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SuMMARY

Populations undergoing selfing, outcrossing and apomixis were studied. Geno-
typic transition equations were established which allow the properties of
equilibrium populations to be discussed. Particular attention was paid to the
continued maintenance of heterozygosity. It was found that apomixis has no
effect on the maintenance of polymorphism in species which otherwise out-
cross, but in species which partially or completely self, the possibility of the
selective maintenance of balanced polymorphism was enhanced.

l. INTRODUCTION

GAMETOPHYTIC apomixis or agamospermy, asexual reproduction through
seed formation, is widely distributed in higher plants. Nygren (1954, 1967),
for example, listed over 250 species belonging to some 22 families which
reproduce wholly or partly by agamospermy. Because of its wide taxonomic
distribution, and because of its close relationships with both hybridization
and polyploidy, agamospermy has been a continuing, and often controversial,
focus of experimental research in plant evolutionary genetics (reviews in
Stebbins, 1941, 1950; Gustafsson, 1946, 1947a, b; Battaglia, 1963; Grant,
1971). However, there have been few theoretical studies in this area.
Asher (1970), Nace, Richards and Asher (1970), and Templeton and
Rothman (1973) recently developed models for the analysis of partheno-
genetic animal populations but analogous models for plant populations are
still lacking.

The aim of this series of studies is to overcome this deficiency and to
develop the appropriate deterministic models to study the effects of facul-
tative apomixis on the genetic structure and evolutionary potential of plant
populations. In the first paper we restrict our attention to single locus
models.

2. THE BASIC MODEL

We consider a single locus in a diploid species with an arbitrary number,
say k, of alleles. We take the relative frequency of homozygote

4;4; (1 £i £ k) in generation n to be f{ and that of the heterozygote
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Ayd; (i #j) to be 2f{. Further, we take the relative frequency of the
ith allele in generation z to be p{™ with

> = 1.

i=1
We assume that in the population under consideration there is a constant
probability, ¢, of agamospermy, a constant probability, s, of selfing and a
constant probability, ¢, of random outcrossing (¢c+s+¢ = 1). We also
assume that all apomictic progeny are genetically identical to their maternal
parent; that is, autosegregation (Gustafsson, 19474) is absent. Finally, we
assume the population is large enough for random fluctuations in gene and
genotypic frequencies to be unimportant.

We need hardly point out that this model is grossly oversimplified. It
is unlikely in practice that the proportions ¢, s, ¢ are independent of geno-
type or that they hold uniformly over the whole populations. We might
also expect these proportions to change over time. The present model is
offered as a first step in the analysis of a complex situation. We believe that
even this model has merit in providing a qualitative description of the
behaviour of apomictic populations.

Under this model, recurrence equations relating genotpic proportions in
successive generations are as follows:

SE = o+ [0 +4 (T I0)] + (TS0)

S0 = P3P+t (TAP)TSm) 4 v
or alternatively,
£ =( )f P+ p[(s/2) +1p"]
@

f(n+1) — ( )f(n)+tp(n) (n) i ;éj
where

(") = Zf(")

It can be easily demonstrated from (1) or (2) that the gene frequencies
remain constant over time, as we might expect since there are no directed
forces such as mutation or selection acting on the population. However, the
genotypic proportions change over generations until an equilibrium is
reached. The general n-step formulae for the change in genotypic
frequencies are as follows:

1P = (c+ S ros {1- (e g)"}[(s/z)p,-ﬂp?] /[1—c— 5]
Q= (c+ ;)"f§?)+ {1— (c+ Es)"} lPin/[l—C— %]

where f{* and f{{’ represent the initial frequencies of genotypes 4;4; and
A4, respectlvely, and

A3)
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k
pi= 3 fiP foralln.
=1

At equilibrium (as n-» ), we have

i = p3+SP¢(1—pi)/(2—2c—S)} @
fi7? = 2tpip;l(2—2c—s).
The above results can also be expressed in terms of the coefficient of in-

breeding, F, which is the probability that an individual carries genes
identical by descent. For this model, the general n-step expression for F is

F® = <c+ ;)n F(°’+s{1— (c+ Es)n}/(2-—2c—-s) )

where F(® is the inbreeding coefficient in some initial reference population.
At equilibrium, (n— o), (5) above becomes

F®) = 5/(2—2c—s) (6)
and we may write (4) as

fflw) = p’2+p’(1__pl)F(oo) (7)
[ = pip(1—F)).

