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SUMMARY

The advantages of using a double exponential fitness function are pointed out
for the analysis of differential survival data. The uses of this type of function
are illustrated on Bumpus' (1898) data on the survival of English sparrows
after a severe storm and also on Cook and O'Donald's (1971) data on the
over-winter survival of a large sample of snails.

1. INTRODUCTION

A FITNESS function gives the probability of an individual Surviving a period
of natural selection according to the values that it has for one or more
characters X1, X2, ..., Xm. It will seldom, if ever, be possible to know the
precise mathematical form for this function and in this note it is suggested
that it is convenient to assume a double exponential type of function when the
data available for estimation consists of information on which of iiindividuals
survived one or more periods of selection. The rather different situation
where estimation must be based upon samples taken from a population
before and after a period of selection has been considered in a separate note
(Manly, l975a).

A justification for a double exponential fitness function is as follows.
Let p1 be the probability of an individual surviving selection for a unit period
of time. Then the probability of survival for time t should be of the form

— (t)Pt — Pi
where g(t) is a positive, non-decreasing function of t such that g(O) = 0
This is because the probability of survival cannot increase as the selection
time increases. If conditions remain constant then g(t) will simply be equal
to t but in general g(t) will reflect the "rate" at which time is passing from
the point of view of survival. Obviously p1 must always lie in the range
(0, 1) and one way to ensure this when p1 is to be related to the variables
X1, X2, ..., Xm is to assume that

Pi = exp {—exp (a0+c*1X1 + ... +cç,,X,,3}.

In this case the function g(t) can be incorporated into the constant term
and the fitness function at time t can be written

p = exp [—exp {cco(t)+cciXi+...+cç,Xm}] (1)

This is what is called the double exponential fitness function. It is a special
case of a model proposed by Cox (1972).

Alternative forms that have been suggested for the representation of a
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fitness function are the simple quadratic (O'Donald, 1968, 1970, 1971), the
"nor-optimal" (Cavalli-Sforza arid Bodmer, 1972) and the logistic (Walker
and Duncan, 1967). The first two of these suffer from the disadvantage of
not necessarily producing fitness estimates in the range (0, 1) while the third
has the disadvantage that the relationship between the selection time and the
parameters of the function is far from simple.

2. ESTIMATING THE DOUBLE EXPONENTIAL FITNESS FUNCTION

Suppose that the data available for the estimation of a fitness function
consists of information on the survival of n individuals in K classes where all
the individuals within a class have the same (or approximately the same)
values for X1, X2, ..., Xm. It is allowable for some or all of the classes to
contain only one individual. Suppose also that selection is observed for
S intervals of time (t0, t1), (t1, t2), ..., (t8_1, t) and that a5 is the number of
survivors in the ith class at the end of thejth interval. Then, providing that
a_1 $ 0, = a5/a1_1 is an estimator of the probability of surviving thejth
interval for an individual in the ith class alive at the start of the interval.
Estimators of this type are obviously independent if they relate to different
classes. Estimators j and is are also approximately uncorrelated if j S

(Chiang, 1960).
Assuming the double exponential type of fitness function, ]5 will be

estimating

= exp { — exp(+ c1x + ... + mXtm)} (2)
where x19 is the value of the variable X for individuals in the ith class. By
allowing the constants to vary according to the selection interval different
interval lengths are allowed. If the number of individuals in each of the
K classes is large then equation (2) can be fitted to the data using an empiri-
cally weighted multiple regression method (Manly, 1975b, Section 5).
However, fitting according to the principle of maximum likelihood is
possible using the computer program GLIM that is available from the
Numerical Algorithms Group, Banbury Road, Oxford (Nelder and Wedder-
burn, 1972; Nelder, 1974). GUM was used for fitting the fitness functions
described in the next section of this note.

3. EXAMPLES OF FITNESS FUNCTIONS

(i) The survival of sparrows
Out of 136 exhausted English sparrows taken to the laboratory of

Hermon Bumpus after a severe storm in 1898, 72 revived and 64 died.
Bumpus realised that this was a situation where the operation of natural
selection could possibly be detected and subsequently (Bumpus, 1898) he
discussed the relationship between survival and nine characters that he
measured on each bird. His conclusion was that there were differences
between the survivors and the non-survivors principally related to sex, total
length, weight, length of the humerus and length of the femur.

