the latter with N(1 —s12). Thus, the effects of selfing on genetic variability are
summarized as reducing variation within subpopulations and increasing differentiation among
subpopulations by reducing the subpopulation size. The extent of biparental inbreeding as
measured by the genotypic correlation between truly outcrossed mates was computed in the
one-dimensional stepping-stone model. The correlation was shown to be independent of the
selfing rate and starts to fall off as the migration rate increases when mN is larger than 0.1.

Keywords: biparental inbreeding, fixation index, genetic variability, geographical differentia-
tion, selfing, stepping-stone model.

Introduction

Many plant species are partially self-fertilizing
(Brown, 1990; Murawski & Hamrick, 1991, 1992;
Kitamura et a!., 1994). Thus, it is necessary to incor-
porate self-fertilization in the modelling of plant
genetic diversity. Pollak (1987) computed identity
coefficients of up to four genes in a partially selfing
population without a geographical structure.
Maruyama & Tachida (1992) analysed the island
model with partial selfing and derived formulae for
identity coefficients of pairs of genes in the equili-
brium state. Here, we develop a method to derive
equilibrium identity coefficients of two genes in
partially selfing populations with the stepping-stone
structure (Kimura, 1953). It is shown that the
subpopulation size is effectively reduced in partially
selfing populations resulting in an increase of differ-
entiation among subpopulations.
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Model analysis

Genes are defined to be identical by descent if they
have a common ancestor gene and there is no muta-
tion in their descent from the common ancestor. We
assume the selective neutrality of alleles (Kimura,
1968) and let u be the mutation rate. Consider a
d-dimensional stepping-stone model in which each
subpopulation has the same size, N, and subpopula-
tions are arrayed in a d-dimensional torus (see
Maruyama, 1977). Assume that generations are
discrete. For simplicity, we consider only pollen
migration and the maternal gamete always comes
from the same subpopulation, Let s and mp be the
selfing rate and pollen migration rate, respectively,
in the population. Here, in order to simplify the
expressions, s is defined not to include the prob-
ability of selfing which occurs randomly in random
monoecious mating. There are three ways in which
the paternal gamete fertilizing the maternal gamete
is chosen. (1) The paternal gamete comes from the
same parent as that of the maternal gamete with a
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probability of s+(1—s—m)/N. (2) The paternal
gamete comes from a different parent in the same
subpopulation from that of a maternal gamete with
a probability (1 —s —m)(1 — 1/N). (3) The paternal
gamete comes from a parent in one of the 2d neigh-
bouring subpopulations with a probability of mp.
Under these assumptions, the subpopulations are
equivalent to each other. Thus, the identity coeffi-
cient of a set of genes in the equilibrium state
depends on the relative locations of the subpopula-
tions from which the genes are sampled. For
example, the inbreeding coefficient, f, defined as the
probability of two genes in an individual being iden-
tical by descent, is the same for all individuals.

Define the following identity coefficients for pairs
of genes where i.b.d. means identical by descent:

f= Prob[two genes in the same individual are i.b.d.];
= Prob[two genes in different individuals from the

same subpopulations are i.b.d.J; and

0, = Prob[two genes sampled from different sub-
populations i-steps apart are i.b.d.].

Here, i is a d-dimensional vector, the elements of
which represent the numbers of steps the two subpo-
pulations are apart in respective dimensions. In the
following derivation, the identity coefficients of two
genes from two different subpopulations one step
apart are important. We denote the average of the
2d identity coefficients for the neighbouring
subpopulations by 01.