3. IMPLICATIONS OF THE BASIC MODEL

An important issue here is the effect of partial apomixis on the levels of
heterozygosity maintained in plant populations, given various assumptions
about the levels of self- and cross-pollination and the initial composition of
the population. Table 1 gives the limiting frequencies of heterozygotes
expected at a diallelic locus (k = 2) for a range of values of the mating

TasLE 1

Expected proportions of heterozygotes in an equilibrium population (n—>0) for various values of ¢ (level
of agamospermy), t (level of outcrossing) and p (initial gene frequency)

Gene frequency (p)

Level of Level of A

r )
agamospermy (c) outcrossing (?) 0-10 0-20 0-30 0-40 0-50
0 0 0 0 0 0 0
0-10 0-033  0-058 0076 0-078  0:091
0-50 0-120 0213 0280 0-320 0333
0-90 0-171 0302 0-397 0-455 0474
1-00 0-180  0-320 0420 0-480  0-500
0-10 0 0 0 0 0 0
0-10 0-036  0-064 0-084 0-096 0-100
0-50 0-129 0228 0-300 0-343  0-357
0-90 0-180  0-320 0-420 0-480  0-500
0-50 0 0 0 0 0 0
0-10 0-:060 0-107 0-140 0-160 0-167
0-50 0-180  0-320 0420 0-480  0-500
0-90 0 0 0 0 0 0

0-10 0-180 0320 0420 0480  0-500
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system parameters, ¢ and ¢, and of p, the initial frequency of the less frequent
allele.

The values of f{3’ in table 1 emphasise three main points. First, in
populations which practice mixed agamospermy and random outcrossing
(¢c+¢t =1; s = 0), the expected equilibrium levels of heterozygosity are
identical to those expected in a fully random-mating population regardless
of the value of ¢ {(given ¢ ¢ 1). That is, the level of agamospermy does not
affect the genotypic composition of an equilibrium population. It does,
however, dramatically affect the rate of approach to equilibrium. Fig. I,
which shows changes in the proportion of heterozygotes over time for a

population initially composed entirely of heterozygotes (f(9 = 1) for
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F1c. 1.—Change in heterozygosity with time assuming initial heterozygosity is 100 per cent
for (a) species practising mixed outcrossing and agamospermy (s = 0, c+¢ = 1) and
{(b) species practising mixed selfing and agamospermy (¢ = 0, c+s = 1).
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various combinations of ¢ and ¢, illustrates this point well. In particular, it
emphasises as expected that random-mating populations reach Hardy-
Weinberg equilibrium in one generation, but that this equilibrium is
reached more slowly with partial apomixis, and the higher the level of ¢,
the slower the approach to equilibrium.

Second, in species which reproduce via mixed agamospermy and self-
pollination, the limiting state consists solely of the two homozygotes in the
same proportion as the original gene frequencies. No heterozygosity is
retained in the equilibrium population. This conclusion holds regardless of
the relative magnitudes of ¢ and s provided ¢ = 0. Here again, however,
apomixis does affect the rate of approach to equilibrium.

Third, in species or populations which can reproduce via all three
reproductive pathways (apomixis, selfing, or outcrossing), the level of
heterozygosity is primarily determined by the relative magnitudes of selfing
and outcrossing components. That is, by the ratio s/(s+¢) = s/(1—c¢).
For example, the expected heterozygosity in a population with ¢ = 0-90,
s = 0-05, t = 0-05 is identical to that in a population with ¢ = 0, s = 0-50,
t = 0-50. In other words, the imposition of facultative apomixis on a
species practising mixed selfing and random mating will not alter the
expected genotypic composition of that species provided the relationship
between the levels of selfing and outcrossing remains unchanged. As we
noted for the other cases, however, apomixis does significantly influence the
rate at which the equilibrium population structure is reached.

