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SUMMARY

Various statistical tests for randomness were made on the order of ascal classes
in groups of asci from wild-type x asco crosses. There was no significant non-
random clustering of asci of the same segregation class, nor a regular twinning
of similar asci. Any apparent observed clustering of similar ascal classes is
probably an artefact or due to chance. 2 x n 2 tests showed that frequencies of
individual ascus classes from different perithecia were generally homogeneous,
as were second division segregation frequencies. The tests described here for
randomness in sequences of occurrences could be of general use in other areas
of genetics.

1. INTRODUCTION

THE unexpected preponderance of certain ascal classes amongst small
groups of asci and the occurrence of identical or similar asci consecutively or
in small groups separated by one, two or a very few asci of other classes have
led many workers to consider the possibility of a non-random clustering or
twinning of asci. For example, Mitchell (1959, 1 960a, b) suggested that asci
developed as closely associated pairs which may be genetically similar
although there was no assurance that this pattern of twin asci would be
found in all crosses. This twin ascus pair hypothesis seems to contradict the
assumption, resulting from the classic cytological studies of Singleton (1953),
that each ascus is formed independently, with the consequence that the
segregation pattern of each ascus should be independent of that of its
neighbours in the ascal cluster. Mitchell (1 960b) also obtained indications
that the contents of different perithecia from a single cross were sometimes
more different than would be expected by chance with respect to relative
frequencies of ascal classes. Such heterogeneity could arise if there were a
differential maturation or bursting of certain ascal classes (shown in is/euro-
spora by Lamb, 1966, 1967) and if perithecia or groups of asci of different
ages were scored. If perithecia were markedly heterogeneous for frequencies
of the six ascal classes, it could result in statistically apparent clustering.

The randomness of sequences of ascal segregation classes was investigated
using the runs test (Swed and Eisenhart, 1943) to test for clustering of asci
of the same segregation class; a method based on Markov chains (Anderson
and Goodman, 1957) was used to test for a non-random "twinning" of
adjacent asci. The homogeneity between perithecia of relative frequencies of
ascal classes was investigated using 2 x n x2 tests. Wild-type x asco crosses of
.Js/eurospora crassa were used.

* The six segregation classes for one pair of alleles in ordered tetrads.
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2. MATERIALS AND METHODS

(i) Experimental

Crosses of Abbot 4a x asco (37402) 33A were made using methods des-
cribed by Lamb (1966). Perithecia were harvested before appreciable ascal
dehiscence had occurred, to minimise any differential bursting effects. Asci
from many perithecia from a single cross were scored by tallying the segrega-
tion class of each of a series of asci in their order of occurrence in an ascal
cluster. Ascal classes were numbered I, II, III, IV, V or VI according to
Whitehouse and Haldane (1946) and are represented here by Arabic
numerals 1-6 respectively. Classes I and 2 result from segregation at the
first meiotic division and are called MI asci; classes 3-6 result from second
division segregation and are called Mu asci.

Each continuous series of asci, uninterrupted by incomplete or immature
asci, was treated as a separate sample and scores from a single cross were put
together. Data were collected from several crosses; in some crosses, results
were obtained separately from each perithecium.

(ii) Statistical

Details of the methods used are given in the Appendices. For further
details, see Wickramaratne (1974).

(a) The runs test. The null hypothesis, H0, was that the ascal classes
occur in random order, the alternative hypothesis, H1, being that the order
of ascal classes deviates from randomness with a predicted direction of
deviation (clustering). It was assumed that the samples were statistically
independent.

The analysis is based on the order or sequence of events, the number of
runs, u, in each sample being scored. A run may be defined as a succession
of identical symbols which are followed and preceded by different symbols
or by no symbols at all. A run may consist of only a single symbol. The
total number of runs in a particular sample of any given size gives an indica-
tion of the randomness of that sample. For example, if too few runs occur,
this would indicate a definite clustering of elements due to lack of indepen-
dence; too many runs would indicate more mixing than would occur by
chance. This procedure does not test whether different runs of the same
ascal types are near one another.

