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Inbreeding depression and outbreeding
depression in plants
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The genetic mechanism underlying an 'optimal outcrossing distance' in plants (sensu Price and
Waser) is discussed. Monte Carlo simulations of a population subdivided as a one-dimensional
stepping-stone are used to evaluate possible genetic mechanisms. A simple genetic model with
two types of unlinked loci, underdominant and partially dominant, with multiplicative effects
on fitness, is found to create an 'optimal outcrossing distance' under a wide range of parameter
values. The results are compared to, and discussed in relation to a two-locus epistatic model,
previously investigated by Campbell and Waser, and found to give very similar results.
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Introduction

The phenomenon of an 'optimal outcrossing
distance' in plants at the population level has attrac-
ted a lot of attention recently (reviewed by Waser,
1993; Waser & Price, 1994). When plants collected
at different geographical distances are crossed artifi-
cially, they show a maximum in fitness of offspring
of parents collected at intermediate distances.
Fitness of the F1 plants is determined either in the
natural habitat or in a garden or greenhouse. The
phenomenon was first observed in Delphinium nelso-
nii by Price & Waser (1979) and has now been
found in at least 16 different plant species, angio-
sperms as well as conifers (Parker, 1992; Waser,
1993). The scale of the artificial crossing studies has
varied between 75 m and 32 km, depending on the
breeding system of the plant, and the optimal
outcrossing distance usually is between 5 and 20 m
for herbs and several hundred meters for conifers
(Waser, 1993).

The number of studies is still too limited for an
evaluation of how widespread the phenomenon is,
and thus its importance in mating system evolution.
The existence of an optimal outcrossing distance
requires the existence of an optimal genetic simi-
larity (Mitton, 1993) and a correlation between
genetic similarity and physical distance of the plants,
either through isolation by distance in a continu-
ously distributed population (Wright, 1946) or
between semi-isolated patches. Many herbs have

*Correspondence

1996 The Genetical Society of Great Britain. 461

restricted pollen and seed dispersal (Levin, 1984,
1988; table 9.2 in Waser, 1993) with a paternity pool
of only 20—100 individuals per mother plant (Levin,
1988), and thus small-scale genetic structuring is
expected.

Knowledge of the dispersal biology of the plant
species of interest is therefore necessary when
looking for an optimal outcrossing distance, and
some of the failures to observe this phenomenon
might be attributed to a paternity pooi that is too
large compared to the scale of the crosses (Newport,
1989; Broyles & Wyatt, 1991; Waser & Price, 1994).
Furthermore, large samples are needed to detect
reliably the variation in fitness that is characteristic
of a situation where an optimal outcrossing distance
is observed (Newport, 1989; Waser, 1993).

The phenomenon of optimal outcrossing distance
has sufficient generality to discuss its genetic founda-
tion, that is, to investigate genetic models which can
lead to disadvantages of both close and far crosses.
A combination of inbreeding depression and
outbreeding depression is needed, and both these
phenomena are poorly understood genetically.

Inbreeding depression has been documented for
most investigated plant species, even highly selfing
species (Charlesworth & Charlesworth, 1987). The
genetic mechanisms most commonly discussed are
the partial dominance hypothesis and the overdomi-
nance hypothesis. The partial dominance hypothesis
supposes that inbreeding depression is caused by
deleterious, partly recessive alleles, and the over-
dominance hypothesis considers heterozygosity per
se as an advantage. Most work supports the partial
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dominance hypothesis (Sprague, 1983; Charlesworth
& Charlesworth, 1987; Fu & Ritland, 1994).
However, Mitton (1993), using a statistical analysis
developed by Smouse (1986), claims evidence for
overdominance, even though the partial dominance
hypothesis predicts widespread occurrence of asso-
ciative overdominance in a finite population
(Frydenberg, 1964; Kimura & Ohta, 1971; Christian-
sen, 1990). A third, rarely discussed, explanation is
that epistatic interactions can cause inbreeding
depression (Lynch, 1991). Campbell & Waser (1987)
confirmed this as a possible mechanism by the use of
computer simulations.

