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SUMMARY

Subdivided populations where one deme plays a major role and the other
demes play subordinate roles are studied. The models are appropriate for
socially structured and age structured populations (including plant species
with seed pools) as well as spatially subdivided populations. Concise sufficient
criteria as well as tractable necessary and sufficient criteria assuring the main-
tenance of a polymorphism are given. The incorporation of temporal varia-
tion is included, and appropriate concepts of environmental heterogeneity are
discussed.

1. INTRODUCTION

IN a subdivided population all of the demes may not be of equal importance.
Rather there may be one or a few major denies and several subordinate
demes. One manifestation of such a dichotomy is the single island model of
Wright (1940) which contrasts a stable mainland population with an island
population linked by limited migration. The general panmixia model of
Levene (1953) generalises the multiple island model of Wright (1951) in
which each island receives an equal immigrant fraction from every island by
assigning different relative importance to the different islands, but this
represents a continuum of deme significance rather than a dichotomy.
We focus here on models involving a single major (distinguished) deme
which were introduced in Karlin (1976, 1977). Other models reflecting a
major/subordinate deme dichotomy include the "star" model of Carmelli
and Cavalli-Sforza (1976) and several models in Karlin (1981).

The two models which we consider here entail a linear array of demes
connected by unidirectional stepping-stone migration countered by the
distinguished deme which either receives immigrants from all or some of the
demes (fig. 1) or disperses emigrants to all or some of the demes (fig. 2).
Of course the conclusions drawn from these models remain qualitatively
valid under small perturbations of the system (Karlin and McGregor, 1972).
The physical (geographical) interpretations which we present are hypotheti-
cal rather than documented; the non-geographical interpretations are
perhaps more important.

The term atoll was used to describe these models (Karlin, 1976) sug-
gestive of a physical array consisting of a major island and several smaller
islands extending along a line. Other physical settings include a forest with
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nearby clusters of trees and shrubs, a stream flowing into (or out of) a lake,
and a major city with satellite towns along the main highway. The uni-
directional migration could be mediated by wind or water currents, a popu-
lation density gradient, or the flight patterns of insect vectors. Migration
to or from the distinguished deme could be modulated by migratory vectors
or different currents countering the unidirectional stepping-stone migration
flow.

The distinguished immigrant deme model (fig. 1) is also appropriate
for studying age-structured populations. One such example is annual plants
which have a seed pool (Templeton and Levin, 1979) (note that their
parameterisation is different from ours). The major deme corresponds to
the germinating seedlings and the subordinate demes to the age classes in

0 0—0 '0
FIG. 1.—Distinguished immigrant deme.

the seed pool (i.e., the seeds are identified with the year they were formed,
the age classes are the number of years that they have remained dormant
without germinating). A familiar example is the Leslie matrix employed
in demographic studies which specifies age-specific birth and death rates.
The problem of protection of an allele with different survival probabilities in
different age classes can be identified with the problem of growth or extinc-
tion of an age-structured population; temporal variation in selection inten-
sities can be identified with temporal variation in birth and death rates.

Most of the results below concentrate on the question of protection of an
allele. We present concise sufficient conditions and also sharp criteria assur-
ing maintenance of a polymorphism under constant selection pressures. We
then present the formulation and limited results in the presence of deter-
ministic (cyclic) and random temporal variation of the selection intensities.
Some comparisons of migration patterns (life histories) and environments
with respect to prospects for protection are given. We conclude with the
study of some compound migration patterns entailing major and subordinate
clusters of demes in their underlying structure.

2. THE MODELS

We employ the standard model for local gene frequency changes due to
random mating and selection within demes followed by migration among the
demes (e.g., Christiansen, 1974; Karlin, 1976). Allele frequency changes
within habitats are specified by scalar functions

[ 2+x(1 )]=j(x) =
[s1x?+2x1(1—x)+t1—xj)2]

(1)

(for one locus with two alleles) where the subscript designates the deme or

Fso. 2.—Distinguished emigrant deme.
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habitat. Migration is represented by the backward migration matrix Mso
that the next generation is given by

x' = M. (2)

(The prime (') designates the succeeding generation.) It is the particular
form of M which identifies the models which we consider here.