Bumpus published his full set of data with birds classified according to
sex and the age of male birds as well as survival. These data have been re-
analysed several times since 1898 and, most recently, Johnson et al. (1972)
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applied principal component analysis to reach similar conclusions to those
of Bumpus whilst O'Donald (1973) examined in some detail the selection
related to total length and the length of the humerus. O'Donald estimated
fitness functions based upon the characters of total length, humerus length
and a discriminant function (a particular linear combination of total length
and humerus length), taken one at a time. However it seems that no attempt
has previously been made to estimate fitness functions of several characters
as is done in this note.

FollowingJohnston et al. and O'Donald, weight was excluded from fitness
functions on the grounds that a bird's weight was likely to depend to a large
extent on its temporary condition. This leaves the following eight measure-
ments available to "explain" the survival status of Bumpus' birds: total
length, alar extent, length of beak and head, length of humerus, length of
femur, length of tibio-tarsus, width of skull, and length of keel of sternum.
Also a sex variable can be introduced: X = 0 for male, 1 for female. No
attempt was made to consider young and old males separately.

For this example there was only one selection period so there is only one
c term for the fitness function (2). No grouping of the individual birds was
possible but the computer program GLIM handled the situation quite well
except for one problem noted at the foot of table 1 and another problem to do
with the measurement of the goodness of fit of fitness functions. GUM
indicates the goodness of fit of models in terms of what is called the "deviance"
from the fitted model, with its corresponding degrees of freedom. This
deviance is actually twice the natural logarithm of the likelihood for the
model and is analogous to the residual sum of squares for an ordinary multiple
regression (Nelder and Wedderburn, 1972). For fitting a double exponen-
tial function it is normal to regard the deviance as being approximately a
chi-squared variate with the stated degrees of freedom and with a signifi-
cantly high value indicating the lack of fit for the model. This approxima-
tion is however questionable when GLIM is applied to Bumpus' data because
when the fitness is assumed to be the same for all 136 birds the deviance is
found to be l88l with 135 degrees of freedom. Regarded as a chi-squared
variate this is very highly significantly large although this model can hardly
fail to fit the data since all that is being done is to estimate a survival proba-
bility by a proportion surviving. The problem seems to be that the chi-
squared approximation does not hold for classes consisting only of single
individuals. Nevertheless, a large reduction in the deviance associated with
the introduction of certain variables into the fitness function is an indication
that fitness was related to these variables.

A summary of the procedure used to fit a fitness function to Bumpus'
data is given in table 1. It will be seen that when all of Bumpus' variables
are included in the function then the deviance is 1 486 compared to the value
of 1 88 1 based on a model of constant fitness. The reduction in the deviance
is associated with a loss of nine degrees of freedom and there is therefore an
indication that survival was related to at least one of the variables. This is
because if a variable was not related to survival then the introduction of it
into the fitness function would be expected to reduce the deviance by
approximately one, with a similar reduction in the degrees of freedom.

After fitting various types of fitness function and eliminating any of
Bumpus' variables that do not appear to have been related to survival it was
finally decided that fitness only appears to have been related to the total
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TABLE 1

Double exponerstiol fitness functions fitted to Rumpus' data

Terms included in the fitness function Deviance d.f.

Constant term only (all birds with the same fitness) 188-1 135
Sex variable only (different survival for the two sexes) 184-9 134
All of Bumpus' variables plus the sex variable 1486 126
All of Bumpus' variables and the squares of them plus the sex variable 1384 118
All of Bumpus' variables with different coefficients allowed for each sex 135-8 118
All of Bumpus' variables and the squares of tbem with different

coefficients for eacb sex* 102
Total length, length of humerus, length of keel of sternum and the sex

variable 150-5 131
As for the previous one plus squared terms for the three Bumpus

variables included 147-1 128
Total length, length of humerus and the sex variable 153-0 132
Total length and length of humerus with different coefficients for each

sex l4&3 130

* For some reason the GLIM program tried to divide by zero when fitting this function
and execution was terminated.

length and the length of the humerus of the birds with the relationship being
different for the two sexes (c.f. final row of table I). The coefficients for the
fitness function were then estimated as follows:

For males For females
r

Variable Coef. Std. err. Coef. Std. err.
Constant —35-8 104 —616 8-61
Total length (mm) 0402 0-088 0122 0-073
Humerus length (ins) —40-2 10-7 —18-0 121

Because of the nature of equation (2), a negative coefficient indicates that
a large value for the variable concerned is associated with a high probability
of survival. It therefore appears that short birds with a long humerus had
the best chance of surviving the 1898 storm. However the coefficients for the
female fitness function are not significantly different from zero when they
are compared to their standard errors so that there is some doubt about this
conclusion for the females.