Another debated topic is whether inbreeding
depression is caused by few or many loci with small
or large effects, respectively. Highly deleterious
recessive alleles (as, e.g. recessive lethals) are
common in outcrossing species, but the persistence
of inbreeding depression in highly selfing species
suggests that many loci of small effect is the most
plausible explanation of inbreeding depression in
general (Charlesworth & Charlesworth, 1987; Agren
& Schemske, 1993; Wolfe, 1993).

Outbreeding depression is the population level
counterpart to mechanisms separating species or
subspecies. Discussions of the causes have been
divided into an 'ecological' mechanism (Price &
Waser, 1979; Campbell & Waser, 1987; Waser,
1993) and a 'genetic' mechanism of epistatic interac-
tions between multilocus gene complexes (Price &
Waser, 1979; Lynch, 1991). The ecological mech-
anism assumes that subpopulations are differenti-
ated by the adaptation to different environments at
microsites. Crosses between sites are then expected
to yield maladapted offspring. With this mechanism,
the driving force is a combination of local selection,
drift and gene flow, and the hypothesis can be tested
through reciprocal transplants of the progeny of arti-
ficial crosses. Waser (1993) reviews the accumulated
evidence and concludes that some of the cases of
outbreeding depression are attributable to this
mechanism (see also Waser & Price, 1989, 1993,
1994). The genetic mechanism assumes an identical
environment in all populations and that restricted
gene flow between and drift within populations by
chance create coadapted gene complexes by epistatic
interactions (Moll et al., 1965; Campbell & Waser,
1987; Mitton, 1993). These complexes are broken up
by crosses between sites, but under these genetic
models, the major effect will occur after segregation
in the F2 generation. Because of a lack of detectable
environmental heterogeneity, Svensson (1988) and
Parker (1992) claim that their evidence for
outbreeding depression must be ascribed to a

genetic mechanism. A second possibility for genetic
outbreeding depression is underdominance at a
number of loci (Ritland & Ganders, 1987; Lynch,
1991). This genetic mechanism has full effect in the
F1 generation, and it results from intralocus inter-
action rather than epistasis. We study this mech-
anism and investigate its possibilities in greater
detail.

The models

We consider a subdivided population where migra-
tion is structured, as in the one-dimensional step-
ping-stone model of Kimura & Weiss (1964). This
model is easier to study than the two-dimensional
model and it yields qualitatively similar results.
Migration between adjacent demes occurs as
gametes and at a constant rate with the exchange of
a fraction m12 per generation. To avoid edge effects
in the model, the subpopulations are arranged in a
circle (Kimura & Maruyama, 1971). The circle
consists of S populations with population size N.
Monte Carlo simulations were performed with a
total population of 1600 (or 3200) individuals,
divided into either S = 80 subpopulations with
N = 20 (40) individuals in each, or S = 160 subpopu-
lations with N = 10 individuals in each. Gametic
fusion occurs after migration with a random amount
of selfing (selfing rate = 1/(2N) in an isolated popu-
lation). Individuals vary in their fitness, and so they
are chosen to contribute gametes by random
drawing with their presence in the population weigh-
ted by the fitness.

Two different genetic models were investigated, a
model including underdominant loci and a model
including the two-locus epistatic model of Campbell
& Waser (1987). The genetic models both include a
number of loci, all unlinked and with two alleles
each.

The underdom/nance model

Table 1 presents this model, which consists of two
types of loci. First, the table presents partially domi-
nant loci which are responsible for inbreeding

Table 1 Genotypic fitnesses under the underdominance
model

Partial dominance
AA1

1

AA2
1 —hs

A42
1 —s

B1B1 B1B2 B2B2
Underdominance 1 1 —t 1
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depression under the partial dominance hypothesis.
The selection coefficient against the deleterious
homozygote is denoted s>0, and h is the dominance
coefficient. We assume positive dominance of the
normal homozygote, i.e. 0 h<112. Variation at this
type of locus is introduced by mutations at a rate of
iO. Secondly, the table presents the underdomi-
nant loci that are expected to cause outbreeding
depression under the underdominance model. For
these, t>0 is the selection coefficient against the
heterozygote. With no mutation, both monomorphic
states are stable equilibria. Variation at the under-
dominant loci is introduced initially in each Monte
Carlo simulation and maintained by a mutation rate
of i03. Total individual fitness was calculated by
combining fitness coefficients of loci multiplicatively.
The number of loci used in the simulations of the
underdominance model was 100 or 200 for the
partially dominant loci, and 20 for the underdomi-
nant loci.