The sampling distribution of the values of u which would be expected from
repeated random sampling is known. Using this sampling distribution it is
possible to decide whether a given sample has more or fewer runs than would
probably occur in a random sample. The possibilities can be illustrated as
follows for specimen sequences in a hypothetical group of 20 asci containing
say 8 of class 1, 8 class 2, 2 class 4 and 2 class 5 asci. The end of each
"run" of identical symbols is marked by a full stop.

(i) Random: 1.5.1.22.1.2.4.1.5.2.4.11.2222.11.

This has 14 runs and clusters of two or more adjacent identical classes occur
occasionally, by chance. Testing for class 2, for example, m = 8, n = 12,
u = 9 (see Appendix for notation). From Swed and Eisenhart (1943), the
probability (P) of getting u or less runs by chance is 0297.
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(ii) Clustering: 222.11.55.22.1111.44.222.11.

This sequence, with marked clustering, has only 8 runs; two or more
adjacent identical classes occur more frequently than expected by chance.
For class 2, m = 8, n = 12, u = 6, P = 0025.

(iii) Twinning: 22.11.55.2222.44.1111.22.11.
This has 8 runs, with the classes occurring in twin pairs which may them-

selves show random arrangement, mixing or clustering. For class 2,
m = 8, n = 12, u = 6, P = 0025. The runs test does not distinguish
twinning from other forms of clustering.

(iv) Mixing: 2.1.5.2.1.2.1.4.2.5.1.2.1.4.2.1.2.1.2.1.
This extreme example has 20 runs; clusters of two or more adjacent

identical classes occur less often than by chance. For class 2, m =8,
n = 12, u = 16, P 0999.

The runs test is for two classes of symbol, not six, so it was applied to each
class in turn against all other classes (for example, class 1 asci tested against
all non-class I asci), and for first division segregation asci (" MI ") against
second division segregation (" Mu ") asci. Thus for class 1 asci in the
specimen sequences above, there are 11 runs in (i) because sequences such
as 2.4 count as a single run, being all " not class 1 "; similarly, in (ii),
(iii) and (iv) respectively, there are 6, 6 and 16 runs when testing class I.

For each class, information from all the samples was combined using a
modification, proposed by Lancaster (1949, 1967), of the standard method of
combination of probabilities due to Fisher (1936). Details are given in
Appendix 1.

(b) The method using Markon chains and maximum likelihood. The null
hypothesis, H0, is that the sequence is completely random; the alternative
hypothesis, H1, is that there is local non-randomness in the sequence—a
one-step dependence with each element depending probabilistically on its
predecessor.

The test is based on Markov chains (Anderson and Goodman, 1957).
A matrix was constructed by putting a stroke in each cell (see Appendix 2)
for the pairwise ascal sequences of that type found in the sample, and then
totalling the strokes. An ascus at the beginning or end of a sequence has only
one possible partner for consideration as a pair, but non-terminal asci could
be part of a pair with the preceding or succeeding ascus: all these possible
combinations were scored. Due to the low frequency of second division
segregation (Mu) classes compared to first division segregation (MI) classes,
some of the cells of the matrix were empty or had very small numbers (less
than 5) for sample sizes of about 600. To overcome this effect we used a
reduced form of the matrix, combining the Mu classes, with 2 (L1 —L0) being
referred to a table of x2 with 4 degrees of freedom. Large values would
provide evidence for rejecting the null hypothesis of randomness.

