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SUMMARY

Two single-locus deterministic models are constructed for the maintenance of
genetic variability in localised plant populations. In the first model, it is
supposed that self-pollination is complete, heterozygotes are absent, and only
seeds disperse. Then the ploidy is arbitrary. In the second, it is assumed that
the plants are diploid, cross-pollination is total, and only pollen disperse.
Explicit conditions for a protected polymorphism are derived for each model in
the diallelic two-niche case. These conditions are simplified, displayed graphi-
cally, and discussed extensively for directional selection for different alleles in the
two niches. If the amount of seed dispersal is divided by two, the criteria for a
protected polymorphism in the self-pollinating scheme become identical to the
criteria in the cross-pollinating situation with no multiplicative dominance.
The restrictions that must be placed on the fitnesses for a protected poly-
morphism always become more stringent as the amount of dispersion
increases. If the dispersion rate is not very close to zero and the selection
coefficients are very small, the protection conditions reduce to overdominance
for the mean fitnesses in the habitat. Unless there is complete dominance,
protection always exists with fixed fitnesses for sufficiently low non-zero dis-
persal. For any amount of dispersion, there is always protection in the second
model if, in each niche, the fitness of the deleterious homozygote is less than
that of the heterozygote.

1. INTRODUCTION

THERE has been much interest recently in the maintenance of genetic
variability by the joint action of migration and selection. Considerable
progress has been made in deriving conditions for the existence of dines and
in relating the equilibrium gene frequency in the dine to the migration and
selection patterns, and some results concerning uniqueness and stability have
been proved (Slatkin, 1973; Fleming, 1975; Karlin and Dyn, 1976; Nagylaki,
1975a, b, 1976). Simultaneously, multiniche migration-selection models
were formulated generally, and conditions for a protected polymorphism
were given (Bulmer, 1972; Christiansen, 1974, 1975; Karlin, 1976).

In this paper, we shall study the maintenance of genetic diversity in
localised populations of annual plants. Most work on dines employs
continuous-time, continuous-space models because they are analytically
more tractable than the corresponding discrete schemes. Although the
continuous-time description is probably reasonably accurate for many,
perhaps most, populations with overlapping generations (Nagylaki and
Crow, 1974; Cornette, 1975), it is clearly inappropriate for annual plants in
the presence of substantial selection. Furthermore, the assumption of
continuous local dispersal underlying the treatment of dines is not well
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suited to plant populations occupying a small area and having considerable
dispersion of seeds or pollen.

We shall construct two single-locus deterministic models with discrete
non-overlapping generations, taking into account the reproductive and dis-
persal mechanisms of plants. In the first, we suppose that self-pollination is
complete. Then only seeds will disperse, and heterozygotes will be rapidly
eliminated unless there is strong selection in their favour. Since stable
polymorphism is guaranteed in that case, we shall study the effect of
dispersion on genetic diversity by assuming that only homozygotes are
present. The ploidy is clearly arbitrary. In the second model, we posit that
the plants are diploid, cross-pollination is total, and only pollen disperse.
We assume that at each location a certain proportion of the seeds in the first
scheme and pollen in the second come from the immediate neighbourhood,
while the rest come at random from the entire population. This is probably
a reasonable simplification for small habitat size.

In his discussion of the Levene model (Levene, 1953), Dempster (1955)
distinguished two modes of selection in subdivided populations. In the first
mode, employed by Levene (1953) and now usually called "soft selection ",
the proportion of adults in each niche is fixed. As observed by Dempster
(1955), this should be a good approximation if the population is regulated
within each niche. If it is total population size that is controlled, Dempster
pointed out that it is better to suppose that the fraction of zygotes in each
niche is prescribed, and the fraction of adults is proportional to the mean
fitness in the niche, a scheme now commonly termed "hard selection ".
Since plants compete for resources locally, it is plain that we should hypo-
thesise soft selection.