(i) Distinguished immigrant deme

In this case the backward migration matrix M has the form

a1 a2 a3 a4 ... a a, O, a = 1

= 1, 2, ..., n
b2 c2 0 0 ... 0

M= b4+c=l (3)
o b3 c3 0 ... 0

b>O,c1 O
o 0 ... ó b c i=2,3,...,n.

The a specify the fraction of the first deme which is drawn from each deme
preceding migration; the c1 (and a1) specify the fraction in each deme
which did not migrate and the b reflect the unidirectional stepping stone
component. The specialisation to age-structured populations has c = 0,
hence b1 1 for all i because all members of an age class pass into the next
age class with the passage of time.

A frequent question in population genetics relates to the conditions which
preclude an allele from extinction. The well-known criterion depends on the
spectral radius (magnitude of the largest eigenvalue) of the product matrix
MD where D is a non-negative diagonal matrix (all non-diagonal entries
are zero) whose entries specify the marginal viability of the allele when rare
(e.g., Bulmer, 1972; Christiansen, 1974). The spectral radius of this matrix
MD is of course equal to that of DM. This latter form is most analogous to
the problem of growth or extinction of an age-structured population governed
by a specific Leslie matrix. A Leslie matrix has the form

f0f1f2...f
Si 0 0 ... 0

L= 2
:::

0
(4)

o a a ...

wheref specifies the birth rate (fertility) associated with the ith age class
(which may be zero) and s, is the probability of surviving from the (i—i) st

age class into the ith age class. If we letF = >f, a =-, and b = 1
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we see that the growth of a population governed by L is essentially equivalent
to protection of an allele in a subdivided population with migration para-
meters as specified above for (3) and marginal viabilities given by the
diagonal matrix

F
0

(5)

(ii) Distinguished emigrant deme

The backward migration matrix in this case is essentially a transpose of
(3), but of course is constrained to be stochastic, i.e. non-negative entries
with row sums equal to one. Specifically, it has the form

P2 : :
r+p+q=1

M= q3 0 r3. . .0 (6)

0 . q, p>O I = 1, 2, ..., n.r
The q specify the fraction of the ith deme which emigrated from the

distinguished (first) deme; r specifies the sessile fraction; and p1 reflects the
unidirectional stepping-stone component.

3. CONDITIONs FOR PROTECTION WITH CONSTANT SELECTION COEFFICIENTS

The criterion for protection of an allele A (Bulmer, 1972; Christiansen,
1974; Karlin, 1976) is that p(MD) > 1 where p designates the spectral
radius, M is the backward migration matrix, and D is a diagonal matrix
with zeroes off the diagonal and d11 are the marginal viabilities of the A
allele on the diagonal (i.e., d1 is the ratio of the viability of the Aa heterozy-
gote to the viability of the aa homozygote). A sufficient condition that this
spectral radius be greater than one is given in Karlin (1976),

(d)> 1 (7)

where is the principal left eigenvector of M normalised such that = 1.

The principal left eigenvector of M also appears in other problems of popula-
tion genetics (e.g., in determining the protection of a recessive allele (Karlin,
1977)). It is therefore of interest to provide the left eigenvector for Cases of
distinguished deme migration where it has a concise form.

Case (i): For a migration matrix of the form (3) with

0=c2=c3=... =c,
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(which is appropriate for an age-structured population) the normalised
principal left eigenvector is given by

i—i

(8)j=1
A

where A = n—E(n—j)a.

Case (ii): For a migration matrix of the form (6) with r2 = r3 = ... =r = 0 the principal left eigenvector is given by

= = 1, 2, ..., n. (9)
R,_1k=t

where R0 = 1, R1 = fJp,.

(a) Exact criteria. The exact criteria governing protection are available
for the immigration and emigration distinguished deme models. Note that
Mis stochastic but the product matrix MD will in general not be stochastic.

Case (la): Let MD be of the form (cf. (3))

Oi 2 3 OCg

fl2 Y2 0 ... 0
MD= ? 9

. (10)

jl

Then p(MD) > 1 if and only if either

y  1 for some i  2 (11)
or

By1<l for all i and + —k >1 (12)k=2 Rk
k k

where Bk = fl fl, Rk = fl (l—yj).i=2 i2
Case (2a): Let MD be of the form (cf. (6))

Yi P1 0 0 ... 0
2 Y2 P2 0
O3 0 fl3MD= .

