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SUMMARY

Whilst genotype frequencies under full selfing may be determined explicitly for
a self-pollinated population in which genotypes differ in fitness, the non-linearity
of the mixed selfing and random outcrossing model necessitates the development
of an asymptotic approach.

1. INTRODUCTION

THE general theory of the change of genotype frequencies under selfing
when genotypes differ in fitness, including the extension to selfing-with-
crossing and random outbreeding, is described by Workman and Allard
(1962). Applications to experimental populations were initiated by Allard
and his colleagues, namely: Jam and Allard (1960); Allard and Jam (1962);
Allard and Workman (1963). We shall first consider closed expressions for
the nth generation frequencies under full selfing, and then develop a general
asymptotic technique within the non-linear context of mixed selfing and
random outcrossing.

2. EXPRESSIONS WITH FULL SELFING

Let f and denote the relative frequencies in the nth generation
of genotypes AA, Aa and aa at a single locus. Suppose also that the fitness
of the AA, Aa and aa genotypes is 1, s2 and s3, respectively. Then the
recurrence equations relating the genotype frequencies in generations n
and n + 1, assuming full selfing, are given by

r(n+l) _ir(n) 1 .c(n)\II,,(n)
11 'JI +4S2J2 )I ''
C(n+1) — ji c(nh i (n)
12 —'2S2J2 )/
C(n+i) — t(n) 1 j(fl)\ j11,(n)/3 —S3j3 +4S2J2 )I 'V

wheren=1,2,3,...,
=(n) + S2f2 + s3f

and

+f +f = 1.
Similar equations have been discussed with varying degrees of complete-

ness by Haldane (1956), Hayman and Mather (1956) and Reeve (1957),
solutions being derived via either difference equation or matrix techniques.
Karlin (1968) provides a comprehensive account of various mathematical
approaches.

139



140 NOTES AND COMMENTS

On disregarding the scaling factor W" relations (1)—(3) are linear in
the (i = 1, 2, 3), so let us first consider the three equations

pn+i=pn+szqn (4)

qn+i=s2qn (5)

= s3r +s2qn. (6)

Their solution follows directly either from a standard matrix approach
(Nagylaki, 1977, pp 96—99), or from noting that equation (5) immediately
yields

q=q(s2 (7)

whence substitution of (7) into (4) and (6) gives standard single-variable
difference equations (see, for example, Stephenson (1961)) with the
solutions

pn =p — 1J (8)

r = rs +[qs2/(s—2s3)][(s2Y —sfl (9)

subject to the initial conditions 1c0) = O) = q and t) = r.
We may now form f =pj w, /j = q/W" and f =r/W° by

dividing (8), (7) and (9) by

=p,, +q,, +r,, = {p — (qs2)(s2—2)1}
+ q(s2Y'{1 + (s2)[(s2 —2)_i + (s2 —2s)_i]}
+ s{r — (qs2)(s2 — 2s3)'}

to give
= {p + [qs2/(s2 —2)J[(s2)" — 1J}/ W"

f ={q(s2'}/W (10)
= {rs + [qs2/(s2— 2s3)][(s2) — s]}/

Of particular interest is the behaviour of these relative frequencies as
n becomes large. If 0 s2, 53< 1 then lim t) = 1 whilst both f and
f decrease (almost geometrically) to zero but not necessarily at the same
rate. For

(s2)/(s2—2s3) s2>2s3
— (r/q+n) 52=253 (11)

(2s3/s2 [(r/q) — (S2)/(S2 — 253)] 52< 2s3.

Different limiting relations apply with other values of 52ands3. For example
if 53 exceeds both 1 and s2 then both f and f approach zero and f
approaches 1, whilst if s2>2 and 53<S2 then in the limit as n —

:f" :f =(s2)/(s2—2): 1 :(s2)/(s2—2s3). The condition for
1im, f.Z" >0 is slightly more general than this latter one, being 52 2,
S3=<52.



NOTES AND COMMENTS 141

3. ASYMPTOTIC RESULTS FOR MIXED SELFING AND
RANDOM OUTCROSSING

The above approach relies on the linearity of equations (4)—(6), so in
order to investigate non-linearity let us allow random outcrossing with
probability t and selfing with probability z = 1 — t. The recurrence relations
(1)—(3) are now replaced by the relations

G1 = t(f +s2f)2+z(f +s2f'±) (12)
=2r(f+s2)(s3f +s2f) + z(s2f) (13)

=t(s3f +s2f)2+z(s3f" +s2f) (14)

with

f(fl+l) =G/ and W = G" + + (15)

Conditions (15) ensure that f) +f +f = 1.
If 52 =53 = 1 then, from the Hardy--Weinberg rule, the quadratic terms

in (12)—(14) reduce to a matrix of constants and Workman and Allard
(1962) exploited the resulting linearity of equations (12)—(14) to derive a
matrix solution for the relative frequencies f, an equilibrium solution
being given by Hayman (1953). However, ifs2, s3 1 then this simplification
no longer applies and an alternative approach is necessary.