Instead of finding equilibria and investigating their stability, Levene
(1953) sought conditions required for the maintenance of polymorphism. If,
no matter what the initial conditions are, the population cannot become
monomorphic, we shall say there is a "protected polymorphism" (Prout,
1968). In general, a protected polymorphism is neither necessary nor
sufficient for the existence of a stable polymorphic equilibrium. For instance,
on the one hand, there may be a (locally) stable polymorphic equilibrium,
but selection may remove a rare allele from the population. On the other
hand, polymorphism may be maintained by a stable limit cycle. We shall
derive sufficient conditions for a protected polymorphism for the diallelic
two-niche case. Mathematically, the two-niche models are modifications of
those of Deakin (1966) and Maynard Smith (1966, 1970).

The models developed in this paper were motivated by recent studies of
intrapopulation differentiation in some species of annual plants (Linhart,
1972, 1973, 1974; Linhart and Baker, 1973; Keeler, 1975). The predomi-
nantly self-pollinating species Veronica peregrina L. (Scrophulariaceae) and
Boisduvalia glabella Walp. (Onagraceae) and the primarily outcrossing species
Downingia concolor Green (Companulaceae) grow in small vernal pools. The
pools are always less than 10 m in diameter, and are sometimes much smaller,
but typically contain thousands of plants. Plants in the central region of the
pooi enjoy a larger and less variable amount of moisture than those in the
peripheral area. Winter temperatures fluctuate less at the centre, under
water, than at the periphery, in the open air, where water and surface soil
can freeze overnight. The population densities near the centre are high, and
competition is mainly intraspecific. Near the periphery, the population
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densities are much lower, and competition is chiefly against various grasses.
The environmental difference between the centre and periphery is reflected
in the different characteristics of the progeny of plants from those regions
when grown under uniform greenhouse conditions. Plants from the peri-
phery produce more, but smaller, seeds than those from the centre. This
may be advantageous in increasing dispersion, raising the probability of
survival, and permitting more genotypes to test the rather variable environ-
ment (Linhart, 1974). Progeny of peripheral plants are taller than those of
the central ones, perhaps allowing them to compete more successfully with
the taller grasses. Progeny of plants from a cultivated field, where the
amount of dispersion is very high, show no statistically significant differen-
tiation (Linhart, 1974).

The self-pollinating scheme in Sec. 2 is a rough conceptual model for
V. peregrina and B. glabella, and the cross-pollinating model in Sec. 3 mimics
D. concolor. The two niches may be identified with the centre and periphery.
The population sizes are probably large enough to justify neglecting random
drift. No numerical comparisons are intended: the traits discussed above are
undoubtedly too complicated genetically for our simple models.

2. SELF-POLLINATION

Let p (x, t) be the frequency of the allele A1 immediately after fertilisation
at location x in generation t. Since we assume that, due to past complete
self-pollination, heterozygotes have been eliminated, p1 is also the frequency
of homozygous seeds carrying A.. We suppose that at each location a
fraction /J(O 1) of the seeds originate locally, while a proportion

= 1 — j3) come at random from the entire population. Let the JV plants
in the habitat be distributed with density p(x). Then the frequency of A
in seeds in generation t reads

=N' fPi(x t)p(x)d2x, (1)

where d2x is the element of area. Therefore, the frequency of A1 at x just
after dispersion of seeds is

P(x, t) = J31p,(x, t) + fl2p(t). (2)

If w1(x) represents the seed-to-adult viability of homozygous plants
carrying A1, our basic equation is

p(x, t+ 1) = w(x)P(x, t)/(x, t), (3)

where the mean fitness at x is given by

W(x, t) = w.(x, t)P(x, t). (4)

Obviously, as long as all plants are homozygous, the ploidy is irrelevant.
To study the protection of polymorphism, we linearise (3) near p5 =

to obtain
p.(x, t+ 1) = w(x)P(x, t)/w(x). (5)