. . . (13)

n—L 0 Yn—1 I3n—1

cc,, 0 0 y
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Then p (MD) > 1 if and only if either

or
 1 for some I

Bky <1 for all i and v+ k > 1
k=2 Rk

k—i k
where Bk = 1I fl, R,, [I (1—ye).1=1 i=2

(13a)

(13b)

Example 1. Let r = 1 — p. = = q in (6). This manifests a form of
unidirectional stepping-stone migration (see fig. 3). It may be appropriate
for organisms living along ocean currents where a general sedentary tend-
ency is supplemented only by the possibility of movement with the ocean
current. Of course, climate and other environmental factors will change

Fm. 3.—The unidirectional stepping stone migration mode of Example 1.

along the course of an ocean current providing variation in selection para-
meters. Set D = diag [d1, d2, . ., d] (i.e., the off diagonal entries are equal
to zero and the entries on the diagonal arc as specified), then p (MD) > 1 if
and only if either (1 — i)d1 1 for some i or the largest positive solution A of

.11 (A —(1— cx)d) = c ]J d. (which is greater than max ((1—

1 -a

1 -cx

1-a

1-cc
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exceeds 1. We shall return to this example later to discuss homing propen-
sities and environmental heterogeneity.

4. CONDITIONS FOR PROTECTION WITH TEMPORAL SELECTION VARIATION

(i) Deterministic (cyclic) variation

Temporal cyclic variation for a system of n demes through p seasons
can be represented as selection migration interaction for a system of np
demes without temporal variation. In particular, the backward migration
matrix assumes the form

0 O...0 M
M 0...0 0

M= 0 M : : (14)

where M is the backward migration matrix per season for the system of n
physical demes (actually we may let M vary with the seasons). The selection
transformations are analogously transformed into an np vector

<f'(x'), (15)

where the supercsripts designate the season. This provides an np x np
diagonal matrix D of marginal viabilities so that protection of an allele can
be decided based on p(Jb). Unfortunately, there is no way to reduce the
dimensions of this problem in general.

If the actual migration matrix is constant in time, then the principal
left eigenvector of M can be immediately constructed from the principal

left eigenvector of M (i.e., = I , ..., ), the n-fold catenation of ).

This provides that in circumstances where the principal left eigenvector of
M is available (e.g., (8) and (9)), sufficient conditions for protection (7)
under cyclic temporal variation are readily accessible.

(ii) Random temporal variation

The question of protection is somewhat less tractable under random
than deterministic variation. Most studies of random variation in spatially
varying environments have assumed either total panmixia as accompanies
the Levene migration mode or symmetric migration rates as accompany the
Deakin migration mode (e.g., variation in selection in Gillespie (1973, 1975)
and in migration in Christiansen (1974)). We specialise to the seed pooi
model in order to illustrate the formal protection criterion under constant
selection intensities contrasted to cyclic variation with particular reference to
different modes of selection in populations. We then present a variant model
appropriate to populations with seed poois which affords a concise protection
criterion under random variation in selection intensities.

The simplest problem involving seed poois entails no selection during the
dormant stages as postulated by Templeton and Levin (1979) and constant
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selection intensities with respect to time. In this case protection depends
on the spectral radius of a matrix of the form

fi 132 fi3...fi d 0 0100 01.
0 1 0

MD= 1• 1•

o i o o...o•i
fJ1d 132 133 . . fin
d 00 00 10 0
0 0 1 . 13, = 1. (16)

0. . . .010
The parameter d reflects the selection on the germinated seeds (first age
class) while the dormant age classes experience no selection. The culling
of two seed age classes to form the germinating cohort of the next generation
and the simultaneous reindexing of the age classes with the passage of time
is specified by M. It is apparent that protection hinges on whether d is
greater than or less than one, but the rate of convergence is a more subtle
matter which we shall return to below.

A more realistic formulation allows temporal variation in the selection
intensities. This may occur in a deterministic cyclic manner perhaps in-
duced by climatic cycles or induced by man (e.g., crop rotation). The
canonical example for cyclical temporal variation is seasonal variation for
multivoltine insects, but this example may not be appropriate for seed
pools. In these cases the criterion for protection is

d 0. .0
Ip 01

p ( fl 1 >1 = 1 (17)/ .00 ...1
for a p generation selection cycle.