4. THE EFFECTS OF SELECTION

We will now consider the effects of differential selective forces on the
maintenance of variation in facultative apomicts. Following Workman and
Jain (1966) we will consider two models which differ with respect to the time
of action of selection and/or the stage of the life cycle at which genotypic
frequencies are determined.

(i) Model I

Under this model it is assumed that the genotypic frequencies are scored
just before mating and that all selection has occurred prior to scoring. Again
‘we consider a single locus with an arbitrary number, say £, of alleles and we
take the relative fitness of the genotype with alleles 4, and 4; to be w;;.
Recurrence equations relating genotypic frequencies in successive gener-
ations are given in the Appendix, together with an indication of how they
may be solved numerically. The numerical treatment follows that of
Weir (1970).

(i) Model IT

This model supposes that genotypic frequencies are scored soon after
mating and that no selection occurs between mating and scoring. The
genotypic transition equation are also given in the Appendix.

5. IMPLICATIONS OF THE SELECTION MODELS

In discussing the effects of selection on the maintenance of variation in
facultatively apomictic species, we will limit our attention to the simplest
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case of two alleles per locus. Under the assumptions of model I, the
equilibrium gene frequencies at a diallelic locus are, from (A.4) and (A.7),

_ (Wi2—w;)—(wi2—w)[s+Q2c+5)Fy,]/2
2wy, —wi1—w2)[2—s—(Q2c+5)F;,]/2 ’

i#j (®)
i,j=1,2

i

where, from (A.6),
_ 2W—(2—S)W12

- 2W—(2c+s)w12. ®)

12

A quadratic expression for the mean fitness @ is found by substituting these
expressions into one of the equations of (A.5), e.g.

W= W,

P1wit+ Pa{wia+ (Wi —wi)[s+(2c+5)F,,]/2}

so that
(1=c—)(Wy1+wzy— 2wy )W + {s(1—c—5)[W12(W11 +W22)[2— Wy W3]
+(1—5) (Wi = wi1Wa2) + c(c+S) Wiz + Wi wpo)}W
+(Q2c+5) 1~ c—)wia[W11waz —wi2(Wy 1 +w2,)/2] = 0. (10)

Under the assumptions of model II, the expression of equilibrium gene
frequencies for k = 2 are, from (A.9),

_ (W12 —Wjj)‘Flz(Wu"Wn)
2wy —wyi1=wy)(1—Fy3)

; (11)
ij=1,2
where, from (A.10),

_ 2(c+s)W—(2c+s)wy,

Fy; -
2W—(2c+s)wy,

(12)

and @ is given by (10) above.

Equilibrium phase diagrams (e.g. Fig. 2) first developed by Hayman
and Mather (1953) and used extensively by Workman and Jain (1966) and
Asher (1970) offer an effective means of illustrating the types of equilibrium
populations possible for various values of mating system parameters, and
relative viabilities. The areas marked 4 and B correspond to populations
homozygous for the alternative alleles. Area C represents populations which
contain heterozygotes but in a frequency lower than that in a random
mating population without selection (F>0). Further, area D represents
populations which contain more heterozygotes than expected in a panmictic
population in the absence of selection (F<0). Note that we are now using
the relative viabilities wi; = W;1/W12 and W3, = Wj,/W;,, and that atten-
tion is restricted to the overdominant cases (Wiy, W3, < 1). We do not
expect to have stable polymorphic populations in cases other than these
overdominant ones.

The formulae for the boundary curves can be derived by several methods.
For the boundary between regions C and D, the ‘‘ Hardy-Weinberg
curve, we re-write the transition equation (A.l) at equilibrium as
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5
Wl = wiy [fu'*‘ §f12+t(ffz_f11f22)]

g

Wy = Wi [fzz'*’ ;fxz'H(f%z "fufzz)] 13)

Wi2 [(1 - %)fn—t(f%z —fufzz)]- J

Setting f%, = f11/22 in these equations and eliminating @ = (2 —s)w;,/2
provides the required boundary

2(1 - wiy)(1 —wia) —s(1—wi w),) = 0. (14)

Note that this result (14) does not involve ¢ and is the same expression

derived by Hayman (1953) for mixed selfing and random mating species

(¢ =0, s+t =1). The position of the boundary between C and D is

independent of the level of apomixis, and depends only on s, wj; and wj,.