(c) The 2 x n homogeneity x2 tnt. This was used to test the contents of
different perithecia for homogeneity: some samples were analysed only for
MI and MIT frequencies and others were analysed for the six ordered ascus
segregation classes. Because the x2 test is inaccurate when the expected
number in a class is less than 5, results from all perithecia could not be used
in all tests. Nearly all perithecia could be used for testing MI and Mu



Experiment: (i)

Class W* 2kt
1 2336 204 007
2 2144 208 037
3 2083 228 082
4 2400 262 083
5 2418 256 073
6 234•5 230 041
MI 1683 158 027

Experiment:

Class W 2k P
1 43l3 458 081
2 3921 442 096
3 805 96 075-090
4 81•9 82 0•25-0•50
5 993 116 087
6 1239 128 059
MI 2916 302 066

r
2k P

1030 104 051
1212 102 009
434 44 030-050
65•5 54 010-020
465 54 070-080
427 48 050-070
896 98 070-0'80

w P
3070 051
2912 082
861 050-0•75
79.4 O50-075
96•6 090
628 0975-0990

2094 0'85

* W is the sum of —2 loge Pm values, where Pm is the median probability computed as
{P(U<u)+P(U  u)}.

t 2k is the number of degrees of freedom when k probabilities are combined.
P is the probability that a x2 random variable with 2k degrees of freedom is greater

than the observed W. Clustering would give low P values and "non-random mixing"
high ones.

(ii) The method using Mar/coo chains and maximum likelihood

The results given in table 2 show that all eight samples had P > 0O5.
Therefore there was no evidence for rejecting H0, randomness in pairs of
adjacent asci, so there are no grounds for searching for assignable causes of
clustering in pairs.

Data from the comparable crosses a, b, c, d and e (table 2) were generally
homogeneous: for example, for Mu frequencies, x = 36, P 0•3-05.
The Markov chain data for these particular crosses have therefore been
pooled (table 3) to get a large enough sample for further tests of randomness
within pairs of asci. For the six ordered segregation classes for a pair of
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frequencies and for classes 1 and 2, but those with less than 20 Mu asci were
not used for testing classes 3, 4, 5 and 6.

3. RESULTS

(i) The runs test

Table 1 gives the results, for each class, of the combination of proba-
bilities. The probabilities were all greater than 005 and therefore within
the region of acceptance for the null hypothesis of randomness, so it cannot
be rejected in favour of the alternative hypothesis of clustering.

TABLE I

Rum test: combination of probabilities

(isv)

2k

308
314
92
82

116
90

232
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alleles, one expects a 1: 1 ratio for classes 1 and 2, and a 1: 1: 1: 1 ratio for
classes 3, 4, 5 and 6, and good fits to these ratios were usually found in the
present data.

Among pairs consisting solely of MI asci, one expects that " twin"
arrangements (1.1 and 2.2) and "non-twin" arrangements (1.2 and 2.1)

TABLE 2

Test, using Mar/coy chain method, for non-random "twinning" of adjacent pairs of asci

Type of matrix usedt

1 2 3 4 5 6 Totals

iAscal

classes*

11
I 2

J3
) 4

5

6

1151
1049

85
71

87

84

1103
1066

96
75

114

93

88
98
14
7
5

12

64
70
9
6

7

2

86
103

4
6

6

10

74
101

4
6
4
5

2566
2487
212
171

223
206

Totals 2527 2547 224 158 215 194 5865

* When considering a sequence of asci as a series of pairs, the first ascus of each pair is
called i, the second is calledj; for example, a pair consisting of a class 1, then a class 4 ascus
would be il,j4.

will be equally frequent if non-random twinning is absent. The figures of
2217 and 2152 respectively give a good fit to a 1:1 ratio (x2 = 1.0, P = 03-
0.5). For pairs consisting solely of MIT asci, one expects that twin (3.3, 4.4,
5.5 and 6.6) and non-twin (3.4, 3.5, 3.6, 4.3, ...,6.5) arrangements will show
a 1:3 ratio if non-random twinning is absent. The totals of 31: 76 give a
good fit (x2 09, P 0.3-0.5).

