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SUMMARY

Hayman's (1954) analysis of variance is derived, both for the reciprocal effects
and the maternal effects models, without using progressive fitting of parameters.
It is shown that, apart from a minor modification, Hayman's analysis is
appropriate for detecting the various effects for which the analysis was devised.

1. INTRODUCTION

HAYMAN (1954) set out his analysis of variance of the full n x n diallel table
very briefly, with the main emphasis on applications. The analysis has been
criticised on two grounds. Firstly, the analysis appears to have been
calculated using a progressive fitting of the unknown parameters; in this
way, a truly non-orthogonal analysis of variance is made orthogonal, with
the component sums of squares summing up to the total sum of squares
(Kempthorne 1956). Secondly, Hayman's representation of the maternal
effects in the model on which his analysis is based has been questioned
(Wearden, 1964; Topham, 1966). It has been pointed out that Hayman's
model is a " reciprocal effects " model rather than a " maternal effects
model in the strict sense.

In this paper, we shall consider both these models and derive sums of
squares directly from the least squares estimates of the various parameters;
progressive fitting will not be used. This approach should serve to clarify
the points at issue.

2. THE RECIPROCAL EFFECTS MODEL

For simplicity, we suppose in the first instance that a single observation
has been made for each cell of the diallel table. As usual, we write Yrs for
the datum on an individual resulting from a cross between the rth line as
mother and sth line as father. The rth leading diagonal observation has
expectation

m + 2jr

and the (r x s) off-diagonal observation has expectation

iN +fr+j5 +Jrs +kr — k5+ krs.
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In this model
m = the mean of the inbred lines
fr = the genic effect of the rth line

21r8 = the dominance deviation for the (r x s) reciprocal sum (given that
an additive-dominance model is adequate)

21cr = the difference between the effects of the rth parental line used as
female parent and as male parent

2"rs = remaining discrepancy in the (r x s) reciprocal difference (i.e. the
krs represent interactions between parental effects and own-
genotype of the progeny effects).

These parameters are subject to the restraints

On the other hand, no restraints are imposed on the j3 which are defined
to be dominance deviations and not specific combining abilities.

The rS are further subdivided as

Irs l+lr+ls+lrs
where 1 = the mean dominance deviation

= the further dominance deviation due to the rth parent
1rs residual dominance deviation in the (r x s) reciprocal sum

with

lrO,lrsO,lrsO
and one further restraint on the 1rs

When introducing this subdivision of the r$' Hayman rewrites the
expectation of the rth diagonal as

m + 2Jr — (n—1)!— (n — 2)lr
instead of

m+2jr.

This revision of the model is a convenient computational device, easing the
derivation of the sums of squares corresponding to the 1r and l effects
respectively; these sums of squares are not affected by the change in model.
We shall not, however, use this device here.

By simultaneous estimation of all unknown parameters, taking due
account of the restraints, the following least squares estimates arc obtained:

th=
n

_Yrr_YJr
2 2n

2 )'..fl)'.
n(n—1)

2 = Cr+RrflYrr+Y. — J'•.
r

2(n—2) n(n—2)
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Irs = (yrs+ysryrryss2?r2?s —21)

= RC,.
2n

'rs (YrsYsr)4r4s
where

= ri Yrr, Y = Yrs, Cr = Yr = s1 Ysr' Rr = Yr. = s1 Yrs

(note that Hayman writes Yrr asyr).
The variances and covariances of these estimates are as follows, a2 being

the error variance, assumed to be homogeneous over cells.

2 2var or) = , coy (ir, i) = a
4n 4n

var(I) _1a2
n—i

______ 2
—

2var (1r) = a , coy (!r, 1) = a
4(n—2) 4(n—2)

2
— 2var(kr) = —i-a, COV(kr, k5) =

2n 2n

n—3 2 —(n—3) 2var (irs) = a , coy (irs, 1!rt) = a
2(n—i) 2(n—i)(n—2)

COV (?rs' Itu) = a2
(n—1)(n—2)

n—22 12 p p
var (krs) = a , COY (krs, krt) = a , COV (krs, k) = 0.

2n 2n

The sums of squares may now be calculated as follows. Firstly,

S.S. (1) t2(nl)
testing the significance of the average dominance effect, a significant result
implying that dominance is directional. The other sums of squares are
more difficult to calculate but may be found from general theory, as follows.

Suppose we have a set of n parameters 0, 02, ..., 0, constrained to add
to zero. We conveniently take the "first" (n-l) parameters as free para-
meters, with least squares estimates 0, 02, ..., 0?r1' these estimates being
obtained subject to the restraint. On inverting the variance-covariance
matrix, with the a2 omitted, of these estimates we obtain a matrix with
typical element irs (say). The sum of squares testing the significance of the
departure of the O's from zero is then

n—i n—i n—i
jrr0r2+ 1rsOrOsrl r1sl

The (n—i) x (n—l) matrix with (n—I) on the leading diagonal and (—1)
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elsewhere inverts to give a matrix with 2/n on the leading diagonal and 1/n
elsewhere. Hence the sum of squares testing the significance of the consistent
reciprocal effects is

n—i i n—i n—i
S.S.(!r)=2fl2 kr1s(flri flrisl

( n—i n—i

=2n2 1+
t, r1 r1

= 2n r1
The S.S.(jr) and S.S. (4) follow at once on replacing the (2n2) in the above
expression by (4n) and by 4(n —2) respectively.

