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Small sample properties for estimators of
cytonuclear disequilibria

ROB DEAN & JONATHAN ARNOLD*
Department of Genetics, University of Georgia, Athens, GA 30602

Unbiased and maximum likelihood estimators for the cytonuclear disequilibrium measures D1,
D2, and D3 are given, and their exact variances are determined with the use of indicator
variables. Conditions under which the exact variances should be used include when the geno-
typic disequilibria or the cytoplasmic allele frequency are extreme. These unbiased estimators
are shown to have high efficiency by comparison to the Cramer—Rao lower bound on variances
of unbiased estimators of the disequilibria. The maximum likelihood estimators are recom-
mended on the basis of small sample properties.
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Introduction

The estimation of linkage disequilibria between
genes and genotypes is a central problem in popula-
tion genetics (Hill, 1974; Weir & Cockerham, 1979;
Weir, 1990). For example, disequilibria between
cytoplasmic markers, as in mitochondrial DNA, and
nuclear markers have come to play a central role in
recent analyses of hybrid zones (Arnold, 1993). To
date, studies of estimators of cytonuclear disequili-
bria have focused on their large-sample properties
(Asmussen & Basten, 1994). Here, for the first time,
we examine the small-sample properties of estima-
tors of cytonuclear disequilibria. These results are
particularly important to studies with nuclear
molecular markers and cytoplasmic markers because
sample sizes are generally quite restricted.

Model and analysis
Calculations of the expectations of the various
nuclear and cytoplasmic allele frequencies are
standard, and being based on the same principles as
the calculations of the cytonuclear disequilibrium
measures, are not shown here.

The nuclear genotypes are represented by AA, Aa
and aa. The cytoplasmic genotypes are represented
by M and m. The frequencies of the AA, Aa and aa
genotypes are u, v and w, respectively. The
frequency of the cytotype M is x. Table 1 shows the
probability model.

Correspondence.

Departures from a no association hypothesis are
measured by the cytonuclear disequilibria, D, D2
and D3. If a random sample of size N is taken
according to the probabilities in Table 1, then the
model specification is multinomial. The likelihood is
shown in eqn 1:

/ N! \\L= I (1)
\\Nl!N2!N3!N4!N5!N5!;

where N1, ..., N6 are the individual cell counts in
Table 1. There are five independent parameters: u,
v, x, D1 and D2. The cytonuclear disequilibrium
measures to be estimated from the likelihood in eqn
1 are D1, D2 and D3.

To calculate the moments of a disequilibrium esti-
mator we will focus here on the measure D1, as the
calculations are similar for all three disequilibrium
estimators. The only assumption we will make is that
a random sample of individuals i = 1,..., N is
obtained to estimate D1, D2 and D3.

The indicator variables that we will use are
defined as follows:

Let XA/M = 1, if individual i has AA/M cytonuclear
genotype;

= 0, otherwise.
LetX = 1, if individualj hasAA nuclear genotype;

= 0, otherwise
Let X = 1, if individual k has M cytotype;

= 0, otherwise.
From Table 1 we see that

D1 =u—w. (2)
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Table 1 Genotypic disequilibria

A..4 Aa aa Total

M u1=ux+D1 v1=vx+D2 w1=wx+D3 x
m = u(1 —x)—Di v2 = v(i —x)—D2 w2 = w(1 —x)—D3 y
Total u v w I

The maximum likelihood estimator (MLE) of D1
(Asmussen et a!., 1987) can be written in terms of
these indicator variables under the hypothesis D 0
and

131 = XM_(X)(X1M), or

( xXM).i=1 j=l

Substituting the expectations from Table 2 into the
expectation of eqn 3 we obtain:

1 1
E(D') = —Nu1 —----i (Nui +N(N— 1)ux),

which reduces to:

N-i
E(D1)=—D1.N

The same approach can be used to calculate the
variance,

VAR(D1) = E(D)—E2(D1).
From the above calculation for E(15') we have:

2

E2(131) ((u_)).
Now we need E(13) to complete the variance calcu-
lation. Expanding the square of the estimator in
terms of the indicator variables yields:

(XM)
-2 XA/M XAX

x x x.
j-1 k=1 j=1 k=1

For the three terms in eqn 7 we need several expec-
tations from Table 2.