Random variation in selection intensities may be more appropriate than
deterministic variation because many facets of environmental variation are
unpredictable. Under these circumstances the criterion for protection is

MDO)hmn)) >1. (18)

The positing of (18) as the criterion for protection tacitly assumes that
the limit exists. For cyclical variation in selection intensities as in (17)
it is quite easy to show that the limit exists and is equal to the nth root of
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the left-hand side of (17), thereby providing the same criterion for protec-
tion. However, it is quite possible to construct temporally varying selection
regimes (neither cyclic nor random) such that the limit does not exist.
But quite generally for random temporal variation (e.g., selection intensities
following a stationary distribution suffices) the limit in (18) does exist as a
deterministic limit thereby affording a meaningful protection criterion.

A more general formulation of the seed pool problem which may also be
appropriate for other interpretations of distinguished deme migration allows
selection during the dormant stages. This case was not treated by Temple-
ton and Levin and their analysis does not extend to encompass it.

The simplest case has temporally constant selection intensities manifest-
ing only two selection regimes: one for the seedlings and one acting on the
dormant seeds. In this case the criterion for protection is (17) where D
has the form

d1 0 . 0
o d2

(19)

0
o . . 0d2

A more general formulation allows D to be a general diagonal matrix

d10 0
o d2

D= . d
(20)

00. . Od,,
This stipulates that the selection intensities depend on the number of years
that the seeds have remained dormant which may be difficult to interpret in
the context of seed pools, but is quite reasonable for other distinguished deme
interpretations.

Interpretation of systematic or random temporal variation follows analo-
gously to (17) or (18) where the D() have the form (19) or (20).

Remark. The above cases have assumed that the backward migration
matrix M is constant in time. This may not be a reasonable assumption,
especially if the total seed production fluctuates greatly from year to year.
The incorporation of temporal variation in the backward migration matrix
is achieved by superscripting the migration matrices as well as the selection
regimes in (17) and (18) to allow for temporal migration variation.

For the case of temporally constant selection intensities (16) it is of interest
to ask how rapidly the fixation state is approached (if stable) which corres-
ponds to calculating a Malthusian parameter for the rate of decrease of the
rare allele. To address the problem it is convenient to consider the matrix
product in (16) in the order DM. The Malthusian parameter is the log of
the spectral radius of the matrix DM which is the log of the largest positive
root of

—A+dflA=0. (21)
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With the definition
G = (22)i=1

Templeton and Levin noted that the Malthusian parameter is approxi-
mately

[d—1]/G (23)
for weak selection, i.e. for d close to I.

For convenience we study the spectral radius of DM rather than its log.
From (21) an approximate spectral radius is given by

[1+ (n_1)(1_d)]/[i+ 1)] duIG (24)

for weak selection. Thus we see that C which gives the mean length of
dormancy serves to alter the convergence rate to that corresponding to
temporal variation with selection acting once every C generations in accord-
ance with (23).

How does the left-hand side of (24) bound the spectral radius? For weak
selection our approximating root is an upper bound on the spectral radius of

DM, in particular d> is a sufficient condition for this to be true

(if d < 1, which assumes stability).
Example. Consider the migration pattern (3) with c2 = = ... =

c, = 0 and selection acting only on the first (immigrant) deme. This is
appropriate for the study of plants with seed pools where selection acts only
on the germinated plants and not on the dormant seeds. Under a slight
alteration of our hypotheses we have a concise result on protection.

Instead of a finite-lived seed pool as is characterised by a backward
migration matrix M, we postulate an infinite-lived seed pool with the
germination probability of age classes decaying exponentially with age.
In particular, we assume that one half of the germinating seeds came
from the current plants and (l/2) of the germinating seeds came from
the ith age class in the seed pool (the current plants are the first age class).
The basic transformation equation is

x = +xidi+ (i)Jx (25)

where the prime (') designates the next generation. Under the circumstance
that the marginal selection coefficient d1 varies randomly in time the sharp
criterion for protection is

E[ln (1+d1)—ln (2)]>0 (26)

where E[.] designates the expected value (we show this in the appendix).
It is elementary to show that

E[ln(d1)]  E[ln(l+d1)—ln(2)]  E[1+1] —1. (27)

Therefore, the sharp criterion for protection in an infinite-lived seed pooi
lies between the criteria for pure spatial variation (Levene, 1953) and pure
temporal variation (Deakin, 1966) buttressing the notion that seed pools
manifest a cross between spatial and temporal variation.
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We also note that this formulation of seed pools can be posed as a two-
deme model recognising the active plant environment versus the dormant
seed phase.