One can also test whether pairs of two MI, two MIT, or of one MI and
one Mu asci occur at random. With the observed MI and MIT frequencies
of 8633 and l367 per cent respectively, the expected numbers of MI/MI,

C
6x6,v=25 3x3,v—4

Number of pairs
Data set of asci* x5 P P

a 2005 375 005-01 95 0-05-0l
b 1900 323 0l -02 6-3 01 -02
c 701 — — 30 0-5 -0-7
d 584 — — 38 03 -0-5
e 675 — — l9 0-7 -0-8
f 514 — — l•7 0-7 -0-8

g 356 — — l5 0-8 -0-9
h 917 — — 20 0-7 -0-8

* See Materials and methods (b).
t With the two large samples, a and b, the full 6 x 6 matrix could be tested. With the

smaller samples, there were too few asci in some classes for valid testing of the 6x 6 matrix,

so a reduced form, 3 x 3, was used, pooling the second division segregation classes.

v, Number of degrees of freedom.

TABLE 3

Pooled data from Markov chain method

j Ascal classes*
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Mu/Mu and MI/MIT pairs, if non-random twinning is absent, are 4371.5,
1 095 and 1384 respectively, compared with observed numbers of 4369, 107
and 1389, which is a good fit (x = 008, P = 0.95-0.98).

Tests on the pooled data are subject to slight inaccuracies if there are
minor non-homogeneities between the sets of data but even allowing for
such reservations, the three tests above on the pooled data clearly showed
no evidence of non-random twinning. There are similar reservations about
treating the pooled data as a 6 x 6 matrix for testing by the maximum
likelihood method (as in table 2 for individual samples), or as a 6 x 6 contin-
gency table, but if these tests are done they give X5 = 366, P = 005-0•l,
and X5 = 355, P 005-0 1, respectively, again consistent with no signifi-
cant non-randomness.

(iii) The 2 x n x2 homogeneity test

In preliminary experiments, results from perithecia were examined just
for homogeneity of second division segregation frequencies: the results were

TABLE 4

2 x n x° tests for homogeneity between different perithecia

Experiment 1 Experiment 2

Ascus type v v P
Class 1 164 15 O30-050 161 25 090-095
Class 2 131 15 050-070 166 25 080-090
Class 3 209 8* <00l 05 2* O7O-O80
Class 4 62 8 050-070 05 2 070-080
Class 5 92 8 030-050 07 2 070-080
Class 6 73 8 050-070 41 2 010-020
Mu 205 15 0l0-020 13•5 23t 090-095

v, Degrees of freedom.
* Some perithecia were omitted for classes 3-6 because they had too few Mu asci for

valid testing of individual classes.
t Two perithecia omitted as they had too few asci for valid Mu frequency testing.

homogeneous even at the 20 per cent level of significance. The more detailed
comparisons of all segregation classes made in later experiments are shown
in table 4.

There was generally homogeneity between perithecia for frequencies of
each of the six segregation classes and of MIT asci, although one class 3
result showed significant heterogeneity.

4. Discussior

There are certain difficulties in the handling and scoring of asci and in the
manipulation of the data. (i) The aggregate of asci within a perithecium
cannot be scored intact as it is more like a solid sphere than a ring and hence
has to be split into smaller clusters to facilitate scoring: this necessitates the
treatment of groups of asci from a single perithecium as separate samples and
decreases sample size. (ii) The original arrangement of asci in a cluster is
sometimes difficult to determine due to possible changes in position when the
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3-dimensional group of asci is mounted as a flat ring; originally adjacent asci
sometimes become separated by several others and remain adjacent only at
their attached ends. This would reduce the chance of finding significant
associations between ascal classes if there were any but would similarly
reduce the chance of observers noticing them visually. (iii) When the ascal
clusters examined were in the form of a ring, depending on the point at which
scoring is started a pair of asci may be scored as adjacent or not. In such
instances scoring was started at a point such that adjacent asci of the same
class would not be separated: this preserved a uniformity in the method of
scoring although slightly reducing the number of rims compared with
starting scoring at random in each ring, thus increasing any apparent
clustering.