To find the boundary between 4 and C it is convenient to set p; = 1 in
(8) and @ = wy, in (9) to eliminate Fy,. This procedure yields

wf12

2wi1(1—wh1) = 2ewa2+2wiiwaa(1 = 1) —s(wi; +w35) = 0. (¢8))

When ¢ = 0 this reduces to the result given by Hayman (1953) and if w},
and wj, are interchanged, it provides the boundary for regions B and C.
These boundaries do depend on the level of agamospermy then.

Phase diagrams for a range of combinations of mating system parameters
are compared in fig. 2. Two points are of note here. First, the imposition
of apomixis on a species which practises mixed selfing and random mating
so that the ratio of s/t is unaltered, increases both the range of selective
values for which the population will be polymorphic and the level of
heterozygosity in a polymorphic population (compare figs. 2D and 2B).
Second, for a given level of apomixis, the maintenance of variation is
determined primarily by the level of selfing in the population (figs. 2A, B, C).

For species that practise mixed agamospermy and selfing only
(t =0, ¢c+s = 1), it is necessary to go back to the genotypic transition
equations to establish equilibrium frequencies. For model I, the great
simplification in these equations is seen immediately by setting ¢ = 0 in
equations (13). Equilibrium genotypic frequencies can be found with little
difficulty:

WS S )
Ju = *4%[“’12(1 ‘“2‘) —sz:l

(16)
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F1G. 2.—Phase diagrams showing range of equilibrium populations for a diallelic locus for
t£0. w’;; and w’ye represent the fitnesses of the two homozygotes relative to the heterozygote.

In the phase diagram, the boundary for regions C and D is as before.
For regions A and C, the boundary is wi; = 1—s/2 = (¢+s)/2>%, and
for regions B and C, it is Wy, = (c+s)/2>%. In the pure selfing case, the
corresponding boundaries are wj; = 4 and wj, = 4 (Hayman, 1953).
Evidently the imposition of apomixis on a species that normally reproduces
by selfing increases the prospects of maintaining a stable polymorphism at
a diallelic locus. Further, the higher the level of apomixis, the less restrictive
are the conditions for the maintenance of variation in this class of species.
A similar development can be given for model II. Examples of equilibrium
phase diagrams for such species are given in fig. 3.

The other group of species of special interest are those which practise
mixed agamospermy and random mating (s = 0, ¢4+¢ = 1). The theory
leading to equations (8), (9) or (11), (12) is still appropriate and s = 0
may be substituted directly. Hardy-Weinberg populations are now
possible only if wi w5, = 1, which is a result known for random mating.
Within the region wi; < 1, wj, < 1, the existence of apomixis has no
effect on the maintenance of polymorphism. Heterozygotes will be main-
tained all over this region (which can thus be labelled D) for all ¢, ¢ com-
binations provided s = 0.
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Fic. 3.—Phase diagrams for species which practice mixed selfing and agamospermy (¢ = 0,
c+s=1). w’y; and w’p, represent the fitnesses of the two homozygotes relative to the
heterozygote.

6. DiscussioN

The wide taxonomic distribution of agamospermy and the multiplicity
of mechanisms underlying asexual seed formation (Gustafsson, 1946;
Stebbins, 1950), strongly suggests that this mode of reproduction has arisen
independently on many different occasions in higher plants. This suggestion
raises two distinct, but obviously interrelated, questions:

(i) Under what circumstances will apomixis become established in a
plant species ?

(ii) Once apomixis is established in a species, what is its adaptive signi-
ficance and, in particular, what are its effects on population structure?

The models presented here do not encompass the evolution of apomixis.
Consequently, we will not consider the first question further, except to point
out that Lloyd (1977) and Maynard Smith (1977) have recently described
and discussed simple models of the evolution of mating systems, including
agamospermy.