We remark that the assumption that there is no selection in the seed pooi
is not intrinsic to the above calculations, but rather the assumption that the
same selection forces are acting on all age classes in the seed pooi during a
given time span. The above calculations are appropriate employing the
ratio of the marginal viabilities in the active to dormant demes if the result is
adjusted by the expected value of the log of the marginal viabilities in the
dormant age classes.

The first row of the backward migration matrix (3) with the specialisa-
tion 62 = c5 = ... = c, = 0 corresponding to plants with seed pools is
based on the distribution of the number of years that seeds remain in the
seed pool before germinating. The number of years until germination is of
course a random variable, but may depend on the genotype of the seed;
perhaps at loci independent of the locus where selection is being studied.
Under this circumstance the time until germination of seeds in the seed
pooi is given by the compound distribution resulting from the probability of
the background genotypes and the duration of dormancy conditioned on the
background genotype.

(a) Environmental heterogeneity. For some cases of these distinguished deme
migration patterns we can consider the problem of a partial ordering of en-
vironments with respect to heterogeneity in the sense that if environment
£' is an appropriate average of environment e, then it entails less hetero-
geneity and the prospects for protection of alleles are lessened (cf. Karlin,
1980). We highlight two such cases.

Case (1): We turn our attention to the unidirectional circular stepping-
stone pattern of example 1 which is a specialisation of the distinguished
emigrant deme model. (Reversing the direction of the migration makes it a
special case of the distinguished immigrant deme model and all the attendant
arguments follow mutatis mutandis.) Since M is doubly stochastic, we shall
consider more heterogeneous environments defined by

'= T,'= Tt (28)

where the matrix T is doubly stochastic in accordance with Karlin (1976)
and s and t give the relative viabilities of the two homozygous types in
the respective demes. We show in the appendix that this is indeed an
appropriate concept of environmental averaging in the sense that prospects
for a protected polymorphism are less under the averaged selection regime.

Case (2): We specialise (6) to the case with r = 0 for all i (i.e., the entries
on the diagonal of M are equal to zero). For an environmental averaging
process we again consider ' = T, I' = Ti where T is doubly stochastic.
In this circumstance the notion of environmental average is not the one
posited by Karlin (1976) since M is not doubly stochastic.

However, under the further assumption that and are monotone in-
creasing vectors (the marginal viabilities specified by d form a decreasing
vector), the prospects for a protected polymorphism decrease with a more
uniform (less heterogeneous) environment. In contrast, if the components
of and are decreasing (d is increasing) the prospects for protection
increase with a more uniform environment.
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(b) Generalisations (clustering). We have discussed above the method of
converting p seasonal temporal variation superimposed on an ii age-class
seed pool into an np deme migration problem. In particular, we noted that
the left eigenvector for M (14) was as accessible as the left eigenvector for M
and hence sufficient conditions assuring protection are available. We
consider some other extensions.

Uniform migration among age structured populations. If all age classes
of a population subdivided into Ic demes experience total panmixia (weighted
by the constant relative sizes of the demes), then the migration/aging
process can be represented as a kn x Icn matrix which is the Kronecker (ten-
sor) product of the underlying Levene and distinguished deme migration
structures

m1M m2M ... m,M m — 1
m M m2M

—

(29)

M is given in (3).
m1PvI m,,jvI

This model is appropriate for the study of seed pools in subdivided popula-
tions since although there is no migration among the dormant stages, the
lack of selection during dormancy and rank one migration structure make
the migrations during dormancy superfluous (a single migration entails
total mixing).

If the overlying spatial migration structure is Deakin or in fact any
structure for which the left eigenvector is known, the left eigenvector for the
composite matrix is of course immediately accessible, but interpretations in
terms of the seed pool model are more tenuous.

