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Phenotypic evolution under Fisher's
Fundamental Theorem of Natural
Selection
Eric L. Charnov Department of Biology, University of Utah,

Salt Lake City, UT 84112 U.S.A.

Lande's (1982) equations for phenotypic evolution are derived as a linearized version of Fisher's Fundamental Theorem
of Natural Selection. In this derivation the genetic covariance matrix is not necessarily a fixed object and is likely to
alter as directional selection proceeds. Under stabilizing or equilibrium selection, the mean phenotypes take on values
identical to those which would be predicted by an "optimization of fitness in the face of tradeoffs" approach. It is
argued that optimization is a more powerful way to understand equilibrium or stabilizing selection.

k

In this note I will derive equations for the evolution
of correlated characters under natural selection
with the assumption that the genetical dynamics
satisfies Fisher's Fundamental Theorem of Natural
Selection. The resulting equations, identical to
those of Lande, will then be applied to the situation
of stabilizing or equilibrium selection. The results
will be compared to the output of a corresponding
optimization approach to predicting the equili-
brium phenotypes.

Consider the following familiar functionl b
(1)

where l probability of being alive at age x, b =
birth rate at age x, A = em = measure of Darwinian
fitness (essentially the geometric rate of increase)
for a genotype having the history (lv, b) under
consideration.

For derivation of (1), in the continuous as well
as discrete form, see Charlesworth (1980).

The most general theorem in population
genetics is that the rate of change of mean fitness
(A, th) in a population is equal to the genic (= addi-
tive genetic) variance in fitness. Or, in two forms
(Crow and Kimura, 1970):

V(A) (2)

th = V(m). (3)

These dynamical equations ensure that X (or
th) will be non-decreasing with time (since the
variance is non-negative) and that change will
cease when V(A) - 0. The equations are, of course,
known to population geneticists as R. A. Fisher's
Fundamental Theorem of Natural Selection. Crow
and Kimura (1970) discuss its approximate validity
for a wide variety of genetic systems.

In this article I will ask how a set of phenotypic
characters evolves if the underlying genetics
satisfies these dynamical equations. In particular,
I will show that the linearized version of Fisher's
theorem leads to the same dynamical equations
for phenotypes as Lande's (e.g., 1982) quantitative
genetics approach to phenotypic evolution, at least
for slow selection.

Consider first the function

A(Z1 Zk) (4)

where A is considered a random variable which is
a function of several other random variables. The

are phenotypic variables (e.g., birth rates,
height, bone structure). We expand_A in Taylor
series around the average Z values (Z), retain the
linear terms and then calculate the mean and van-
ance of this linear approximation (AA). To begin
we have

(5)
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where the aA/aZ, are evaluated at Z,. Note that
the mean of A4 is simply

A(ZI Zk)=AA.
To calculate the variance of A4, we rewrite it as

A4A(Z1

k+—z.
azi

The only random variables in (7) are the addi-
tive terms

k

-l az1

Zg = additive genetic part
Zie the rest (environmental, dominance, etc.)

So that

= Zjg+Ze,

We shall make two assumptions here: first, that
Z, = 0, and second, that Cov(Z, Ze) = 0 [no
environment-genotype interaction, and environ-
mental effects alter the variance but not the mean
of the .71's]. With these assumptions, we can rewrite
(8) as:

il aZ1 =1 aZ,

The first and second summations are uncorre-
lated random variables. The variance of the first
summation represents the additive genetic variance
of A4 (or the approximate additive genetic variance
of A); thus, we have:

V(A)= V(Z1)()

+2 Coy (Z,

+ Coy (Z1,

(6)

(7)

(8)

(and here only the Z1's since the aA/3Z1 are
constants, evaluated at the Z's). Thus the
Var A4(= Var A) reduces to the variance of a sum
of random variables (the Z's). However, the world
is a bit more complicated; we don't want Var A,
we want V(A), the additive genetic variance. Let
each Z be made of two parts, two other random
variables:

Equation (10) is of course the linearized version
of the dynamical equation

= V(A) (or equation (2))
To write an equation for the change (AZ,) in

mean Z, _note from equation 6 that A4 =
A(Z1, . . . , Z). If A is changing slowly due to
selection we may write

A4(T+1)A,(T)+

or

(11)

Now, since AA4= V(A)/, it appears that

(12)
A ,1aZ,

Inspection of equation (10), the linear approxima-
tion for V(A), shows that each aA/aZ, term is
multiplied by a V(Z1) . aA/dZ term and a sum of
similar covariance terms. Each Z,, .7, pair has two
covariance terms. If we assign one covariance term
to each Z of the pair, the resulting summation for
each Z, should (through equation (12)) be equal
to A.Z1. We have for i=1 k

.Z= V(Z)
azi

(13)

or (in matrix form)

V(Z) Cov(Z1Z2)
Cov(Z1Z2) V(Z7)•.

J\aAA/aZk

= U4)

The end result (equations (13) or (14)) is the same
form as derived by Lande (1982). I think it useful
to show a derivation of them which begins with
Fisher's Fundamental Theorem (AA = V(A)) and
recovers the variance—covariance formalism
simply as the linearized version of V(A). Note that
to do so also required zero covariance between the
additive genetic effects and other sources (e.g.,
under the rubric of "environmental") of variation

(9)

(10)

where V(Z,) and Coy (Z,, ) refer to the additive
genetic variances and covariances. The derivatives
are evaluated at the means of the Z's. Indeed, the
functions A(Z1 Zk) and A(Zl,Z2,...,Zk)
will be exactly the same form.
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in the characters. Otherwise, the step from
equation (9) to (10) could not ignore the second
summation in equation (9). Lande (1982) makes
essentially the same assumption. The linearized
equations should apply in the neighborhood of
equilibrium points, since there genetic variance is
small and selection slow.

There is one important way in which this deri-
vation differs from the Lande formalism; here there
is no assumption that in equation (14) the genetic
covariance matrix is constant through time. Indeed
there is nothing fundamental about the values in
the matrix at all as they simply represent linear
relationships between the phenotypic variables
(Z1) appropriate in a particular generation. If the
covariance matrix (call it V) and the vector of
selection gradients (aA/3Z,, call it A) are allowed
to change during a bout of directional selection,
the most likely outcome is that phenotypic change
will take place until an equilibrium is reached;
here equation (14) will equal zero, or V. =0.
One may reasonably ask just what will determine
the elements of the covariance matrix at the equili-
brium? A reasonable guess, not necessarily com-
plete, is the sorts of tradeoffs and/or constraints
commonly studied by evolutionary ecologists (dis-
cussed in Charnov and Stephens, 1988; and
Mange! and Clark, 1988). Of course, genetic
covariances between characters may also result
from functional relationships favored by natural
selection, or from genetic linkage itself. The matrix
V may well be a crazy patchwork quilt of tradeoffs,
genetic linkage and functional relations between
characters.

In the appendix, I show how evolution will
proceed in a two-dimensional example where the
phenotypic variables are subject to a tradeoff (fig.
Al). Only at equilibrium (V.9A =0) are the
phenotypes forced to lie on the tradeoff or con-
straint surface (see fig. Al); this generates a nega-
tive genetic covariance (the covariance may well
be positive during directional selection, par-
ticularly if selection is moving the phenotypes from
the inside outward towards the constraint boun-
dary). The appendix also shows that the equili-
brium under the genetical equations (V .iA =0)
is the same for the mean phenotypes (Z1) as is
obtained by the "standard optimization of fitness
in the face of tradeoffs" approach as typically
applied by evolutionary ecologists (Charnov and
Stephens, 1988). As independently shown by B.
Charlesworth (unpublished manuscript) for the
arbitrary N-dimensional case the structure of the
covariance matrix and selection differentials as
imposed by the tradeoffs will in equilibrium

(V = 0) be the same as the solution to the
corresponding optimization problem; the two
methods for finding the equilibrium phenotypes
will give identical answers. They differ mainly in
that the covariance matrix is simply a linear rep-
resentation of the true tradeoff relations. Since
most thought by evolutionary ecologists related to
tradeoffs results in non-linear tradeoffs or con-
straints (e.g., Charnov, 1986), I have elsewhere
suggested (Charnov and Stephens, 1988) that the
tradeoffs themselves are the fundamental objects
of evolutionary interest, at least with respect to
stabilizing or equilibrium selection. The covariance
representation of tradeoffs or constraints simply
discards too much which is of basic interest (see
also Bell and Koufopanou, 1986, p. 123).