Now we compare the equilibrium values of these
identity coefficients. Because two uniting gametes in
an individual in a subpopulation are from an indivi-
dual in the same subpopulation (selfing), two
different individuals in the same subpopulation, or
one from the same subpopulation and the other
from the neighbouring subpopulation with a prob-
ability s+(1—s—m)IN, (1—s—m)(1—1/N), or m,
respectively, and the probability of identity by
descent is (1 +f)12 if two genes come from the same
individual,

f= (lU)2{[S+(l5mP)](tf)

+(1—s—m) 1—— 00+m01

Next we consider O for two genes in different
individuals in the same subpopulation. In the follow-
ing, we trace the descent of the two genes in the
past and utilize the relationships between the coales-
cence of the genes and the identity coefficients

(Tachida, 1985; Slatkin, 1991; Slatkin & Voelm,
1991). The time will be measured backwards in units
of generations. Let T be the coalescence time for the
two genes. Then, 0 is represented as

oo = E[(1 _u)2T]. (2)
This coalescence time is divided into two parts
(Slatkin, 1991); T1 when the ancestors of the two
genes were in the same individual for the first time
(coalescence to an individual), and T2 for the two
genes in the same individual to coalesce. Therefore,

= E[(1 —u)2T'(1 _u)2T2]. (3)
Because T1 and T2 are independent, this is further
simplified to

Go = E[(1_u)2T]E[(1_u)2T21. (4)
To compute the first term of the right-hand side

of (4), we first show that the distribution of T1 is the
same as the coalescence time of two genes in a
haploid population with the same population struc-
ture. Let m be the gamete migration rate in the
haploid population. The number of genes in each
subpopulation is N. If we take two genes from the
same subpopulation, each gene is a migrant with a
probability m. If the two genes come from the same
subpopulation (nonmigrant), the probability of the
two coming from the same individual is 1/N. Now we
consider how the two genes come from the previous
generation in the selfing population. Each one of the
two genes has either paternal or maternal origin
with a probability one-half and is a migrant only
when it has paternal origin. Thus, each gene is a
migrant with a probability m1,12. If the two genes
come from the same subpopulation, the probability
of the two coming from the same individual is 1/N.
If we replace the word individual with the word gene
in the above two descriptions, we can see that the
probability law for the coalescence to an individual
in the selfing population is the same as that of the
coalescence to a gene in a haploid population which
has the same geographical structure with m,I2
replaced by m, and the same subpopulation size, N.
Thus, T1 has the same distribution as the coales-
cence time of two genes in the haploid population
and the first term of (4) is expressed as

(1) E[(1 _u)2n1] g0(u), (5)

where go(u) is the coancestry coefficient in the
haploid population. Because the second term of the
right-hand side of (4) is (1 +f)/2, we obtain

/1 +f
(6)
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- [(n+fl/2j
0=—

n i=O

b — fi ifi=Oorn/2—
2 otherwise.

From (6) and (7), we obtain

go(u) —g(u)
rb =

1 —g(u)

1 [(n+1)12]

bg1(u).n i=O

The same argument can be applied to the calcula- In the above expression, [i] represents the largest
tion of 0, which is expressed as integer which does not exceed i. We can obtain the

identity coefficients in the one-dimensional stepping-
stone model with partial selfing by putting (10) and0 =gj(u)), (7) (11) into (8), (6) and (7). Note that w is not a
function of N. go(u) inthe two-dimensional step-

where g1(u)s are the corresponding identity coeffi- ping-stone model is also written in the same form as
cients for the haploid population. that in the one-dimensional stepping-stone model

Putting (6) and (7) into (1) and solving for f, we with w independent of N. In fact, this is true for the
obtain island model and a random mating population

model.
(1 —u)2A (s, m, N, u) In geographically structured populations such as=

2—(1 —u)2A (s, mp, N, u)
(8) stepping stone models, inbreeding results not only

from selfing but also from mating within the local
with area. The latter inbreeding is called biparental

inbreeding (Ennos & Clegg, 1982). This effect is
conveniently measured by the biparental genotypicA(s, mp, N, u) =s+(1_s_m)[+(1_)o(u)] correlation, rb, between truly outcrossed mates (see
Wailer & Knight, 1989) defined as

+mpgi(u). (9) F0
(12)