5. Discussiorr

The recognition that demes in a subdivided population will assume
different roles relative to the genetic structure of the population as a whole
has led to the formulation of several distinguished deme population struc-
tures emphasising various ways in which these different roles may be mani-
fested. Besides providing insight into the behaviour of spatial genetic systems
from the behaviour of extreme cases, they are also descriptive of circum-
stances governing age structured populations. In particular, the life his-
tories of many annual plants whose seeds experience a variable dormancy
period could be described by selection-migration structures of this nature.
They are also related to the Leslie matrices employed in demographic studies,
in particular, the question of growth versus extinction of an age-structured
population can be reduced to the question of protection of an allele with a
distinguished deme migration structure. We emphasise several facets
pertaining to these distinguished deme migration structures.

(i) Protection

Conditions assuring the maintenance of a polymorphism are of interest
because of the pervasiveness of polymorphism in nature and have been
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studied by many authors (see the reviews by Felsenstein, 1976 and Hedrick,
Ginevan and Ewing, 1976). In this paper we provide concise sufficient
criteria for protection for several of the models, see formulas (7-9), (24), (27).
The sharp criteria governing protection are also available for all of the
migration structures we consider (e.g. formulas (11), (12), (13a, b), (17),
(18), 26)).

(ii) Temporal variation

Variation in selection intensities will obviously increase the complexity
of the problem. In the case of deterministic cyclic variation a concise
formulation of the problem is available and for the specific model correspond-
ing to age-structured populations essentially the same sufficient criterion
for protection is available as in the case of temporally constant coefficients.
Random variation in selection intensities leaves the problem less suited to
analysis, although still tractable but an analogous formulation of the seed
pooi problem which has equal biological justification allows a very concise
sharp criterion for protection (e.g., see (17), (18), (24), (26)).

(iii) Clustering

The superposition of temporal variation on distinguished deme migra-
tion resulted in a "migration" matrix which is the Kronecker (tensor)
product of the migration matrices corresponding to distinguished deme
migration and temporal selection variation (see (14)). Superimposing spatial
variation and migration on age-structured populations produced migration
structures represented by the Kronecker product of the geographic and age-
structure migration matrices (see (29)). The tensor product structure simpli-
fies consideration of many questions, especially sufficient conditions for pro-
tection. There are also many cases where pure migration can be broken
down to a hierarchy of levels which can be represented as the Kronecker
product of lower dimensional migration matrices rendering analyses more
tractable.

(iv) Environmental heterogeneity

The question of degree of environmental heterogeneity and the prospects
for protection was considered for some of the distinguished deme models.
In the case of unidirectional stepping-stone migration the notion of a more
averaged environment given in Karlin (1976) indeed provides less prospects
for maintenance of a polymorphism. However, for the distinguished deme
model precluding the possibility of individuals remaining in their original
habitat after migration, there are diverse possibilities depending on the
nature of the selection regime. If the selection regime represents a monotone
dine in selection intensities, then an averaged environment provides greater
or less prospects for protection depending on the direction of the dine.
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APPENDIX A

(Proof of necessity and sufficiency of (11) and (12)).
Theorem. Let C be an irreducible nonnegative matrix of the form (10). Then

p(G) > 1 fand only feither (let x1 = y)
 1 for some i (A.1)

or

y <1 for all i and y + k , >1 holds. (A.2)
k=2

fl(1—y1)

Proof. (Sufficiency). Where condition (A. 1) applies, sufficiency follows
from an elementary characterisation of the spectral radius for a non-negative
matrix (see, e.g., the appendix to Karlin and Taylor, 1975).

Let = (x1, x2, ..., x) be a right positive eigenvector for A0 = p(G)
so that

— Pk+1 —Xk÷1—Xk isP—
2OYk+1

or
— Bk+j ,_IXk÷j — X1 1%, — 1 ... fl

k+ I

where B1 = 1, R1 = 1 for convenience and
k k

Bk = H /3, Rk = H ('oYi), k  2. (A.5)i=2 i2
Expressing the eigenvector equation for the component Ic = 1 leads to the
implicit formula

fJI3
k (A.6)

I1 (o—)i=2
provided x1>O. Observe that

Rk(2)= k
1

n (.%—y)i= 2
decreases convexly from infinity to zero as A increases from max y to .

Hence, in the circumstances of y < 1 for all i, A0 is the unique solution
of (A.6) exceeding max y which by (A.2) and (A.6) exceeds 1. We1 in
can calculate Xk, Ic 2 from (A.4) normalising x1 = 1. On account of
the foregoing fact, we derive easily the relations of G = A0x and accordingly
A0 = p(G).