It is very desirable to use all the information available in a sample but
this is not always possible. For example, single isolated asci could not be
taken into account in either the runs test or the maximum likelihood method:
samples of size 2 and those with elements of one type only were also excluded
in the former method. However, there was only a comparatively small
number of such samples. When all the elements in a sample were of one
type they were usually MI asci: since the results from testing MI classes
were no different from those of the other classes, omitting these samples
should not make a significant difference to the final result and conclusion.
Since the number of Mu asci was small compared to MI asci, some samples
contained only a single Mu ascus. Consequently, testing MI against Mu
will give a considerable clue about the outcome of testing each Mu class
against the rest.

Another disadvantage of using the runs test is that in considering merely
the number of runs of each of the six types of asci there is a possibility of
missing any clustering effect of runs of the same ascal types being near one
another. The main disadvantage, according to Swed and Eisenhart (1943),
is that the test lacks power.

In using the maximum likelihood method, the same result should be
obtained irrespective of the direction of scoring or the point at which analysis
of the sample is begun, but no allowance is made for this. A second dis-
advantage of this method is that the numbers of each class affect the accuracy
of the estimation: this necessitated the reduction of the matrix or else the
analysis of very much larger samples.

Appreciable heterogeneity between perithecia for frequencies of indivi-
dual ascal classes, or for MI and Mu asci, was not found in the present
experiments. If it occurred, such heterogeneity would affect the Markov
chain test for randomness as the overall frequency for any one class will not
usually be the applicable frequency for any one perithecium or group of asci.
The runs test should be less affected.

Further evidence. The randomness of adjacent ascus segregation classes
cannot be proved by statistical methods but evidence against clustering of
asci of the same class or twinning of asci is available. On examining the data
carefully, the asci of one type do not seem to occur in pairs very often.
More often than not they seem to occur singly. This view is strengthened by
the exceedingly large number of samples where m = I, n > m, most of them
also having u = 2m+ 1, in which case the asci could not possibly have occur-
red in identical pairs. This very strong evidence against twinning or
clustering is completely unaffected by misordering of adjacent asci, unlike
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samples with rn> 1. The large number of samples with P = 1 where m> I
also indicates instances in which asci of the class being considered occur
singly. Some perithecia had only one, or an odd number, of certain MIT
ascal classes, which is further evidence against clustering or twinning.
Mitchell (1960b) reported that " twins " sometimes consisted of exactly
reversed orders in the two asci but no evidence was found here for regular
twinnings of this nature.

Considering small samples, according to Swed and Eisenhart (1943),
P(U u) <0.05 is evidence of a tendency toward clustering. Since only a
very few samples had P < 005, the possibility of clustering seems extremely
low.

The twin ascus hypothesis or a non-random clustering of asci of the same
segregation class also seems incompatible with classical evidence that ascal
segregation patterns are determined by meiotic events. Lindegren (1932,
1933) showed that second division segregation frequency was a measure of
the frequency of cross-over between a gene and its centromere and gave an
indication of the gene-centromere distance on the linkage map. There is
generally reasonable agreement between the gene distances calculated from
gene-centromere distances of synnemal genes obtained from second division
segregation frequency values for each locus and the same gene distance
obtained from two- and three-point crosses. Evidence for this was also
given by Lindegren (1932, 1933).

Further evidence that ascal segregation patterns are determined by
meiotic events comes from several sources such as studies of chromosome
aberrations and ascal cytology (e.g. Barry, 1972; Perkins, 1972), and of gene
conversion.

For the above reasons and from the present data, a non-random clustering
of ascal classes seems very unlikely. The various reports of clustering, from
personal impressions rather than statistical tests, could be caused by a
"mental artefact" in that the observer tends to notice clusters when they
occur—albeit by chance—but fails to take much notice of the many non-
clustered regions.

5. Corccrusios

There was no evidence for a non-random clustering or twinning of asci
of the same segregation class; any apparent clustering is probably due to
chance or may be an artefact. The contents of different perithecia resulting
from a single cross or from replicate crosses were homogeneous with respect
to the relative frequencies of MI and Mu ascal classes.