Other identity coefficients are obtained from f using Fsei

(6) and (7). where F0, and Fsei are fixation indices of a truly
Maruyama (1977) lists explicit expressions for outcrossed and a self-fertilized individual, respect-

g1(u)s in the one- and two-dimensional stepping- ively. In terms of identity coefficients, these fixation
stone models. For example, in the one-dimensional indices are represented as
stepping stone model with n subpopulations, g, (u )s
for our model are expressed as

(1—u)2w
F0= , (13)

go(u) = and (10)
N+(1—u)2w

(1 +f)12—O

(1 —u)2(1 —g0(u)) [(n+1)/2J

Fsei =
1—

(14)

g,(u) =
N k0 ak[i—(i—u)2k} where O is the i.b.d. probability of two genes taken

from two random individuals, respectively, in the
2irik population and expressed asxcos— (11)
n

with

[(n+1)/2]

k=O ak[1—(l—u)k1

Ak= i——( 1_cos_)] , (15)[
mp7

2\\ fl/

and

(n (k=Oorn/2)ak= n/i. (otherwise).

where



472 H. TACHIDA & H. YOSHIMARU

Because gj(u)s are independent of the selfing rate,
this equation shows that rb is independent of s. We
numerically computed Tb for various n, N, u chang-
ing m0 and some of the results are shown in Fig. 1.
Note that although calculations are made for small
N and large u, values would be similar when N and
u are changed keeping Nu constant. The genotypic
correlation, rb, is a monotonic decreasing function of
mp and starts to decrease rapidly as m increases
when mN is larger than 0.1. Waller & Knight
(1989) estimated rb in Impatiens capensis and
obtained values ranging from 0.1—0.4. Such values
are expected with our parameter set 1 when nip is
fairly large.

If m, u, 1/N are much smaller than one and s,
simpler expressions for 0,s are possible. In this case,
(8) is written as

A(s, mp, N, u)
2—A(s, m, N, u)

+0(m0, u, 1/N)

A (s, mp, N, u) = (1 —s)go(u) +s,

where 0(m, u, 1/N) designates a function of the
same order as those of mp, u and 1/N. Combining
the two relationships, 0 is represented as

00= +0(m,u,1/N).
2— [(1 —s)g0(u) +s]

As noted above, go(u) is written as

Set3
0.8

rb

0.4

0.2

0

Set 1
Set 2"\

io- 0.001 0.01 0.1
m

p

Fig. I The biparental genotypic correlation, rb. One-
dimensional stepping-stone model is assumed. The migra-
tion rate m is changed. Other parameters are n = 10,
N = 10, u = 0.01 in set 1, n = 40, N = 5, u = 0.01 in set 2
and n = 100, N = 5, u = 0.004 in set 3.

(1 —u)2w
( )

Substituting this into (18), with some rearrangement,
we obtain

(1 —u)2w
+0(m,u,1/N). (20)

2N(1 —s/2) + (1 —u)2w

This formula shows that 0 for a partially selfing
population is computed by regarding N(1 —s/2) as
the effective size of the subpopulation and using the
formula for the corresponding diploid population
without selfing. This relationship was noted by
Golding & Strobeck (1980), and Pollak (1987) for
populations without any geographical structures and
by Maruyama & Tachida (1992) for the island
model.

We can show that this relationship also holds for
other identity coefficients, 0,, if m0, u, 1/N are much
smaller than one, considering the coalescence of the
two genes in different subpopulations (Slatkin,
1991). Let Tb be the time when the ancestors of the
two genes were in the same subpopulation for the
first time and define T = T—Tb where T is the total
coalescence time of the two genes as in the previous
argument. Then, we can write 0, as

0, = E[(1 _u)2T]E[(1 _u)2T]. (21)

Because the first ancestor genes which enter the
same subpopulation are in the same individual with
a probability 1/N, the equation is expressed as

1 [1+f
0, = E[(1 _u)2ThJ + (N—

= E[(1 — u)2T'] 0+ 0(1/N).
Note that because Tb does not depend on the size,
N, of the subpopulation, E[(1_.u)2T11 does not
depend on it. This means that N enters into the
formula only through 0 and thus we can compute U

(16) by regarding N(1 —s/2) as the effective size of the
subpopulation.

