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Partial selfing as an optimal mating strategy
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For a deterministic population genetic model, we have shown that partial selfing can be an optimal
mating strategy. The only necessary assumption is that inbreeding depression in consecutive
generations of selfing is described by a decreasing exponential function. The model gave an
estimate of the expected selfing rate in a population with mixed mating and a known inbreeding
depression function. Calculations were done for both a one-locus and a co-dominant two-locus
model. There were unstable or stable polymorphic equilibria that were dependent on the selfing
rate of the heterozygotes. The model was shown to be in good agreement with data on inbreeding
depression and selfing rates from the literature.
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Introduction

One of the important components in the mating system
of self-compatible hermaphroditic plants is the selfing
rate. The evolution of selfing rates can be viewed as a
conflict between 'cost of outcrossing' and inbreeding
depression (Maynard Smith, 1978; Charlesworth, 1980;
Feldman & Christiansen, 1984; Holsinger eta!., 1984).
The above studies show that if the inbreeding depres-
sion (i.e. the relative difference in fitness between selfed
and outcrossed individuals) is less than 0.5, and the
contribution to the pollen pooi is independent of the
selfing rate, genotypes that self-fertilize will spread in a
population, and the selfing rate of the population will
increase to 1. On the other hand, if the inbreeding
depression is greater than 0.5, the evolutionary stable
selfing rate is 0.

Campbell (1986) and Holsinger (1988) have
questioned the importance of inbreeding depression
for the evolution of mating systems. They showed that
the degree of linkage between a locus controlling fit-
ness and a locus controlling the selfing rate can be of
greater importance than the overall inbreeding depres-
sion. In a stochastic model, Holsinger (1988) found
selection for increased selfing even though inbreeding
depression was greater than 0.5.

The genetic basis of inbreeding depression is poorly
understood. The available data suggest that many loci
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with deleterious recessive or partly recessive alleles are
maintained in populations by a mutation-selection
balance and that overdominance is of less importance
(Charlesworth & Charlesworth, 1987). Campbell
(1986) argued that a change in the mating system will
alter the inbreeding depression, and that not all
individuals in a population of genetically diverse
individuals will experience the same inbreeding depres-
sion. If there is a change in mating system, then the
selection against the deleterious loci will change. An
increase in selfing rate will decrease inbreeding depres-
sion, and favour a proportionally higher level of domi-
nance (Lande & Schemske, 1985; Charlesworth &
Charleworth, 1987; Charlesworth et a!., 1990). In a
partially selfing population there will be a positive asso-
ciation between homozygotes at different loci (Bennet
& Binet, 1956), i.e. some individuals will have more
homozygous loci than expected from one-locus geno-
type frequencies. These individuals are likely to show a
higher inbreeding depression.

An individual from an outcrossing event will be
more heterozygous than an individual from several
generations of consecutive selfing. Inbreeding depres-
sion has been shown to be an increasing function of the
inbreeding coefficient. Schuster & Michael (1976)
found a decelerating decrease in yield with the number
of generations of consecutive selfing in winter rape
seed (Brassica napus), and the same trend was found in
beans ( Vicia faba) (Monti & Frusciante, 1984), alfalfa
(Medicago sativa) (Torssell, 1929; Tysdal et a!., 1942),



290 C. DAMGAARD ETAL.

barley (Hordeum ssp.) (Hagberg, 1953), rye (Secale
cereale) (Lundquist, 1969), and maize (Zea mays) (e.g.
Neal, 1935 and Good & Hallauer, 1977).

Whether partial selling is an evolutionary stable
strategy in some populations or only a transition phase,
is currently under debate. Lande & Schemske (1985)
showed, in a mutation-selection model, that a small
amount of selfing will cause a decrease in the inbreed-
ing depression. This result was confirmed by Charles-
worth et a!. (1990) for a multi-locus model without
linkage, using a multiplicative fitness function.
Kondrashov (1985) used a truncation selection model,
and suggested that conditions may exist where partial
selfing is an evolutionary stable strategy. Using a syner-
gistic fitness function, Charlesworth et al. (1991)
found that a selling rate close to complete selfing could
be an evolutionary stable strategy in some cases.
Charlesworth & Charlesworth (1990) showed that
populations with high levels of symmetrical over-
dominance can have partial selfing as an evolutionary
stable mating strategy.