Estimated survival probabilities for four of the more extreme birds in
Bumpus' sample indicate that the selection caused by the storm was of a very
great magnitude:

Total Humerus Estimated
length length probability
(mm) (ins) Sex of survival
153 0-728 male 097ll
163 0-689 male 00004
153 0724 female 0-6161
163 0-713 female 01354

O'Donald has pointed out in a private communication that the CC nor-
optimal" fitness functions that he has estimated from Bumpus' data based
upon his discriminant function character (O'Donald, 1973, p. 402) give very
similar survival probabilities to those in the above table.
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(ii) Over-winter survival of snails

Table 2 shows the results of an experiment discussed by Cook and
O'Donald (1971) involving a large number of Cepaea nemoralis that were
collected at Cledes, in the Pyrenees, being left without food in an unheated
room over the winter of 1968/69. The survivors were counted at the end
of six survival periods. Interest centres on the relationship between the
shell size, as expressed in the maximum shell diameter, and the survival.

The first step in the analysis of these data involved the fitting of fitness
functions as given by equation (2). When only the constants were fitted
the deviance was 11 22 with 42 degrees of freedom. The introduction of a
term for the snail size reduced this to 682 with 41 degrees of freedom while
the introduction of a (size)2 term gave a deviance of 61.5 with 40 degrees of
freedom. There was no point in fitting a higher power of size because it was
found that even when each of the size classes in table 2 was allowed to have
its own survival coefficient the deviance was only reduced to 57.4 with
35 degrees of freedom. The conclusion reached at this point was that the
fitness function varied during the full selection period since each of the
deviances that have been quoted is significantly large when it is regarded as
a chi-squared variate.

The next state in the analysis was to fit a separate fitness function for each
of the six survival periods. Taking just linear terms for size this gave a
deviance of 4933 with 36 degrees of freedom. Adding (size)2 terms then
reduced this to 3873 with 30 degrees of freedom. This latter deviance is not
significantly large at the 5 per cent level so that this last model appears to fit
the data quite well. It gives the following estimated survival probabilities for
the six survival periods:

Selection period
Max. shell
diameter 1 2 3 4 5 6

21 062 076 06l 0•81 043 0•44
22 082 082 072 0.79 055 047
23 090 085 079 0•80 O•64 050
24 093 087 083 083 069 051
25 095 0•88 086 087 0.73 051
26 095 089 0'88 092 074 051
27 093 089 089 096 075 049
28 090 088 089 098 074 0•46

For selection periods 1, 2, 3, 5 and 6 it is estimated that maximum survival
occurred for snails with maximum shell diameters in the range 25-28 mm.
However, for survival period 4 there is no estimated maximum survival but
snails with a maximum shell diameter of about 22 mm are estimated to have
the minimum possible survival.

Cook and O'Donald based their analysis of these data on quadratic and
"nor-optimal" fitness functions and reached very similar conclusions to
those of the present analysis. In particular they noted that the selection
during the fourth selection period did not appear to follow the same pattern
as the selection in the other periods. One advantage of the analysis based
upon the double exponential fitness function is that it was very simple to
test the hypothesis that the relationship between fitness and size was constant
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for the six selection periods, making allowance for the fact that these intervals
were of different lengths.

TABLE 2

The survivors at various times from 1160 Cepaea nemoralis left over the winter of 1968/69 in an
unheated room without food. The snails were collected from Cledes in the Garonne valley a few
kilometres south of the border of France and Spain. (Data kindly supplied by Dr L. M. Cook.)

Maximum
shell Initial Survivors on

diameter nos. on
(mm) 29/9/68 31/12 7/2 14/3 16/4 21/5 14/6

21 21 15 12 7 4 3 1

22 93 72 57 42 33 14 6
23 255 228 194 152 129 85 44
24 343 326 286 239 192 133 70
25 289 270 239 203 175 132 62
26 128 120 107 99 94 63 36
27 29 29 27 22 21 18 7
28 2 1 1 1 1 1 1
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