(Xecessity). If p(G) >1 and (A.1) does not apply then indeed (A.6)
holds with A0 = p(G) > 1 implying the necessity of (A.2).

The proof for (13) follows mutatis mutandis considering the left princi-
pal eigenvector.



166 SAMUEL KARLIN AND R. B. CAMPBELL

(Proof of necessity and sufficiency of (26)). The transformation (25) corres-
ponds to a census time at germination. The question of protection is more
accessible from the transformation

= (A.7)

which corresponds to a census time at seed set (before migration in the
spatial interpretation). This equation (A.7) suggests introducing the
variable

=jl (A.8)
for which

= [d1+]. (A.9)

This equation provides through iteration

= (ii1 ((dç+ 1)))

where the superscript designates the generation. Hence protection ensues if

E[ln(1+d1)—ln(2)]>O (A.11)

which is (26) as was to be shown.
(Proof that an averaged environment (28) provides less prospects for protection for

the migration pattern of Example 1.) We show that (28) provides a useful con-
cept of environmental averaging for the migration pattern of Example 1.
The specialisation n = 1 —d, p. = of (13) for this migration pattern pro-
vides that p (MD) > 1 if either

(1—c)d1  1 for some i (A.12)
or

(1—c)d<1 for all I and 2 >1 (A 13)

where A is the largest positive solution of

1(2(1d1) = oc'fld1. (A.14)

The averaging criteria (28) provide that the marginal viabilities satisfy

t.. or (I=T(T'. (A.15)j = i ' d \4') \41
Thus we shall prove if p(MD) 1 then p(MD') 1 where D = diag [d]
and D' = diag [4'] as specified in (28) where T is doubly stochastic.

For the proof we assume hereafter

p(MD) 1. (A.16)

It is known (by virtue of the concavity of the log function) that

fl a fl a when a' = T A.17)
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with T doubly stochastic, and strict inequality prevails unless the elements
of {a} and {a'} are identically a fixed constant or T is a permutation
matrix. Invoking the fact (A.17) we deduce under the relationships (28)
that

fl d = 1
< = fl d, (A.18)1=1

i=1(Ti) 1_Id1 1=id,
carrying strict inequality provided T is not a permutation matrix and d
is not a constant regime.

Consider the situation where

(1—o)d  1 for all i (A.19)
as consistent with the assumption p(MD) 1 equivalent to the conditions
(11). Since

= <(T)1, i = 1, 2, ..., n (A.20)
(T
\. d11

it follows that

(1—cc)d<1 for all I. (A.21)

Observe that for 2>(1—o) max d1 and e = (1, ..., 1) then

U = E11 (T()e—(1—o)d)) (2—(1—c)d1) (A.22)

by (A.17). We observed in (A.20) that d<(Td) and the relations (A.17)
and (A.22) together entail

fi (—(1 —cc)d)> fl (2—(1—)(Td)1)  [J (A—(1—)d). (A.23)

The conjunction of (A.18) and (A.23) show that for A = p(MD),

fl (20—(1—oc)d)  ]J i0—(1—)d1) = cc fi d1>c fl d. (A.24)

We infer from (A.24) that the equation

(2—(1—)d;) c' (A.25)

is satisfied for A' = p(MD') <p(MD). The proof is complete.
(Implications of the average (28) with no homing.) We consider the special

case of (6) with r 0. Let

= fI P,, i 1, P0 = 1 and D, = kUl dk, (A.26)

then A-protection, that is p(MD) >1, cf. (13b), occurs if and only if

a>1 where a = qP_1D1. (A.27)

44/2—B
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Consider an environment induced by the marginal selection parameters
{d'1, d;, ..., d} defined from the parameters {d1, d2, ..., d} in (28).
Note that

(A.28)=td =id1
because T is doubly stochastic. It is an elementary mathematical result that
if {d1,Jj (d decreases), then (cf. A.l8)

 D, i = 1, 2, ..., n. (A.29)

These relations applied in the presence of condition (A.27) establish that
for the migration pattern (6) with r 0, the phenomenon of protection of
the A-allele is enhanced with increasing environmental heterogeneity (in the
sense of (28)) provided the selection gradient is monotone increasing. For
the pattern d1 the inequalities of (A.29) are reversed and the prospects of
A-protection are reduced.
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