Lande & Schemske (1985) concluded from their
results that only predominant outcrossing (maintained
by high inbreeding depression and/or by some obligate
outcrossing mechanism, e.g. sell-incompatibility) or
predominant selling are stable mating strategies.
Populations with partial selfing are therefore regarded
as populations in transition from outcrossing to selfing.
Schemske & Lande (1985) tested this hypothesis by
plotting the frequencies of different seifing rates from
the literature, and they found a bimodal distribution.
The use of this bimodal distribution was criticized,
however, because the data only came from a few taxa
(Wailer, 1986). Aide (1986) pointed out that if the data
were grouped into wind-pollinated species and animal-
pollinated species, only the wind-pollinated species
showed a bimodal distribution, and these species origi-
nated from only two families (Poaceae and Pinaceae).

Another approach to understanding the evolution
of selfing rates is to look at the ecology of pollination
events at different population densities (Ziehe &
Gregorius, 1988; Holsinger, 1991). That is, inbreeding
depression can be ignored, and partial selling can be
shown to be an evolutionary stable strategy by con-
sidering the ratio between pollen used for selfing and
pollen that is exported' from the flower (pollen dis-
counting) (Holsinger, 1991).

Maynard Smith (1977, 1978) showed that differ-
ences in inbreeding depression that are dependent on
the number of consecutive generations of selling can
lead to a polymorphism between a selling allele and an
outcrossing allele, or to the establishment of a genotype
with partial selling. In this paper we present the optimal
selfing rate given data on inbreeding depression. We

assume that fitness, as affected by inbreeding depres-
sion, is an exponentially decreasing function of the
number of consecutive generations of selling, and that
inbreeding depression is otherwise constant over time.
The optimal mating strategy for a genetically unstruc-
tured population is analysed in a deterministic genetic
model, and is tested using available data on inbreeding
depression and selfing rates.

The model

If inbreeding depression is caused by many loci, each
contributing a slightly deleterious effect to the inbred
individuals, then the individual fitness is a function of
the number of heterozygous loci. This is true for reces-
sive deleterious loci and loci with symmetrical over-
dominance (Campbell, 1986). Since the number of
heterozygous loci is halved for every consecutive
generation of selfing, one would expect the immediate
fitness of a family line (made by single seed descent) to
approximate a decreasing exponential function of the
number of consecutive generations of selling. In a
mixed mating system, there will be strong selection
against highly deleterious or lethal recessive alleles in
homozygotes (Lande & Schemske, 1985). This means
that the genetic load in the population is not very large,
and that in most cases a family line will not die out, but
reach a level of constant inbreeding depression when
most of the loci are in the homozygotic state.

If V,, represents the average fitness of individual
plant after n generations of consecutive selling, k is the
fitness of a genotype homozygous at all loci
(0 = <k= <1), c is a shape parameter of the exponen-
tial function (c> 0), and V0 is set to 1 then:

V,,'(1—k)exp(—cn)+k. (1)

In a population of plants that self with probability s, a
zygote (Z0) (which is the result of an outcrossing event)
has the probability of V0 (= 1) of reaching reproduc-
tive age (A0). At that stage, the ovules are either sell-
pollinated with frequency s and form zygotes of type

or cross-pollinated with frequency 1 — s and form
zygotes of type Z0. The selfed zygotes (Z1) have the
probability V1 of reaching the state (A1), and will form
the selfed Z2 with a probability of s. If any ovule is
cross-pollinated, the zygote will belong to the class Z0
(see Fig. 1).

In the following, we have assumed that the plant is a
anisogamous sell-compatible hermaphrodite with non-
overlapping generations. The genetic consequence of
these assumptions is that selling gives the nuclear
genome a twofold advantage (cost of meiosis) com-
pared to accepting foreign pollen (Maynard Smith,
1971; Uyenoyama, 1984).
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Fig. 2 Inbreeding depression data fitted by equation (1). Full
line: rape seed, data from Schuster & Michael (1976). Dotted

,
Fig. 1 Flow diagram of the different zygote classes (Z) and

line: beans, data from Monti & Frusciante (1984).

adult classes (A), V is the probability of reaching reproduc-
tive age, s is the selling rate. . . . .

initial population and eight consecutive generations of

We further assumed that the self ing rate is controlled
selfing. Their data were fitted (by least square) to
general inbreeding function as given by equation (1)

by one locus with many alleles, and the genotypes can with r= 0.97 (k =0.49, c =0.64) (Fig. 2). Inbreeding
have any selfing rate between 0 and 1, allowing for all
combinations of dominance relationships. A deter-

depression data from three generations of selfing in
beans (also measured by a decrease in yield) (Monti &

ministic computer program was written where a geno-
type which has been selfed n consecutive times will