The epistasis model

This model (Table 2) is built from the two-locus
epistatic model of Campbell & Waser (1987) which
is a version of the symmetric viability model
(Lewontin & Kojima, 1960). The fitness coefficients
for each combination of genotypes at two interacting
loci are shown in the table, where o is the selection
coefficient against double homozygotes (t>0), and c
is the selection coefficient against double hetero-
zygotes (8>0). With no mutation, four stable equili-
bria exist for <8, and at these equilibria, one of the
interacting loci is fixed at a monomorphic state and
the other is polymorphic with even allele frequen-
cies. For c>c, only one stable polymorphic equi-
librium exists where even allele frequencies and
linkage equilibrium prevail. Campbell & Waser
(1987) used this two-locus model with quite high
selection coefficients in their simulations. We use
the two-locus model as an atom in a multilocus
model, and total individual fitness was calculated by
combining fitness coefficients of the pairs of inter-
acting loci multiplicatively. Variation was introduced
by mutation at a rate of i03 at each locus. The

Table 2 Genotypic fitnesses under the epistasis model

B1B1

A41
1—

A42
1

A2A2
1—

B1B2 1 1 1

B2B2 1 1 1
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number of loci used in the simulations of the epista-
sis model was again 100 and 200, distributed as 50 or
100 pairs of interacting loci.

In each simulation run, the population was
allowed to evolve until an approximate mutation—
selection—drift equilibrium was reached, typically
after 2000 generations. Crosses were then performed
by randomly choosing gametes from subpopulations
separated by different distances (from 0 to S/2).
Subsequently, the average fitness of the offspring
from each cross was calculated by choosing 100
random crosses from each distance class. For all sets
of parameters, five replicate simulations were
performed to get an evaluation of the variance in
average fitness.

The simulation program was written in C + + and
run on a HP-UNIX workstation. Random numbers
were generated using the RANLIB 1.1 random
generator.

Results

The underdominance model

Figures 1 and 2 show the results for two distinct sets
of parameters. The shapes of the curves are well
defined, with small standard errors. Therefore, the
graphs in general allow the estimation of 'the
optimal outcrossing distance', and we may present

Fig. 1 The relation between the distance between parents
and the offspring fitness under the underdominance
model. There are 80 subpopulations with 20 individuals
each. Migration is 20 per cent. The number of under-
dominant loci is 20 with t = 0.1 and there are 100 partially
dominant loci with s =0.2. Standard error bars are based
on five replicate runs. Fitnesses are shown relative to the
optimum.
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the results of all runs as in Tables 3 and 4. An
optimal offspring fitness was found at an intermedi-
ate crossing distance for all tested parameter values.

Some patterns are suggested from the results in
Tables 3 and 4. A decrease in the number of individ-
uals per subpopulation, or an increase in the migra-
tion rate, increases the optimal outcrossing distance.
Comparing inbreeding caused by either 100 loci with
s = 0.2, or 200 loci with s = 0.1 (the same mutational

Fig. 2 As Fig. 1, but with a different set of parameter
values. There are 160 subpopulations with 10 individuals
each, Migration is 5 per cent. The number of under-
dominant loci is 20 with t = 0.05 and there are 200
partially dominant loci with s = 0.1.

load), less inbreeding depression at equilibrium is
observed in the first case. As expected, this lowers
the optimal outcrossing distance when the outbreed-
ing depression is kept constant. Similarly, when
outbreeding depression is increased by increasing t,
the optimal outbreeding distance is smaller.

Inbreeding depression is generally larger when the
1600 individuals are separated in subpopulations of
size 10 than subpopulations of size 20. This is to be
expected, because drift is more powerful with only
10 individuals per subpopulation, and more deleteri-
ous recessive alleles can increase in frequency in
spite of selective disadvantage.

The ep/stasis model

The results of the runs with the two-locus epistasis
model, with cc<c, are shown in Table 5. They show
that it is possible to create an 'optimal outcrossing
distance' with this model too, and the trends, when
changing the parameters, are very similar to the
trends observed with the underdominance model.
Some runs were also performed with > (data not
shown), but in this case outbreeding depression was
not observed (in concordance with Campbell &
Waser, 1987, figs 3 and 4).