With respect to the second question, strongly contrasting viewpoints have
appeared in the literature regarding the evolutionary potential of apomictic
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plant species or species complexes (Grant, 1971). One viewpoint is that
agamospecies or agamic complexes have limited evolutionary potential
(Darlington, 1939; Stebbins, 1941, 1950; de Wet and Stalker, 1974).
From this viewpoint, the principal, or indeed, only, adaptive function of
apomixis is that it restores the fertility of individuals that would otherwise
be sexually sterile as a consequence of polyploidy and hybridisation.
Further, once apomixis becomes established in a species, there is the pos-
sibility, if not probability, that it will increase in frequency until the obligate
condition is reached. Once this happens the species will lose its capacity
for future evolution. This viewpoint was perhaps summarised most
succinctly by Darlington (1939) who wrote ‘ apomixis is an escape from
sterility, but it is an escape into a blind alley of evolution .

The alternative viewpoint is that apomixis does not reduce, and in
favourable circumstances may enhance, the evolutionary potential of plant
species (Gustafsson, 1946, 19474, b; Clausen, 1954; Heslop-Harrison, 1961;
Rollins, 1967). In this case, emphasis is given to the fact that most species
are facultatively apomictic and that sexual and asexual reproduction may
coexist indefinitely in an adaptive equilibrium. Thus, from this viewpoint,
apomictic species retain their capacity for sexual recombination and hence,
progressive evolution.  Further, agamospermy facilitates introgressive
hybridisation and the exploitation of hybrid vigour, particularly that arising
from linked blocks of genes (Clausen, 1961). Finally, gametophytic
apomixis facilitates the rapid and indefinite production of highly successful
gene combinations, permitting the rapid colonisation and exploitation of
available habitats (Clausen, 1954).

The present study confirmed the expectation that obligate apomixis will
lead to a loss of variation and evolutionary plasticity. However, it also
argued strongly against the viewpoint that apomictic species, if they retain
any capacity at all to self or outcross (¢ # 1), necessarily represent * evol-
utionary dead-ends ”’. It is possible to maintain variation under some
circumstances in all populations for 0 = ¢<1.

A feature of the present results was the finding that facultative apomixis
has no effect on the conditions for the maintenance of heterotically balanced
polymorphism in species which otherwise outcross. In contrast, the im-
position of apomixis on species practising strict selfing, or mixed selfing and
random mating, enhances the possibility for the selective maintenance of
balanced polymorphisms. Yet, most facultative apomicts appear to practise
mixed agamospermy and random mating. A few practise agamospermy,
selfing and random outcrossing, but no species has ever been reported to
practise mixed selfing and apomixis (Stebbins, 1950; Grant, 1971).

There are several possible explanations for the fact that apomixis appears
to be most prevalent in species where it appears to offer the least advantage
in terms of the maintenance of variation in populations. One is that selfing
is much more common in facultative apomicts than the previous limited
qualitative studies suggested. Another is that higher levels of variation
within populations are of little advantage in either the short- or long-term
evolution of a species and that, as suggested by Darlington (1939) and
de Wet and Stalker (1974), apomixis indeed serves only as an escape from
sterility. A third is that the real advantage of apomixis lies in its capacity
to ensure the survival of highly fit *‘ coadapted ’ gene complexes and the
maintenance of complex multigene polymorphisms. In this case, we would
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expect apomixis to be at a greater relative advantage in otherwise out-
breeding species than those which are completely or partially autogamous
because self-pollination itself leads to the maintenance of coadapted com-
plexes. Whatever the explanation, it is clear that there is a substantial
need for both quantitative experimental studies and further theoretical
studies in this area. The next paper in this series will consider the effects
of apomixis on the maintenance of variation at two loci.
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8. APPENDIX
(i) Selection model 1

For the general selection model I, we assume the fitnesses w;; to be
constant and independent of allelic frequencies. The recurrence equations
relating genotypic frequencies in successive generations are as follows:

f(n+1) = W {Cff:')+s [f(")+%; Z f(n)] +1 (Zf(n))Z}

(A1)
{f@+5fw+4;wa;fmﬁ,i¢j,

(n+ 1)
757 = gm

where the mean fitness @™ is such that
TG =1
ol i

Summing equations (A.1) provides the allelic transition equations

Pl = [( ) Z W,jf(") (m ( gs 1t Z W.;P§")>]/ m, (A.2)

As has been shown previously (e.g. Weir, 1970) all these transition
equations are simplified by the introduction of fixation indices F;; defined as
F(n) =1 f(")/p,")p("), i#j
so that
119 = o s+ 3 PR

I = p"pPUA—FP), i+#].