If most of the time species are subject to equili-
brium (stabilizing) selection, then bouts of direc-
tional change in phenotypes can also be studied
using an optimization approach. Two possibilities
present themselves. In the first, directional selec-
tion results when a constraint surface alters; the
population then moves to a new equilibrium. In
the process the genetic covariance matrix will be
reorganized to reflect the tradeoffs at the new
equilibrium. The second possibility is that while
no constraint surface is altered, there exists more
than one local optimum. Non-linear tradeoffs seem
most likely to generate this condition. As Sewall
Wright often suggested, drift generated by small
local population size may well allow a species to
shift from one local optimum to another.
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APPENDIX: EVOLUTION IN TWO DIMENSIONS

Suppose we examine evolution with two traits
(Z1 & Z2) and assume they are related to fitness by

A=aZ1+bZ2 (a,b>0) (A.l)
Suppose further that Z1 and Z-, are constrained to
be on or within the tradeoff curve of fig. Al. The
equilibrium will fall on the curve since A increases
with increasing Z1 and Z2; denote Z2=f(Z1) on
the tradeoff curve. The evolutionary ecologist's
optimization solution for the equilibrium is to find
Z and Z2 so that A is maximized subject to the
tradeoff. For this two-dimensional case we may
simply rewrite A as

A =aZ1+b.f(Z1). (A.2)

Setting aA/aZ1=O yields the condition —a/b=
af/aZ1. As shown in the figure, this is the intersec-

tion of a line with slope —a/b with the tradeoff
surface.

The dynamical version of the equilibrium is
V = 0 or recalling that

aZ1=

c9Z2

In these equations, I have assumed for illustration
that all the variance is additive genetic so that
V(Z,) = Var (Z1). If these equations are to be
satisfied at equilibrium, then the terms Var Z1,
Var Z2, Coy Z1Z2 must assume particular forms—
imposed by the realization that the phenotypes are
being pushed up against the constraint boundary
Z2=f(Z1). We may argue as follows (with refer-
ence to fig. Al). If the phenotypes occupy a small
portion of the constraint boundary, Z1 and Z2 will
be approximately linearly related or

Z2=M—(af/aZ1) .Z1.

VarZ2 =(af/aZ)2 . Var Z1.

With Z2= M—af/aZ1 .Z1, the Corr. (Z1Z2)=—l.
But

Corr. (Z1Z2) =
Coy Z1Z2

x/Var Z1 . '!Var Z2

so that Coy ZZ, = —af/3Z1 . Var Z1.
We have now written Var Z2 and Coy Z1Z2 in

terms of Var Z1 and the slope of the tradeoff curve.
If we plug these values into equation A3, they are
appropriate to satisfy them equal to zero if and
only if af/aZ1 = —a/b, the same as we found under
the optimization solution for the equilibrium. If
fitness (A) is a non-linear function of Z1 and Z2,
the same general methods apply, and the two
answers are again the same.

we have

( VarZ
\Cov Z1Z2

Coy ZIZ2\ /a\
II =0VarZ, )\bJ (A3)

z2
Thus

zi
Figure Al Phenotypic evolution in two dimensions. The poss-

ible phenotypes are in the stippled area, a tradeoff set. The
equilibrium will be on the boundary of the tradeoff set,
here called a tradeoff curve: Z,=f(Z1). As shown in the
text, the equilibrium will be the same under an optimization
approach or a genetical dynamic approach (V . = 0).
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