Discussion

Inbreeding depression and outbreeding depression
may occur simultaneously in simple genetic models.

Table 3 The underdominance model. Results are based on five replicate simulations. Outbreeding depression is caused by
20 underdominant loci, and inbreeding depression is caused by 100 loci with s = 0.2. Fitnesses of near and wide crosses are
given relative to the fitness at the optimal distance

No. of
subpops

md. per
subpop

(N) t
Migration

(m) (no.

Optimal
distance
of subpops)

Fitness of
near cross

(0 subpops)

Fitness of
wide cross

(40 subpops)

80 20 0.10 0.05 1 0.90 0.46
80 20 0.10 0.20 2 0.96 0.49
80 20 0.05 0.05 2 0.89 0.73
80 20 0.05 0.20 4.5 0.94 0.77
80 40 0.10 0.05 1 0.99 0.43
80 40 0.10 0.20 1 0.96 0.50
80 40 0.05 0.05 1 0.93 0.69
80 40 0.05 0.20 2 0.95 0.73

160 10 0.10 0.05 1.5 0.90 0.46
160 10 0.10 0.20 2.5 0.92 0.55
160 10 0.10 0.40 3 0.94 0.55
160 10 0.05 0.05 3 0.82 0.69
160 10 0.05 0.20 3.5 0.87 0.69
160 10 0.05 0.40 5 0.91 0.72
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Table 4 The underdominance model. As Table 3 but with inbreeding depression caused by 200 loci with s =0.1

No. of
subpops

md. per
subpop

(IV) t
Migration

(m)

Optimal
distance

(no. of subpops)

Fitness of
near cross

(0 subpops)

Fitness of
wide cross

(40 subpops)

80 20 0.10 0.05 2 0.81 0.47
80 20 0.10 0.20 4 0.92 0.48
80 20 0.05 0.05 3 0.78 0.75
80 20 0.05 0.20 5 0.86 0.74
80 40 0.10 0.05 1.5 0.92 0.47
80 40 0.10 0.20 2 0.98 0.47
80 40 0.05 0.05 3 0.87 0.70
80 40 0.05 0.20 4 0.95 0.75

160 10 0.10 0.05 3 0.64 0.57
160 10 0.10 0.20 5 0.79 0.58
160 10 0.10 0.40 7 0.85 0.61
160 10 0.05 0.05 4 0.58 0.75
160 10 0.05 0.20 6 0.72 0.79
160 10 0.05 0.40 9 0.83 0.82

Table 5 The epistasis model. Results are based on five replicate simulations of a
population with 80 subpopulations with 20 individuals each. Fitnesses of near
and wide crosses are given relative to the fitness at the optimal distance

Number of
pairs of loci e

Migration
(m)

Optimal
distance

Fitness of
near cross

(0 subpops)

Fitness of
wide cross

(40 subpops)

50 0.05 0.10 0.05 4 0.83 0.75
50 0.05 0.10 0.20 5 0.89 0.73
50 0.05 0.10 0.40 6 0.95 0.80
50 0.10 0.20 0.05 1.5 0.73 0.45
50 0.10 0.20 0.20 3 0.85 0.55
50 0.10 0.20 0.40 4 0.95 0.72

100 0.025 0.05 0.05 3 0.83 0.80
100 0.025 0.05 0.40 6 0.96 0.84
100 0.05 0.10 0.05 2 0.67 0.58
100 0.05 0.10 0.40 3 0.91 0.56

Campbell & Waser (1987) showed this phenomenon
in a simple two-locus model and considered it to be
based on epistatic interactions. It seems, however,
that it is not epistatic interactions per se that cause
outbreeding depression, but rather the occurrence of
simultaneously stable distinct equilibria. Campbell &
Waser's model produces outbreeding depression
only when competing equilibria exist in an isolated
population. This occurs when the double heterozy-
gote for a pair of interacting loci has a lower fitness
than the corresponding double homozygote (x < ).
The competing equilibria in the two-locus model are
all at local maxima in mean fitness in an isolated
population, and a low amount of immigration is only
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expected to perturb the population slightly from
these equilibria (Christiansen & Feldman, 1975),
whereas offspring from crosses between populations
at different equilibria will show an excess of the
disfavoured double heterozygotes. If the opposite is
the case, and the double heterozygote has a higher
fitness than the corresponding double homozygote
(c > c), then an isolated population has only one
stable equilibrium which happens to be at an
optimum of the average fitness. Divergence among
the populations is therefore not expected and
outbreeding depression is absent.