The sum oF squares for a parameter group is equal to the overall sum
of squares when the parameter group is included in the full model less the
overall sum of squares when the parameter group is excluded from the full
model; this provides the easiest method for finding the S.S. (krs) and S.S.
(irs). Inspection of the normal equations reveals that the estimates of
reciprocal effects are independent of those for own-genotype effects, so that
the latter may be ignored when obtaining S.S. (krg). Moreover, estimates kr
are uncorrelated with estimates k,.5, so that S.S. (k,.) is the same irrespective
of whether the k,.5 are included or excluded. Hence

S.S. () = S.S. (all reciprocal effects)—S.S. (pr)

= (yrs — ysr)2 — s S ()
res 2

=2
r<s

The S.S. (4) are obtained in a rather similar way, using the all own-effects
sum of squares less the all own-effects sum of squares when the 1r8 are
excluded.

TABLE 1

Analysis of variance for reciprocal effects model

S.S. in
Parameter Hayman's

group notation d.f.

Jr — (n—i)

1 (n—1)2 b1 1

4(n_2)>2 (n—i)

irs +n(n—3)res

kr 2n c n—i

krs 2 1s d 4(n1)(n2)'<S
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Results are summarised in table 1. They are given in a form which
indicates the particular component tested by every sum of squares. How-
ever, when account is taken of the difference in notation, it will be seen that,
apart from S.S. (Ir), all the sums of squares are precisely those given by
Hayman.

Moreover, since estimates 1 are uncorrelated with estimates 4., and each
of these is uncorrelated with estimates trs' S.S. (1), S.S. (ir) and S.S. (irs)
may be added to give the sum of squares measuring all dominance effects,
identical with Hayman's (b) sum of squares.

Thus only S.S. (Ir) differs from the sums of squares given by Hayman;
his (a) sum of squares being the sum of squares for genic effects only in the
special case of no dominance. It has indeed long been recognised that on
Hayman's model the correct sum of squares for detecting genic effects is

Yr( Yrr)21h2

(identical with our 4 the "usual" sum of squares of the diagonal
entries. This sum of squares is, however, sometimes calculated but not
reported; it would he unusual to make up a diallel set of matings without
having first shown that the inbred lines differ significantly, so that the test
of significance on the diagonal entries is normally confirmatory only.

For simplicity we have assumed so far only a single observation per cell.
With z observations per cell, we may write Yrs for the total in cell r x s; our
formulae for the estimates must now, of course, be divided by zand if these
revised formulae are used all sums of squares in table 1 must be multiplied
by .

3. THE MATERNAL EFFECTS MODEL

In the reciprocal effects model, no maternal effect appears in expectations
for the leading diagonal. Hence it has been suggested that expectations be
written

E(Yrr) = m+ 2Jr + k,.

E(J'rs) = m+jr+j,+l+lr+ls+lrs+k. (r s).
This gain in biological realism is achieved at a cost, since in this model
terms corresponding to the kr8 do not appear, that is we are assuming no
interaction between maternal effects and own-genotype effects.

If we carry out the same procedure as for the reciprocal effects model
we find that the estimates of , 4 and 'rs are precisely as before, so that the
corresponding sums of squares are unaffected by the change of model.
The k,. are affected only in a trivial way; with a single observation per cell,
we now find

r RrCr

and the corresponding sum of squares is now written
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but this is identical with the sum of squares in table 1, both being

v (RrCr)2
2n

We can also calculate Hayman's (d) sum of squares, in the same form as
before

(Yrs+Ysr)2 — (RrCr)2
r<s 2 r 2n

Should the model fit, the corresponding mean square estimates a2; thus the
(d) mean square, when calculated for the case of z replicates per cell,
provides a test of the adequacy of the maternal effects model.

The only sum of squares affected by the change of model is S.S. (fr).
We now have, for one observation per cell,

— Yrr — y. — RrCrJr — _____
2 2n 2n

(n—i)(n+2) 2 —(n+2) 2var (ir) = 2 a , coy Or, .1) = 2 a
4n 4n

S.S. (yr) =-- d.f. = (n—i).n+2

This test for genic effects, free of possible maternal effects, is attractive but
conditional on the model; it must not be used if the (d) mean square comes
out significant.

A more realistic model would involve, in addition to maternal effects,
interactions between maternal and own-genotype effects; these interactions
being specified by parameters krr on the leading diagonal as well as para-
meters kr8. Here, however, we should be attempting to go beyond the
limits imposed by the diallel design; only (n-l)(n-2) such interaction
parameters are estimable, so that the introduction of krr parameters would
require biologically meaningless restraints on the icr,. and icrs. This can be
seen purely on genetical grounds. Suppose, for example, the (r x s) cell
showed a particularly striking dominance deviation, as estimated by

YrS+Y5 — Yrr—
Yss

With the diallel design, we could not be certain whether the striking effect
was due strictly to dominance rather than, say, some strong interaction
between genotype of F1 and maternal effect.

4. CONCLUSIONS

A completely realistic biological model for the diallel is attainable only
if interactions between maternal and own-genotype effects are absent. Thus
if the (d) sum of squares, which tests for the presence of such interactions,
proves to be significant, considerable caution must be exercised in interpreting
the results of the analysis. If, however, (d) is not significant, the maternal
effects model is biologically more appropriate than the reciprocal effects
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model. Hence genic effects should be tested using the procedure given in
section 3; other sums of squares will be the same on either model.
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