We specialise to two alleles, A1 and A2, with frequencies p(x, t) and q 1 —p,
and two niches, R1 and R2. The regions R1 and R2 of the habitat may be in
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patches, but each has the same fitnesses throughout. Let c1(O< c < 1) and
= 1 — c1) be the proportions of plants in R1 and R2. Then (1) reduces to

p(t) = (6)

where p(s) is the frequency of A1 in R. We may choose the A1 homozygote
to have fitness 1 everywhere. The A2 homozygote has fitness u in R1 and
v in R2. Let the two-component column vector p(t) designate the frequency
of A1, the components corresponding to R1 and R2, respectively. Rewriting
(5) in the neighbourhood of p = 0, we find with the aid of (6)

p(t+1)=Bp(t), (7)
where

B= (u'(1_2fl2) u1cc2fl2
(8)

\ vc/3 v1(1_ci$2)J
The two eigenvalues of B differ in absolute value. Let us call them A1

and A2, with corresponding eigenvectors V1 and V2. We choose A1 > IA2
It is easy to see that A1 and A2 are real, A1 >0, and the components of V1
have the same sign, while those of V2 have the opposite sign. To prevent A1
from disappearing, we wish to make p = 0 unstable, and hence require
A> 1. To conclude that the local instability of p = 0 protects A1, we must
rule out two possibilities. First, since time is discrete, in principle, p(t)
may converge to 0 from points not close to the origin. For instance, we
might have sequences p(2t) and p(2t+ 1) with p (2t) not close to 0 but
p (2t + 1) —O as t— o. f this happened, however, the sequence p (2t) would
have a point of accumulation in the interior from which the population would
move to p = 0 in a single step. But with positive fitnesses (5) shows that this
is impossible. Second, if j A2 <1, it is reasonable to appeal to small pertur-
bations to dismiss the possibility that the population may start on the unique
curve (parallel to V2 as p—÷O) from which it would converge to p = 0.
This does not imply, however, that it could not repeatedly approach the
origin from a direction tending toward V2, and thereby converge to p = 0.
Sincep(1) 0 andp(2) 0, such a possibility is ruled out by the fact that the
components of V2 have the opposite sign.

From (8) we deduce that for the sufficient condition for protection of
A1, A1> 1, we must require that

u1(1—c2$2)+v1(1—c1fl2)>min [2, 1+u1vfl1]. (9)

Examining (5) near q = 0, we find, as expected by symmetry, that A2 will
be protected if (9) holds with the replacement (u, v) —±(u', v). Then we
have a protected polymorphism. To model environmental diversity, we
suppose A1 is advantageous in R1 and deleterious in R2: 0 < u < 1 and v> 1.
For protection of A1, we derive from (9) the sufficient condition

u<F(v), (lOa)

and to protect A2 it suffices to have either

v y, or 1<v<y and u>f(v), (lOb)
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wherey = (1 — 1fl2)  1,

f(v) = 1—v(1—1fl2) F(v) = [f(v)]1. (11)12fl2 — /31v

The region of protected polymorphism, (10), is the shaded area in fig. 1.
Note that F( co) = 1 — c2fl2.

By direct calculation, we can prove that

3f . . .
>0, which implies <0. (12)

ap2

Thus, the shaded region in fig. 1 shrinks as /32 increases, i.e. the sufficient
conditions for a protected polymorphism become more stringent as the
amount of dispersion increases.

As /3—÷0,y-÷l and F(v)—-l, so that the shaded region approaches u < I,
v> 1. Therefore, for sufficiently small non-zero dispersion, a protected
polymorphism always exists.

If selection is weak, we may write u = 1 — s, v = 1 + a, and approximate

f(v) 1 — F(v). Hence, there is no protected polymorphism for weak

selection.

FIG. 1.—Region of protected polymorphism (shaded) for self-pollination.