The simplest model of outbreeding depression
must be a one-locus model that exhibits competing
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equilibria stabilized at optima of the average fitness.
The results show that it is indeed possible to gener-
ate the phenomenon of an 'optimal outcrossing
distance' with such a simple genetic model. In our
version the model assumes two types of independent
loci, with underdominance in fitness and with partial
dominance, respectively. This simple model yields
fitness values of F crosses which are comparable
with the published results (Waser, 1993). Simultane-
ous occurrence of inbreeding depression and
outbreeding depression is expected in a model with
only underdominant loci, because this model has
dynamical properties parallel to those of the two-lo-
cus model. The inclusion of the partially dominant
loci, however, provides a more realistic model of
inbreeding depression.

The reason for the occurrence of an 'optimal
outcrossing distance' may be that, through drift and
selection, the two types of loci get a different patch
structure, as formulated verbally by Ritland &
Ganders (1987). For the partially dominant loci,
deleterious alleles causing inbreeding depression
may reach local high frequencies resulting from
random fluctuations caused by the small size of
subpopulations. The extent of the local 'patch' of
high frequency for a particular deleterious allele
increases with the amount of migration, and the
amount of local differentiation at the partially domi-
nant loci weakens with more migration. The under-
dominant loci causing outbreeding depression may
be fixed, or almost fixed, for different alleles in
different parts of the total population (Karlin &
McGregor, 1972). The patch size for high frequency
of a particular allele is highly dependent on random
events at the start of the simulation, and less influ-
enced by local migration. The optimal outcrossing
distance is then found at a distance which is larger
than the patch size for recessive deleterious alleles
at the partially dominant loci, and smaller than the
patch size for alleles at the underdominant loci, if a
difference in the patch size exists.

The simulations rely on a high mutation rate,
u = 0.001. This has been chosen for computational
reasons to reduce the number of loci, and to
decrease the time required to reach equilibrium.
Simulations with the number of loci increased and
the mutation rate decreased yielded qualitatively
identical results.

Underdominant loci have been identified in only a
few cases (Fu & Ritland, 1994). The reason may be
that underdominant loci are indeed rare, but they
also may be difficult to see, when selection against
the heterozygote is weak. With weak selection, the
locus behaves almost as a neutral locus, and the

heterozygote deficit will be difficult to detect.
Epistatic interactions within populations in the sense
of Campbell & Waser's model are even less docu-
mented, and preference should in our opinion be
given to the simpler one-locus model.

The two-locus epistatic model and the single-locus
model are both used as atoms of a multilocus model.
Comparing the two selection models, Campbell &
Waser's symmetric viability model shows negative
epistasis whether measured on a linear or a multi-
plicative scale (Christiansen, 1988), but the multi-
plicative combination of the atoms is an operation
emphasizing positive epistasis (the linear epistasis
parameters for two, four, six and eight loci are
—(+e), (+)2, —(c+c)3 and (c+E)4, respect-
ively). On the contrary, the proposed underdomi-
nance model shows positive epistasis on a linear
scale and zero epistasis on a multiplicative scale.
The two kinds of models, however, give parallel
results and share the property of exhibiting compet-
ing stable equilibria at local fitness maxima.
Competing stable equilibria are ubiquitous in multi-
locus models. The two-locus symmetric viability
model of Lewontin & Kojima (1960) may exhibit
competing equilibria in a range of situations. Our
underdominance model in a two-locus version corre-
sponds to 1 — = 1/(1 —) and E >0 (Table 2) and
provides an example of the situations where all
monomorphic equilibria are stable. The epistasis
model of Campbell & Waser is an example of four
competing equilibria with one-locus polymorphism.
Both these examples assume that the double hetero-
zygotes have inferior fitness (<), but even when
double heterozygotes have a higher fitness than
single heterozygotes (<0), and single heterozygotes
have higher fitness than homozygotes (>0),
competing equilibria may exist (Lewontin & Kojima,
1960). These equilibria, called high complementarity
equilibria, may exist for closely linked loci, and they
are characterized by polymorphism at both loci and
linkage disequilibrium. The high complementarity
equilibria may cause differentiation between semi-
isolated populations (Christiansen & Feldman,
1975). The high complementarity equilibria are not
at local fitness maxima, but even then, they may
cause outbreeding depression because they are sepa-
rated by a trough in average fitness, and so immigra-
tion perturbs the population towards a state with
lower fitness. This possibility of overdominant'
systems with the potential of producing outbreeding
depression seems to proliferate in multilocus models
of partially linked loci (Feldman et al., 1974; Chris-
tiansen, 1988).