Frusciante, 1984) fit equation (1) with r = 0.99
(k= 0.44, c 1.30) (Fig. 2). The fit of the other

reach reproductive age with the probability of Ji, and inbreeding depression data (see Introduction) all had r
then selfed with the probability of s (dependent upon
the genotype) and accept foreign pollen with the

values above 0.95 (results not shown).
The inbreeding depression parameter values from

probability of 1 — s. The probability of receiving pollen rape seed, as calculated from the data of Schuster &
of a certain genotype is equal to the frequency of this Michael (1976) (k= 0.49, c =0.64), are used through-
genotype. If a heterozygote selfs, the offspring will be in out this paper as a numerical example (other parameter
Mendelian proportions. The fitness of the genotypes in values gives similar results). If we start with an out-

which hasthe next generation follows the flow-pattern outlined in crossing population, then an allele, a selfing
and theFig. 1, i.e. a genotype, which has experienced n con- rate of 1 in homozygotes, is initially favoured,

thesecutive generations of selfing, has a fitness of V, and two alleles reach a stable equilibrium equili-
will leave s V, offspring with a fitness of T'÷ and brium frequency is dependent upon
(1 — s)*V offspring with a fitness of 1. It is possible to relationship. In the absence of dominance (i.e. co-
follow the allele frequencies to equilibrium given the dominance) there is no polymorphism. For the same c

has self-starting frequencies and selfing rates of the different and k, and allele a, which in aa homozygotes a
genotypes. ing rate of 0.71, will be favoured over any

In the following simulations we have set the maxi- b, if s(ab) =[s(aa) + s(bb)]/2 (no dominance).
We willmum numbers of consecutive generations of selfing (n) results is independent of the initial frequencies.
for theto 25. The distribution of adult classes was highly call this selfing rate the optimal' selfing rate

k will haveskewed towards small n, even with high selling rates chosen c and k. Any pair of c an
whereand a small inbreeding depression. The results did not optimal selfing rate, defined by selfing rate

change when we allowed n to be higher than 25. no co-dominant allele can invade. In following
allele with the optimal selling rate will be called a.

Results
Figure 3 gives the result of the simulation with the

same c and k (c=0.64, k=0.49), for s(aa)= 0.71 and
Schuster & Michael (1976) measured inbreeding s(bb) = 0.67 at different initial frequencies and domin-
depression (decrease in yield) in winter rape seed in an ance relationships. If the allele with the optimal selfing
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Fig. 3 Simulation with two alleles (k =0.49, c =0.64). The
selling rates are: s(aa) =0.71 and s(bb) = 0.67, full line:
s(ab) =0.71, dotted line: s(ab) =0.67, p is the frequency of a.

rate is dominant, i.e. s(ab)= s(aa)= 0.71, a stable equili-
brium (p =0.57) exists, irrespective of the initial fre-
quencies. If the allele with the optimal selfing rate is
recessive, i.e. s(ab) =0.67, there is an unstable equili-
brium at p = 0.37. If the initial frequency of a is higher
than 0.37, a will become fixed, and if the initial fre-
quency of a is less than 0.37, b will become fixed. If
s(bb)=0.75 (i.e. higher than the optimal selfing rate)
then the equilibrium properties are directly opposite. If
a (the optimal selfing rate) is recessive, i.e. s(ab) = 0.75.
there exists a stable equilibrium (p =0.73). If a is
dominant the equilibrium (p = 0.23) is unstable.

In Fig. 4, the equilibrium properties of alleles with
different selling rates have been plotted as a function of
the dominance relationship. As in Fig. 3, we have only
shown the results where the alternative allele has a
lower selling rate than the optimal allele. If the allele
with the optimal selfing rate is completely recessive
(dominance = 0), the equilibrium is unstable. As the
dominance of the optimal selling rate increases, the fre-
quency p, at which there is an unstable equilibrium
point, decreases. At a certain level of dominance,
dependent upon the selfing rate of the alternative allele,
the allele with the optimal selling rate is always fixed.
At 0.5 (co-dominans) the allele with the optimal selfing
rate is fixed, independent of the alternative allele and at
a certain level of dominance higher than 0.5, there is a
stable equilibrium when both alleles are present. The
stable equilibrium is reached at lower frequencies of
the optimal allele as the level of dominance increases.
As the differences in selling rates increase, i.e. s(bb) is
further from the optimal selling rate, the range of
dominance, where the allele with the optimal selfing
rate is being fixed, increases as well.

Fig. 4 The equilibrium frequencies for different levels of
dominance (k =0.49, c =0.64). Level of dominance =0:The
allele with the optimal selfing rate is recessive [s(ab) = s(bb)].
Full line: s(bb) =0.67, dotted line: s(bb) = 0.63.