17 How good is this approximation of regarding
k N(1 —s/2) as the effective size of the subpopulation?

To check this, we numerically computed 0 for
various values of N, m, n and some of the results
are shown in Fig. 2. The discrepancies between the
exact and approximate values are very small even for

'18 the small N used in the computations. Even for
" fairly large m, the difference is less than a few per

cent. Thus, the approximation works very well for
most parameter ranges encountered in nature.
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Fig. 2. The exact and approximate values of the identity
coefficient, O, of two genes in different individuals in the
same subpopulation as functions of mp assuming the
one-dimensional stepping-stone model. The straight lines
are computed using the exact solution (6) with (8).
Broken lines are computed using the approximate solu-
tion (20). Other parameters are n =10, N = 10, u = 0.01,
s = 0.5 in set 1, n = 40, N = 5, u = 0.01, s = 0.5 in set 2 and
n = 100, N = 5, u = 0.004, s = 0.5 in set 3.

Discussion

In the present paper, we developed a method to
compute identity coefficients in stepping-stone
models with partial selfing from those without
selfing. Because exact solutions are available for
stepping-stone models (Maruyama, 1977), we could
use those solutions to obtain the exact identity
coefficients in partially selfing populations. Although
we assumed stepping-stone models in the derivation,
the critical assumption is that f is constant over the
subpopulations. If this holds true, (7) holds and we
can compute the identity coefficients in the partially
selfing population in the same way.

For small m, u, 1/N, we showed that N(1 —s/2)
can be used as the effective size of the subpopula-
tion. This relationship can be derived also by the
following intuitive argument. Assume that we
sampled two genes from two different individuals in
the same subpopulation. We consider the probability
of the two genes becoming identical by descent in
the parental generation. The two genes come from
the same individual with a probability 1/N if we
ignore the higher order terms of mp and 1/N. Once
the two genes are in an individual, they coalesce
soon without going out of an individual (the coales-
cence in an individual) and become identical by
descent with a probability s/(2—s). Therefore, if

The Genetical Society of Great Britain, Heredity, 77, 469—475.

we ignore mutation during the coalescence in an
individual, two random genes in one individual
are identical by descent with a probability
[1 +sI(2—s)112 = 1I(2—s). If we regard this event of
quickly becoming identical by descent as having
occurred in the parental generation, the probability
of the two parental genes being identical by descent
is

1 1_ 1

2—sN 2N(1—s/2) (22)

This shows that N(1 —s/2) can be used as an effec-
tive number for partially selfing populations. Our
derivation in the previous section shows that this
rough argument is actually applicable as an approx-
imation. Note that this argument does not rely on a
specific geographical structure of the population.
Thus, the method of using N(1 —s12) as the effective
size seems not to be restricted to symmetrical struc-
tures such as the island and stepping-stone models
and might be used, for example, for the cases where
parameters such as the selfing rate and subpopula-
tion size change among subpopulations (Karron et
at., 1995).

In our computation, only pollen migration was
considered. This argument goes similarly if there is
only seed migration. Let m be the seed migration
rate. For the coefficient, f, for the two genes in the
same individual, the following equation holds in the
equilibrium state:

f= (1 _u)2[(s +_) _i+ (1 _s)(1_)o] . (23)

For two genes in different individuals, there are
three cases with regard to whether they are migrants
or not. (1) Both are nonmigrant with a probability
(1 —m)2. (2) One is migrant and the other is nonmi-
grant with a probability 2(1 —m)m. (3) Both are
migrants with a probability m. Therefore, Os are
expressed as in (7) but in this case we use m5 as the
migration rate to compute g,(u) in the corresponding
haploid population. If u, m, 1/N are much smaller
than one, we obtain the same approximation as that
in the case of pollen migration in which (1 —s12)N
can be used as the effective size of the sub-
population.