In a f-allele situation, this means that we have reparameterised
k(k+1)/2—1 genotypic frequencies as (k—1) allelic frequencies and
k(k—1)/2 fixation indices.:
The allelic transition equation (A.2) now becomes
P = PO (a3)
with mean fitness

B = pQEIp® — 3 pinigind
i

where p™ is the vector [pM ™ 5MF and Q@ the £ x & matrix with
p Pi’ P27 > Px
elements

Qf?) = Wy
Q?") wij+ (Wi —wi)[s+Q2c+ S)F(")]/Z (A4
# Q(ll)

Il
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The marginal mean fitness W™ is

wgn) = ZQUPEH)'
J
Equation (A.3) provides equilibrium conditions. If the absence of (n)
or (n+1) superscripts denotes equilibrium values, then we must have the
k relations

w; = w. (A.5)

A further equilibrium relation is found from the heterozygote transition
equations written with fixation indices

2c+s)w;; tw;;
[1" —ZW-—J pip1—Fy) = — Db

so that, for non-trivial equilibria (1>, >0) we have

_ ZW'—(Z—"S)W”

B 2W—(20+s)w,-j' (4.9

i

It is necessary that the mean fitness is bounded such that
- = S . .
w>(c+s)wy, WwW> (c+ 5) Wi 1 # ],

where the first of these relations follows from the homozygote transition
equations.

Evidently F§}", and hence Qg}'), are functions of allelic frequencies and
change over time. At equilibrium, however, there is no further change
and (A.6) allows the matrix Q to be expressed solely in terms of the mating
system parameters ¢, s, ¢, the selection coefficients w,;, and the mean fitness
@. In other words, the fitness matrix Q involves only one unknown, and
that is @.

The equilibrium equations (A.5) are solved by Cramer’s rule as

D;
P = = A7
p; 5D, (A7)
1]
where D; is the determinant of Q with the ith column replaced by 1’s. It
is necessary that the determinant of Q is non-zero

and that all D; have the same sign. Equation (A.7) now provides all
equilibrium allelic frequencies as functions of @, and this mean fitness is
found from any one of equations (A.5). In general, these equations must
be solved numerically. However, it is possible to obtain explicit expressions
for p,, F;; and @ in a number of special cases, for example, where all hetero-
zygotes have equal fitnesses or where there are only two alleles per locus
(Weir, 1970).
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(ii) Selection model IT
The genotypic transition equations are now

(n+1 (n)
f" )= wm if —(;.)( uf(")+l ;‘ il ll)

t

+ e (TS’

m+1) — € f » (A-8)
A Wil + =5 _(,,) Iw [P

+ W (21: w,-,ffi")(Z ijf(r:.'}), i#J.
As before, the mean fitness @™ ensures that
LYY =1,
i

and allelic transition equations are found by summing equations (A.8)
(n+1) = Z w; f(n)/w(n)

Once fixation indices are 1ntroduced, all the methodology used in model I
applies. All equations from (A.3) onwards hold, with the only modifications
being in the elements of the fitness matrix

QP = wy
! A9
Q(n) = WU+(W” ij)Fu(?)s i #j ( )
and in the equilibrium values of the fixation indices
Fy = 2(c+85)W—(2c+s)w;; P (A.10)

2W—(2c+s)w;;

Now, for a given set of selection coefficients w;; and mating system
parameters ¢, s, £, both models I and II have the same equilibrium allelic
frequencies and equilibrium mean fitness. Translation from one model to
the other is accomplished by the relation between fixation indices

Fi.in = [s+(26+s)Fij1]/2 (All)
where the subscripts I and II denote the model.
It should be noted that when ¢ = 0, all of the above theory generalises

that of Workman and Jain (1966) and reduces to that of Weir (1970) for
species that practise mixed selfing and random mating.
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