Let p.(x, t) designate the frequency of A1 in the gametic output of plants
at x in generation t. The frequency of A in gametes in the entire population
is (t), given by (1). Hence the frequency of A1 in pollen immediately after
dispersion, P1(x, t), is given by (2). Assuming only pollen disperse, the
(ordered) frequency of A1A seeds at x reads

[p(x, t)P(x, t) + p(x, t)P1(x, t)].
If w1(x) denotes the seed-to-adult viability of A1A plants, the allelic fre-
quencies satisfy

p(x, t + 1) = 4[ii(x, t)] — w(x)[p1(x, t)P(x, t) + p(x, t)P1(x, t)], (13)

where

W(x, t) = w.(x)[p1(x, t)P(x, t)+p(x, t)P1(x, t)] (14)

is the mean fitness at x.

U

3. CROSS-PoLLINATION
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To investigate protection, we linearise (13) near Pk = 1 to obtain

p(x, t + 1) = — 1W.k(X)[P.(X, t) +P,(x, t)]. (15)

Specialising to the diallelic two-niche case as in Sec. 2, we choose the general
fitness pattern

A1A1 A1A2 A2A2

uj1 1 u (16)

R2 1 v
The use of inverses slightly simplifies the algebra. Passing to the two-
component notation as in Sec. 2 and employing (6) and (16), near p = 0
we may reduce (15) to

p(t+1) = Cp(t), (17)
with

fu2(1_2fl2) +u2a2fl2 \ 18—
\ V21fl2 V2(1jX1/J2))

Observe that C has the same form as B in (8) except that the fitnesses have
been redefined and fl2 has been replaced by I2• Since only pollen disperse,
the latter substitution is not surprising. The discussion following (8) applies
unaltered here, so a sufficient condition for protection of A1 is that

u(1 —oc2fl2)+v1(1 —c1f32)>min [2, 1 +u1v1(1 $2)] (19)

for i = 2. If (19) holds with i 1, A2 cannot be lost, so (19) with i = 1, 2
is a sufficient condition for a protected polymorphism.

Since we are interested in the maintenance of genetic variability by
environmental diversity, we shall assume there is directional selection
favouring A1 in R1 and A2 in R2: 0< u1 1 u2 and 0 <v2 1 v1.
Then from (19) we deduce that A1 is protected if

u2 > g(v2), (20a)
and A2 cannot be lost if either

v1  z, or 1  v  z and u1 >g(v1), (20b)
where z = (1 _1$2) 1, 1 z<2, and

1—v(1—Cifl2) . (21)
1 —2$2 — v(1 —4$2)

Notice that if $2 is replaced by J2 my andf(v), we obtain z and g(u). The
sufficient condition (20) for a protected polymorphism corresponds to the
shaded regions in fig. 2. In fig. 2, g(0) = (I —2fl2) and I g(O) <2.

Due to the above simple connection between f and g, (12) implies- >0,
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so that the shaded area in fig. 2 shrinks as fl2increases, and the polymorphism
conditions become more restrictive with greater dispersion.

As fl2—±O, z—*1 and g(v)—s1, so that the shaded region approaches
0 <u1 < 1 <u2, 0 <v2 < 1 <v1. Therefore, as long as we have heterozygote
intermediacy, for sufficiently weak non-zero dispersion, there is a protected
polymorphism.

For weak selection, we write u1 = 1 —Si, U2 1 +s2, v1 = 1 + a, v2 = 1 O2,
and approximate g(v1) 1— and g(v2) 1 + Then (20) reduces

to z1s1—cc201<O and c2u2—cc1s2<0, i.e. the requirement that the mean
selection coefficient of each homozygote in the entire population be negative.

I z 2 V1 0

FIG. 2.—Region of protected polymorphism (shaded) for cross-pollination.

Therefore, the sufficient condition for a protected polymorphism becomes
overdominance for the average fitnesses. If the degree of dominance is the
same in the two niches, i.e., s2/s1 = 02/Cl, a protected polymorphism does not
exist.