When we put the corresponding expressions in
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Table 2 Expectations of indicator variables and their
products for calculating E(D ) and VAR(D )

1
i5 =—

N1 N2
(3)

Equation Term Product Expectation

3 1

2
x'XX UI

u1,i=j
Ux, ij

7 1

2

3

X4' X1M

XMXX

XXXX

u1, i =j
U i
u1,i=j—k
u1x, i
u1u, i

u1ux, ijk
u1,i=j=k=1
u1x,i=j=k/
u1u,i=j=lk
u1x,i=k=1j

u, i
i = k
i k

i

u1ux, i=ljk
u1ux,j

u2x,j
u1ux,
u2x2,

(4)

(5)

(6)

1
D=—

N2

(7)

Table 2 into eqn 7 and simplify, we obtain the vari-
ance for the maximum likelihood estimator D i:

VAR(D1) = 1/N(—D+D1(1—2u)(1—2X)

+u(1 —u)x(1 —x))

+ 1/N2(3D —2D1(1 —2u)(1 —2x)

—u(1 —u)x(1 —x))

+1/N3(—2D+D1(1—-2u)(1—2x)), (8)

whereD1 =u1—ux.
The first term is the Cramer—Rao Lower Bound
(CRLB), as shown by inverting the information
matrix for u, v, x, D1 and D2 calculated from the
likelihood in eqn 1.
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There are two cases for which the exact variances
in eqn 8 are to be preferred over the asymptotic
variance provided by the CRLB even with a rela-
tively large sample size. In one case D1 (or D2 or D3)
is large in magnitude (at least +0.19) and the 1/N2
term can be substantial. This is the most frequent
case. For example, when the sample size is 100 and
the cytonuclear frequencies for AA/M, Aa/M,... ,aa/
in are 0.25, 0.29, 0.01, 0.0, 0.01 and 0.44, respect-
ively, D3 is —0.2375 and the ratio of CRLB/
VAR(D3) is 0.876. In the second case, where the
cytoplasmic allele frequency (x) is either below 0.10
or above 0.90, the exact variance is again preferable
(Table 3). Degradation of the large sample approx-
imation of the CRLB in the second case was assoc-
iated with extreme values in both
x and the relevant nuclear genotypic frequency
(e.g. u).

We now introduce a closely related unbiased esti-
mator, which can be thought of as the maximum
likelihood estimator (MLE) with bias correction
from eqn 4,

N.D = D'N-i
The exact variance of this unbiased estimator can be
obtained by correcting for the bias and can be
written as:

2

VAR(ñ114) = () VAR(151).

It is worth noting that although the bias correction
reduces bias, the trade-off is a slightly larger vari-
ance relative to the maximum likelihood estimator.

Expectations and variances for D2, and D3,1, are
the same as those for D1, with D2 (D3) replacing D1
and v (w) replacing u.

To determine the efficiency of the unbiased esti-
mators, we compared the variance of the unbiased

Table 3 Minimum of ratio of asymptotic variance(CRLB)
to the exact variance from eqn 8

x Nr=25 N=50 N=75 N100
0.01 or 0.99 0.65 0.78 0.84 0.88
0.02 or 0.98 0.69 0.81 0.86 0.89
0.03 or 0.97 0.83 0.88
0.04 or 0.96 0.85 0.89
0.05 or 0.95 0.76 0.86

These ratios were obtained by a grid search in increments
of 0.01 for u1, u, v1, v and x. Ratios greater than 0.90 are
not reported.

estimator with the asymptotic variance of the MLE
(D1) as provided by the CRLB. These results are
summarized in Table 4. The wide ranges of effi-
ciencies are primarily caused by the two cases previ-
ously mentioned in which an exact variance would
be preferred.

It is natural also to ask how the unbiased estima-
tor performs relative to the maximum likelihood
estimator in small samples on the basis of variance.
The efficiency in a variance sense can be computed
from eqs 8 and 10 and is quite high even in a sample
as small as size N = 10. A related question is how
both estimators perform when bias and variance are
both taken into consideration. We answer that ques-
tion by examining the mean square error of each
estimator (MSE(O)), which has these two
components:

MSE(O) = VAR(O) +(E() — 0)2

To examine the MSE of the estimators in small
samples we divided the MSE of the biased MLE by
the MSE of the bias-corrected MLE to yield an
efficiency. In Table 4 these results for varying

(9) sample sizes are summarized. To insure that D2
yielded the same results the above calculations were
carried out using D2 in place of D1, and the results
were exactly the same as we found for D . In conclu-
sion, even though the maximum likelihood estima-
tors are more efficient than the unbiased estimators
in small samples, the unbiased estimators are still

(10) highly efficient.