6. APPENDIX 1. THE RUNS TEST

Let m = number of elements of the type being considered, n = number
of elements of the other type: for example, when m = number of class 1 asci,
n = number of asci of classes 2 to 6; when in = number of MI asci,
n number of MIT asci. Them and n events are observed in the sequence in
which they occur and the value of u, the number of runs, is determined.

Small samples. Samples were considered to be small when m  n  20.
U is a random variable and a function of u. The probability P of U u
in a random arrangement, for each sample where m n 20 with a range
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of in from 2 to 20 inclusive, was obtained using the tables of Swed and
Eisenhart (1943); they refer to U and u as u and u' respectively.

Large samples. Samples were considered large if either m or n was greater
than 20. When m or n, but not both, was greater than 20, the probabilities
were calculated using the formula described by Swed and Eisenhart, 1943:

P(U  u) =

wheref = 2C':. when U = 2k, i.e., when U is even,

andf0 = c:11 .c when U = 2k—i, i.e. U is odd.

When both m and n were greater than 20, samples were analysed using
the formula:

U— +1
(m+n

/2mn(2mn —m —n)
\I(m+n)2(m+n—1)

This method and formula are described by Siegel (1956). x is the stan-
dardised deviate: corresponding values for the probability P may be ob-
tained by referring to tables of the normal probability function (cf. table 1,
Pearson and Hartley 1966). Two other methods were used, for both large

and small samples, in the following cases: where m = 1, ii = 2, P =
n+1

and where u = 2m+ 1, P = 1 (see Wickramaratne, 1974, for details).
Combination of probabilities. The combination of a number (k) of inde-

pendent tests of significance is straightforward when dealing with continuous
variables, where the sum of the —2 loge P values is distributed as x2 with 2k
degrees of freedom (Fisher, 1936). However, if the distribution is discon-
tinuous, the —2 loge P transformation based on the exact test of significance
is biased: the test is therefore not immediately applicable. Such biases
were eliminated by using the median probability Pm and the median value

as suggested by Lancaster (1949, 1967).
If we use the median probabilities as our critical values,

W = —2 log{P(U<u)+P(U u)}

can be referred to tables of x2 on 2k degrees of freedom. A value of? 005
was considered as significant evidence for rejecting the null hypothesis
of randomness. When 2k exceeded 100, i.e. k>50, the expression
/2 W—/4k — 1 was referred to the tables of the standardised normal distri-
bution, as recommended by Fisher and Yates (1963) under their x2distribu-
tion tables.

7. APPENDIX 2. THE METHOD USING MARKOV CHAINS
AND MAXIMUM LIKELIHOOD

Let (for i = 1,2,..., 6 andj = 1,2,..., 6) be the number of times
that a value i is followed by a valuej. Then {n15} is a 6 x 6 matrix with n
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the element in its ith row and jth column (i, r = 1, 2, ..., 6). Let n denote
the total in columnj, and n the total in row i, and n the grand total of all
the n11s. Then for example

fl.2 = fl12+fl22+...+fl52
and

n2. =

For the null hypothesis of randomness one estimates P2, the probability
that the next element will be a j, irrespective of what its predecessor was.

The maximum likelihood estimate of P1 is and the maximised log

likelihood is then:
6

L0= n3log(n)—nlog(n)j= 1
For the alternative hypothesis the maximum likelihood estimate of P,

the probability that the next element will be a r given that its predecessor is

an i, is ij• and the maximised loglikelihood is then:
ft.

6 6 6
L1 = n log n3— n• log ni=lj=1 1=1

This estimates 30 (= 6 x 5) independent parameters. 2 (L1 —L0) is
referred to tables of x2 with 30—5 = 25 degrees of freedom. Large values
of 2(L1—L ) are evidence for rejecting the null hypothesis of randomness.
This result holds asymptotically for large quantities of data.
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