To analyse the equilibrium properties further, we
introduced a new allele c into the population where a
and b are at a stable equilibrium. The initial increase in
the new allele is highly dependent upon the selfing rate
of the heterozygotes. If the heterozygotes formed with
the new allele (ac and be) have a higher selfing rate than
the other heterozygotes, the new allele is initially
favoured, even if the selling rate of genotype cc is
further from the optimal selling rate than genotype bb.
Depending on the selling rate of the different geno-
types, a polymorphic stable equilibrium, with either
two or three alleles, may be achieved (results not
shown).

Now consider a population in which there are 10
alleles with different homozygotic selfing rates, and
where the first allele is dominant over the nine alleles,
the second allele is dominant over the following eight
alleles, etc. If the alleles are allowed to reach equili-
brium, the selling rate of the population, i.e. the selling
rate of the different genotypes times their frequencies
in the population, will be equal to the optimal selfing
rate (results not shown).

A co-dominant, additive, two-locus two-allele model
also gives the same optimal selling rate as the one locus
model (results not shown), i.e. the genotype with the
optimal selling rate is fixed. Therefore we expect that if
the selfing rate is determined by many co-dominant loci,
then the optimal selfing rate found for the one-locus
model will be valid for the multi-locus case.

For large c, V1, V2, V3... are almost equal to k. By
setting c= 10 and k=0.49 or k=0.51, the model pre-
dicts s =0 and s = 1, respectively, as the optimal selfing
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rate, which is in accordance with existing theory (e.g.
Maynard Smith, 1978).

By running the program with different parameter
values, we found that the optimal selfing rate is an
almost linear function of k, and that the slopes and
intercepts of the optimal selfing rate, as a function of k,
are almost linear functions of c (results not shown).
This makes it possible, using linear regression, to
approximate the simulation model by a simple expres-
sion of c and k, which is easy to apply to a known
inbreeding depression function. The optimal selling
rate (0< s < 1) is approximately:

s=(0.97 — 1.37c)+(—0.31 + 2.45c)k.

From this expression it is possible to construct an
optimal selling rate landscape of c and k (Fig. 5).

It is interesting, and contrary to our first expecta-
tions, that partial selfing can be an optimal mating
strategy for k> 0.5, where inbreeding depression is
always less than 0.5. From the figure, we can conclude
that the optimal mating strategy is dependent not only
upon the inbreeding depression measured after one
generation of inbreeding, but also on the inbreeding
depression in the next generations. If a 30 per cent
decrease in fitness has been measured after just one
generation of selfing, one would not be able to predict
the optimal selling rate. The dotted line in Fig. 5 repre-
sents the different combinations of c and k that will

0
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0
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0.0

0.0

Fig. 5 The optimal selling rates predicted by a linear
approximation of the simulation model for different k and c.
Thedotted line represents combinations of k and c,for
which V1 is 0.7.

give a V1 of 0.7, and the optimal selfing rates predicted
from the simulation model range from 0.48 (c = 0.4) to
0.92 (c= 1.4). The slope of the curve suggests that
populations with a high c-value (negative epistasis) are
less stable at intermediary selling rates than popula-
tions with low c-values (positive epistasis).

Discussion

Tithe mating system in a population is in equilibrium
with the inbreeding depression, or if the change in

(2)
inbreeding depression is slow compared with the
evolution of the mating system, the above models pre-
dict an optimal selling rate for the population. If a
population is fixed at this selling rate, no co-dominant
allele with another selfing rate can invade the popula-
tion. It is, however, possible to introduce a dominant
allele with a higher selling rate or a recessive allele with
a lower selling rate. If a population has many alleles
with simple dominance relationships (see results)
around the optimal selfing rate, the selling rate of the
population at equilibrium is equal to the optimal selling
rate.

For the optimal selfing rate to be an evolutionary
stable strategy, two properties must be fulfilled (e.g.
Christiansen, 1991): (i) if a population is fixed for the
optimal selling rate, no new allele with a different sell-
ing rate can invade the population; and (ii) if a popula-
tion is close to the optimal selling rate, the population
will converge towards the optimal selling rate. Clearly
the optimal selling rate in the one-locus model is not an
evolutionary stable strategy, since it is possible for
either a recessive (or partly recessive) mutation with a
lower selling rate, or a dominant (or partly dominant)
mutation with a higher selling rate, to invade the
population. However, with simple dominance relation-
ship and many alleles the population generally is close
to the optimal selfing rate.