The plants are able to realize the optimal distance

The Genetical Society of Great Britain, Heredity, 77, 461—468.



INBREEDING AND OUTBREEDING IN PLANTS 467

through mating only in the few cases where the
optimal outcrossing distance is one (Table 3). This is
in agreement with the empirical findings that the
optimal distance is often several neighbourhoods
wide (Waser, 1993). This, however, does not imply
that the phenomenon is unimportant in mating
system evolution. The simulations show that when
migration is increased, the optimal outcrossing
distance increases. Therefore, even when increased
gene flow is selected for, the plants will not be able
to reach the optimum crossing distance and there
may possibly be a runaway selection for increasing
gene flow, until other factors become important.

Acknowledgements
The study was supported by grants from the Danish
Natural Sciences Research Council (grant no.
9400065 to M.H.S and grant no. 11-9639-1 to
F.B.C), and a grant to F.B.C. from the Development
Programme for Research in Biotechnology (grant
no. 5.18.2023).

References

AGREN, J. AND SCHEMSKE, D. w. 1993. Outcrossing rate and
inbreeding depression in two annual monoecious herbs,
Begonia hirsuta and B. semiovata. Evolution, 47,
125—135.

BROYLES, S. B. AND WYATT, R. 1991. Effective pollen
dispersal in a natural population of Asclepias exaltata:
the influence of pollinator behavior, genetic similarity,
and mating success. Am. Nat., 138, 1239—1249.

CAMPBELL, D. R. AND WASER, N. M. 1987. The evolution of

plant mating systems: multilocus simulations of pollen
dispersal. Am. Nat., 129, 593—609.

CHARLESWORTI-I, D. AND CHARLESWORTH, B. 1987. Inbreed-

ing depression and its evolutionary consequences. Ann.
Rev. Ecol. Syst., 18, 237—268.

CHRISTIANSEN, F. B. 1988. Epistasis in the multiple locus
viability model. .1. Math. Biol., 26, 595—618.

CI-IRISTIANSEN, F. B. 1990. Population consequences of
genetic design in sexually reproducing organisms. In:
Mooney, H. and Bernardi, G. (eds) Genetically Designed
Organisms in the Environment, pp. 43—55. John Wiley &
Sons, London.

CHRISTIANSEN, F. B. AND FELDMAN, M. w. 1975. Subdivided
populations: a review of the one- and two-locus theory.
Theor Pop. Biol., 7, 13—38.

FELDMAN, M. w., FRANKLIN, F. R. AND THOMSON, 0. j. 1974.

Selection in complex genetic systems. 1. The symmetric
equilibria of the three-locus viability model. Genetics,
76, 135—162.

FRYDENBERG, o. 1964. Long-term instability of an ebony
polymorphism in artificial populations of Drosophila
melanogaster. Hereditas, 51, 198—206.

The Genetical Society of Great Britain, Heredity, 77, 46 1—468.

FU, Y.-B. AND RITLAND, K. 1994. Evidence for the partial
dominance of viability genes contributing to inbreeding
depression in Mimulus guttatus. Genetics, 136, 323—331.

KARLIN, S. AND McGREGOR, j. 1972. Polymorphisms for
genetic and ecological systems with weak coupling.
Theor Pop. Biol., 3, 210—238.