First we examine equilibrium solutions by letting -*f, as n —. As
fj+f2+f3=1 we have

-* t(f1 + 5212 +s3f3) + z(f1 +s2f2 +s3f3),
and so in the limit equations (12)—(15) become

f1[t(f1 + s2f2 + 53f3) + z (f + s2f2 + s3f3)J
= t(f1+ s2f2)2 + z(f1 +52f2) (16)

f2[t(f1 + S2f2 + 53f3) + z (fi + 52f2 + s3f3)
= 2t(fi+s2f2)(s3f3+s2f2)+z(s2f2) (17)

f3[t(fl + s2f2 + S3f3) + z (fi + s2f2 + 53f3fl
= r(s3f3+52f2) + z(s3f3 +152f2). (18)

On replacing fi by 1 —f2—f3 in expressions (17) and (18) we see that f2
and f are defined by the intersection of two cubic surfaces, and so in
general may take several values. For admissible solutions we require f2,
f3 >0; 12 +f3 1 and direct inspection reveals f = 1, 12 =f3 = 0 and f = 1,
11 =11 = 0 as being two of them. For the remainder of this paper we shall
restrict our attention to the former solution with 0 < 2, S3 < 1.

Let us therefore write f = 1 + o(1) and f, f = o(1), so that W =
1+o(1) where o(1) denotes terms which approach zero as n tends to
infinity. Denote

(n) (n)af2 /f
Then as

f2 — G/W" 2t(s3f
(n+1) — (n) / (n) i e(n) 1 r(n/3 3 / ZS3J3 +4.52/2
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we have

a,,÷1 —[2t(s3 +s2a,,)+ z(s2a,,)J/[z(s3+s2a,,)].
Thus if a,, - a as n -. , then

(zs2)a2 + (zs3 — ts2 —zs2)a —2ts3 = 0

which has the one admissible root

a = (zs2)1[—(zs3— ts2— zs2) + 'J{(zs3 — ts2 — zs2)2 + 2tzs2s3}]. (19)
Note that if t =0 and z 1 then the situation reduces to that of section 2,
with (19) simplifying to a =max {0, (s2 —2s3)/(s2)} in agreement with the
limiting form of (11) as n

Next we investigate the behaviour of t) andt) separately by writing
— n+l)j1(n)lnJ3 /13

From (14) and (15)
(n) ,' c() 1 .e(n)

L____.._ 3 ZSj +4S2j2
f"{1+o(1)1 f;fl)

and so

(3,, —z(s3+s2a,,).
Thus if (3,, - j3 as n -+, then

13 = z(s3+s2a). (20)
On combining these results we have

f—k(3" and f—kaf3 (21)

for some constant k >0 which depends onf° andf. Note that (21) implies

f=1—k(1+a)f3 (22)

which may be shown to satisfy (12).
To illustrate the way in which a and /3 change with z and t (0 z = 1 —

t1), their behaviour is shown in fig. 1 for s2=0-9 and s3=03. Whilst
(3is well-behaved over the entire region 0 z 1, a is well-behaved only
for values of z away from zero. In this example, log a is almost linear in
the range 030z 085 but approaches infinity as z nears zero.

As expressions (21) and (22) denote probabilities we clearly require
both a 0 and 0(3 <1. The first follows from (19), whence (20) gives
(3= zs3+zs2a 0. Thus we need only consider (3<1, i.e.,

zs3+zs2a <1
which from (19) becomes

'J{(zs3 — tS — zs2)2+ 2tzs2s3} <2— zs3 —ts2 — zs2. (23)

On squaring both sides this reduces to

z(s2—2s3+52s3)>2(s2— 1). (24)

Not only is this inequality satisfied if s2, s3 1, but also the right-hand side
of (23) is non-negative, as required. For such non-negativity is implicitly
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Fin. 1.—Change in a (logarithmic scale) and 3 with z, evaluated from expressions (19) and
(20), respectively, for s2 = 0•9, s3 = 0•3.

assumed in the act of squaring, and so for general s2, 53 the requirement
<1 necessitates the condition

2— zs3 — ts2 — zs2 0

in addition to (24). After a little manipulation we may write these conditions
in the form, "for solutions (21) and (22) to hold, we require z(s2—2s3) to
exceed both 2(s2—2) and 2(s2—1)—zs2s3".

Expressions (19) and (20) for a and /3 may be further manipulated to
yield more detailed information in several special cases. For example, in
the case of equal fitness (s2 = = s) then a = 4t/z and f3 = s, the former
being independent of s and the latter being independent of z. Whilst if 52
and s3 are only just less than 1, so that 5, = 1— e (i = 2,3) for 0< , << 1,
then /3 1 — (2tr2+ zr3)/(1 + t). The infinite behaviour of a as z -+0, illus-
trated in fig. 1, also follows with:

a —(4/z)—(2/s2)(s2+s3) and /3 —.s2—z(s2—s3) as z
a -+ max {0, (s2— 2s3)/(s2)} and 3 -+max {s2, S3} as z - 1.

4. Coci.usior.s
Whilst the approach of section 2 relies on the ability to express the

recurrence equations for the relative frequencies in linear form, in section 3
we develop a general asymptotic technique to enable the analysis of non-
linear equations. Although the exact determination of relative frequencies
for specific known parameter values still necessitates numerical computation
via the recursion formulae (12)—(15), the asymptotic arguments described
throw considerable light on how the fitness parameters 52,53 and mixing
coefficients z, t affect the development of the {f)}•Of particular value is
the condition on 52, s3 and z necessary for convergence to (1, 0, 0)—

1•0

i8

.7

z
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conditions for convergence to other admissible equilibrium solutions may
be developed in a similar manner. However, the importance of this
asymptotic approach lies not so much in its success with this particular
model, but that the techniques employed are of perfectly general application
and should yield results in many other interesting non-linear situations.
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