Example
The cytonuclear genotypic counts in Table 5 are
from a classic hybrid zone study (Harrison &
Arnold, 1982) between the crickets Giyllus pennsyl-
vanicus and G. firmus. Alleles diagnostic for G.

Table 4
/5,

Range of efficiencies of the unbiased estimator

N

CRLB

VAR (D )
VAR(/5)

VAR (D )
MSE(131)

MSE (D lu)

10 0.27—0.97 0.81 0.81—0.94
25 0.49—0.99 0.92 0.92—0.99
50 0.66—0.99 0.96 0.96—1.00

100 0.80—1.00 0.98 0.98—1.00
500 0.95—1.00 1.00 1.00—1.00

1000 0.99—1.00 1.00 1.00—1.00

We obtained the table by setting up a grid in increments
of 0.01 for u1, u, v1, v and x at a set sample size N.
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Table 5 Counts of cytonuclear genotypes

FF FP PP Total

P 1 6 7 14
F 11 0 0 11
Total 12 6 7 25

From R. G. Harrison et al. (unpublished data).

pennsylvanicus are denoted by a 'P', and alleles diag-
nostic for G. firmus by an 'F'. An exact test of the
no cytonuclear disequilibrium hypothesis is signi-
ficant at the 0.001 level.
From Table 1, D1 = —0.2288.
From eqn 8 we see that variance
(VAR(D1)) = 0.0005527.
The standard error (SE) = 0.0235
Replacing D1 and u in eqn 8 with D2 and v we see
that:

D2 =0.1056
SE(D2) = 0.0330.

Replacing D1 and u in eqn 8 with D3 and w we see
that:

D3 =0.1232
SE(D3) = 0.0336.

To examine the accuracy of these estimates we
compared them to the CRLB, which gave a standard
error of 0.0202 for D1, 0.0330 for D2, and 0.0335 for
D3. This translates into a ratio of VAR(D)/CRLB of
74.2 per cent, 99.9 per cent and 99.6 per cent,
respectively, for i = 1, 2, 3. This would indicate that
for a relatively small sample size (as characteristic of
molecular studies) these exact variances will be
useful.

Discussion

As an analytical tool efficient estimates of cytonu-
clear disequilibrium measures have broad utility.
These measures can be useful when examining: (i)
the directionality of crosses between conspecifics;
(ii) levels of gene flow; (iii) degrees of assortative
mating between conspecifics; (iv) age of reproduc-
tive barriers; and (v) mechanisms of selection
(Arnold, 1993).

By comparing two classes of cytonuclear disequi-
librium estimators it is demonstrated that using
unbiased estimators of cytonuclear disequilibria can
be highly efficient relative to the maximum likeli-
hood estimators. Exact variances for the maximum
likelihoood and bias-corrected maximum likelihood
estimators are given. For instance, in eqn 8 the van-
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ance of '3 is split into three terms with increasing
powers in sample size. The first term is the asympto-
tic variance of the maximum likelihood estimator
(i.e. the CRLB). The differences between the two
types of estimators can be seen in the N2 and N3
terms.

For sample sizes (N> 100) the asymptotic vari-
ances are within 20 per cent of the exact variances
and are adequate (Table 4). When the genotypic
disequilibnia are large in magnitude or the cyto-
plasmic allele frequency is extreme (below 0.05 or
above 0.95), then the exact variances should be used.

For smaller sample sizes (N> 50) the variance for
the unbiased estimator is within 4 per cent of the
biased maximum likelihood estimator (Table 4).
There is a slight advantage with respect to the mean
squared error, usually in small samples, to using the
maximum likelihood estimators. This characteristic
and also the fact that the estimators and their vari-
ances are in a relatively simple closed form makes
these estimators attractive and easy to use, without
resorting to the use of a computer.
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