KIMURA, M. AND MARUYAMA, T. 1971. Pattern of neutral
polymorphism in a geographically structured popula-
tion. Genet. Res., 18, 125—131.

KIMURA, M. AND OHTA, T. 1971. Theoretical Aspects of
Population Genetics. Princeton University Press, Prince-
ton, NJ.

KIMURA, M. AND WEISS, G. H. 1964. The stepping stone
model of population structure and the decrease of
genetic correlation with distance. Genetics, 49, 561—576.

LEVIN, D. A. 1984. Inbreeding depression and proximity-
dependent crossing success in Phlox drummondii. Evolu-
tion, 36, 116—127.

LEVIN, D. A. 1988. The paternity pools of plants. Am. Nat.,
132, 309—317.

LEw0NTIN, R. C. AND KOJIMA, K. 1960. The evolutionary
dynamics of complex polymorphisms. Evolution, 14,
458—472.

LYNCH, M. 1991. The genetic interpretation of inbreeding
depression and outbreeding depression. Evolution, 45,
622—629.

MITFON, J. B. 1993. Theory and data pertinent to the rela-
tionship between heterozygosity and fitness. In: Thorn-
hill, N. W. (ed.) The Natural History of Inbreeding and
Outbreeding, pp. 17—41. The University of Chicago
Press, Chicago.

MOLL, R. H., LONNQUIST, J. H., VELEZFOURTUNO, J. AND
JOHNSON, E. C. 1965. The relationship of heterosis and
genetic divergence in maize. Genetics, 52, 139—144.

NEWPORT, M. E. A. 1989. A test for proximity-dependent
outcrossing in the alpine skypilot, Polemonium visco-
sum. Evolution, 43, 1110—1113.

PARKER, M. A. 1992. Outbreeding depression in a selfing
annual. Evolution, 46, 837—841.

PRICE, M. V. AND WASER, N. M. 1979. Pollen dispersal and
optimal outcrossing in Delphinium nelsonii. Nature, 277,
294—297.

RITLAND, K. AND GANDERS, F. R. 1987. Crossability of
Mimulus guttatus in relation to components of gene
fixation. Evolution, 41, 772—786.

SMOUSE, i'. IL 1986. The fitness consequences of multiple-
locus heterozygosity under the multiplicative overdomi-
nance and inbreeding depression models. Evolution, 40,
946—957.

SPRAGUE, ci. F. 1983. Heterosis in maize: theory and prac-
tice. In: Frankel, R. (ed.) Heterosis: Reappraisal of
Theory and Practice, pp. 22—35. Springer Verlag, Berlin.

SVENSSON, L. 1988. Inbreeding, crossing and variation in
stamen number in Scleranthus annuus (Caryophylla-
ceae), a selfing annual. Evol. Trends Plants, 2, 31—37.

WASER, N. M. 1993. Population structure, optimal
outbreeding, and assortative mating in angiosperms. In:
Thornhill, N. W. (ed.) The Natural History of Inbreeding
and Outbreeding, pp. 173—199. The University of



468 M. H. SCHIERUP AND F. B. CHRISTIANSEN

Chicago Press, Chicago.
WASER, N. M. AND PRICE, M. v. 1989. Optimal outcrossing

in Ipomopsis aggregata: seed set and offspring fitness.
Evolution, 43, 1097—1109.

WASER, N. M. AND PRICE, M. v. 1993. Crossing distance
effects on prezygotic performances in plants: an argu-
ment for female choice. Oikos, 68, 303—308.

WASER, N. M. AND PRICE, M. v. 1994. Crossing-distance

effects in Delphinium nelsonit: outbreeding and inbreed-
ing depression in progeny fitness. Evolution, 48,
842—852.

WOLFE, L. M. 1993. Inbreeding depression in Hydrophylluni
appendiculatum: role of maternal effects, crowding, and
parental mating history. Evolution, 47, 374—386.

WRIGHT, S. 1946. Isolation by distance under diverse
systems of mating. Genetics, 31, 39—59.

The Genetical Society of Great Britain, Heredity, 77, 461—468.


	Inbreeding depression and outbreeding depression in plants
	Introduction
	The models
	The underdominance model
	The epistasis model

	Results
	The underdominance model
	The epistasis model

	Discussion
	Acknowledgements
	References