The one-locus model allows an invasion of an allele
where the selfing rate of the heterozygotes is higher
than the selling rate of the homozygotes. This seems to
be a very stable situation, and increasing the self ing rate
of the heterozygotes makes the polymorphism even
more stable (protected) (Gregorius, 1982). It is unclear
how well this situation fits a multi-locus reality, where
the inter-relations of different loci (epistasis) may have
a larger effect than dominance relationships within loci.
Link (1990) found that bean plants (Viciafaba), result-
ing from an outcrossing event, have a higher selling
rate than an average individual. This result can be
interpreted in favour of the existence of alleles that give
the heterozygotes a higher selling rate than the homo-
zygotes.

hO
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The model offers some possibility of accounting for
special ecological factors that may be of importance to
the evolution of the mating system. The model can be
adjusted to approximate the optimal mating strategy in
a genetically structured population by correcting for
biparental mating with a known degree of relatedness.
This situation is presently being investigated. If an
increase in selling rate is accompanied by a sizeable
reduction in the pollen available for foreign pollination,
and if this reduction can be expressed as a function of
s, this effect can also be included in the model.

It is possible to compare the model predictions with
inbreeding depression and selfing rate data from the
literature. When using data from agricultural plants, we
know that outcrossing is effectively random. However,
there is a risk that artificial selection and the breeding
programme have changed the genetic make-up, such that
the mating system is adapted to the inbreeding depres-
sion in former generations.

The inbreeding depression data from winter rape
seed (Schuster & Michael, 1976) gave an optimal self-
ing rate of 0.71. The selling rate in rape seed has been
estimated a number of times and found to lie around
0.67 (e.g. Olsson, 1960 and Damgaard, 1990). How-
ever, Brandle & McVetty (1989) measured the
inbreeding depression in summer rape seed and found
a smaller maximum inbreeding depression (1 —k) than
Schuster & Michael. These data would give a higher
optimal selling rate.

The optimal selfing rate, using inbreeding depres-
sion data from beans (Monti & Frusciante, 1984) was
0.47. In the same study, the selfing rate in the presence
of pollinators was estimated to be 0.5. Monti &
Frusciante (1984) reported that bean plants which had
been open-pollinated twice consecutively, had a higher
yield than plants that had been selfed before they were
open-pollinated.

In alfalfa, inbreeding depression data from three
different studies (Torssell, 1929; Tysdal et a!., 1942)
gave optimal selfing rates of 0, 0.22 and 0.43 compared
with a seffing rate in alfalfa of 0.11 (Tysdal eta!., 1942).

Barley, which is predominately selfing, had [in a
study by Hagberg (1953)1 a low inbreeding depression
(c=0.49, k=O.84) corresponding to an optimal selling
rate of 1. Rye, which is predominately outcrossing, had
a high inbreeding depression [c=0.88, k= 0.17 (Lund-
quist, 1969)1 corresponding to an optimal selfing rate
of 0.05.

Most studies of inbreeding depression in maize,
which is normally considered to be an outcrossing
species, have been done with synthetic populations, i.e.
crosses between inbred lines. Deleterious recessive
alleles have been selected against in such populations,
and are not suspected to be in equilibrium with the

mating system. The inbreeding depression data (e.g.
Good & Hallauer, 1977) suggest that a genotype with
partial selfing will be able to invade a synthetic corn
population. Kahler et al., (1984) reported that two
maize populations did appear to have non-random
mating and they estimated the selfing rate to be about
0.10.

In Plantago coronopus, inbreeding depression data
from a natural population predicted an optimal selfing
rate of 0.26. The same population had a selfing rate,
under field conditions, between 0.10 and 0.30 (per-
sonal communication; Hans Koelewyn).

To aid comparisons with our models, we suggest that
inbreeding depression data should be gathered in the
following way: (i) in a population with a known selfing
rate, an initial population of outcrossed individuals
should be measured for characters relevant to fitness,
(ii) to avoid selection against inbreeding depression, the
next generations should be made by single seed descent
from the former generation which has been selfed; and
(iii) the selfed generations should be measured for the
same fitness related characters until there is no further
decrease in these characters. It is possible to obtain a
good estimate of the inbreeding depression function by
analysing two selfed generations and estimating the
maximum inbreeding depression (e.g. by regeneration
of chromosome doubled anther cultures). To account
for competition effects, the different generations of
consecutive selling, weighted by their expected fre-
quencies in a population, should be sown randomly in a
plot. For more information about measuring inbreed-
ing depression see, e.g. Lynch(1988).

To test fully the possibility that partial selling is an
evolutionary stable strategy, it is essential to achieve
good estimates of the inbreeding depression from
natural populations in a stable environment with a
mixed mating strategy. This will make it possible to
analyse whether selection against inbreeding depres-
sion is so strong that partial selfing is a transition phase
as predicted by Lande & Schemske (1985) and
Charlesworth eta!. (1990).
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