On the other hand, if both seed and pollen migra-
tion occur, we can not just use g1(u) computed from
the corresponding haploid population to compute
the exact solutions in partially selfing populations.
For example, a gene may come from a subpopula-
tion two steps apart from the subpopulation in

Set 3

0.00 1 0.01

m
p

0.1
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which it resides because the two types of migration
can occur for a gene in one generation. This never
happens in the corresponding haploid population.
However, if m, m, u, 1/N are much smaller than
one, the probability of such two-step migration is
very small and such events can be ignored. Then, we
can use (1 —s/2)N as the effective number and
compute the identity coefficients from the corre-
sponding haploid population with the migration rate
rn+m/2 as noted by Maruyama & Tachida (1992).

From the above argurments, we can summarize
the general effect of partial selfing on identities of
two genes in different individuals as replacing the
subpopulation size, N, in populations without selfing
with N(1 —s/2). This reduction of the subpopulation
size reduces the variation within subpopulations and
promotes differentiation among subpopulations.

Caballero & Hill (1992) derived a general formula
to compute the variance effective number of nonran-
dom mating populations. For a Poisson distribution
of family size and a specified system of partial
inbreeding, the effective size is represented as
Ne N/(1 + Fis) where F15 is Wright's F1 statistic. If
we substitute the equilibrium inbreeding coefficient,
s/(2—s), for infinite partially selfing populations
(see, for example, Hedrick & Cockerham, 1986) into
F15, we obtain Ne = N(1 —s/2). Thus, we can also
reach the same conclusion using the argument of
Caballero & Hill (1992). However, there are two
merits in our approach. First, the variance effective
number is obtained by considering the change of the
variance of the gene frequency whereas our
approach directly computes the equilibrium identity
coefficients under the pressure of mutation. There-
fore, our approach is conceptually more direct.
Secondly, our approach is based on the exact calcu-
lation of Maruyama (1977) and as long as our
concern is the identity coefficients, the result is
exact. If we ignore the second-order terms of ii, m,
and 1/N, the two approaches will give the same
second moments of gene frequencies with (1 —s/2)N
as an effective size of a subpopulation. However, if
some second-order terms cannot be neglected, there
will be difference although it might not be so large
(see Fig. 2). Thus, our approach, for example, can
provide the condition for the applicability of this
simple relationship, N = (1 —s/2)N, in selfing
populations.

Finally, our formula can be used to compute the
probability distribution of the number, k, of different
sites between two sequences under the infinite site
model without recombination (Watterson, 1975).
Griffiths (1981) and Tachida (1985) showed that the
generating function, 0(z), of k is related to the

corresponding identity coefficient, 0(u), by

0(z) = 0(u(1 —z)). (24)

Thus, for example, the expected number of differ-
ences is

E[kI = ®'(O). (25)

This formula can be used to assess the magnitude of
nucleotide diversity (Nei & Li, 1979) in partially
selfing populations for which DNA data are accumu-
lating (Clegg, 1990). Also, once E[kj is computed,
we can compute the expected squared difference,
E[S], of repeat numbers between two genes in
microsatellite loci assuming the stepwise mutation
model (Ohta & Kimura, 1973). Utilizing the argu-
ment described in Garza et a!. (1995), we obtain
E[S1 in terms of E[k] as

E[SJ = E[k1cr, (26)
where o is the variance of the change in allele size
given that a mutation occurs. Now microsatellite loci
are found in a wide variety of plant species (e.g.
Terauchi, 1994; Yang et al., 1994; Roder et a!., 1995)
and they can be used to investigate microgeograph-
ical genetic structures and mating systems of plant
populations.
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