Fig. 2 informs us at a glance that there exists a protected polymorphism
if v1  2 and u2 >2. This means that in each niche the fitness of the deleter-
ious homozygote must be less than -. The intuitive reason for this asym-
metric condition lies in the nature of protection. Near p =0, A1A1 is
neglected, and the only way to prevent A2 from being fixed is to make A2A2
very unfit in R1, corresponding to u2 >2. Similarly for v1 2.

If there is no multiplicative dominance (i.e. genotypic fitnesses are
expressible as products of allelic factors), we have u;' = u and
v;1 = v1 v. From (20) and fig. 2 we readily discover that the region of
protected polymorphism looks just like the one in fig. 1, but the lower curve
is u = g(v) and the upper one is u = G(v) [g(v1)]* Note that
G(cc) = 1 —ct2$2. If we replace /2 in the protection conditions for the
self-pollinating population by we obtain the conditions for cross-
pollination with no multiplicative dominance. Thus, even though these two
models are not identical, we obtain the correct protection criteria by halving
the amount of dispersion, since only pollen disperse in the cross-pollinating

37/l—E

U2

2

0 I z 2 V2
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scheme, and recalling that in the simplest panmictic models no multiplicative
dominance is the same as haploidy (Nagylaki, 1975c).

If v1 = 1 and u1 < 1 fig. 2 shows that there is no protected polymorphism.
The same holds if u2 = 1 and v2 < 1. This leads us to consider the interesting
and important case of complete dominance.

A1 Recessive. We choose u2 = v2 = 1, u1 u< 1, and v1 v> 1 in the
fitness pattern (16). The sufficient conditions (20b) for protection of A2
still apply, but we must find a replacement for (20a). From (18) we deduce
easily the eigenvalues and eigenvectors A = 1, A2 = 1 —

v1=(') V2=(:2). (22)

Since A1 = 1, to derive a condition for protection of A1, we must approximate
(13) near p = 0 to second order. Our method was used in a similar context
by Maynard Smith (1970) and Christiansen (1974). We define gene
frequency components ir1(t) along V:

p(t) = 1r1(t)V +ir2(t)V2, (23)
and conclude from (22)

= (24a)

7r2(t) = pW(t)p(2)(t). (24b)
Observe that 0, the frequency of A1 in the entire population.

From the previous linearisation of (13), we know that near iv = 0
must satisfy

ir2(t+1) = )2ir2(t)+O(I IV 2), (25)

where (I iv 12) represents terms of at most the second order as iv-±0, which
need not be computed. Calculating to second order, from (13) we obtain

ir1(t+1)—ir1(t) = Q(ir1, ir2)+O(l r ), (26)
with

Q(ir1, it2) = c1(u '— 1)p')(flipW + fl2P) + 2(v _1)p2(fl1p2+ P2P). (27)

When iv is very small, (25) shows that for 0< fl2 1 is decreasing at
the geometric rate ). Since irj(t) 0, we expect from (26) that a sufficient
condition for the instability of iv = 0 is Q(irj, 0) >0. This statement can be
proved rigorously. With 2 = 0, (22) and (23) give p(') = p(2) = =
Then (27) informs us that a sufficient condition for protection of A1 is

which is the same as

1u+c2v>1. (28)

Equation (28) just requires that the mean fitness of A1A1 exceed 1, i.e.
that A1A1, or equivalently A1, be favoured in the habitat as a whole. Since
(28) is independent of the amount of dispersion, we need not be surprised
that it is identical to Prout's (1968) condition for the Levene (1953) model
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and Maynard Smith's (1970) for habitat selection (Deakin, 1966; Maynard
Smith, 1966). We may rewrite (28) as

u<h(v) 1v(v—2) (29)

The region of protected polymorphism corresponding to (20b) and (29)
again looks like fig. 1, with the lower curve being u = g(v) and the upper one
u = /z(v). Note that h(co) = c.
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