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SUMMARY

Neglecting age-structure, but taking into account matings with differential
fertility in Mendelian reproduction, a continuous selective model is formulated
for a single X-linked locus with an arbitrary number of alleles. Without
restricting the mating system, differential equations are derived for the geno-
typic and allelic frequencies. Assuming random mating, no selection, and
constant fertilities and mortalities, these differential equations are solved
explicitly. For this case, in contrast to the corresponding phenomenon in
the usual model with discrete, non-overlapping generations, the difference
between the frequencies of any allele in males and females approaches zero
without oscillation.

1. INTRODUCTION

AGE-STRUCTURED models with differential fertility and mortality, required
for a full and accurate analysis of most natural populations, are mathe-
matically formidable. The mathematics of the two somewhat simplified
continuous-time age-structured models introduced by Charlesworth (1970),
one of which takes into account differences in fecundity, but neglects mating,
while the other does the reverse, is still quite difficult. Consequently, most
research in population genetics has disregarded the complication of age-
structure, and treated either a population with discrete, non-overlapping
generations or one with continuous random births and deaths.

Population genetic models with discrete, non-overlapping generations
rest on clear biological assumptions, and apply manifestly to certain types
of organisms, such as annual plants. Therefore, Wright and many others
have favoured them in their investigations. Except near equilibrium, how-
ever, the difference equations resulting from this formulation do not lend
themselves readily to dynamical analysis. The Malthusian-parameter
approach of Fisher (1930), since it yields differential equations, admits of
more complete and elegant mathematical treatment, as exemplified by his
development of the Fundamental Theorem of Natural Selection. But
neither Fisher's nor more recent (see, e.g., Crow and Kimura, 1970, pp.
190-197) derivations of the differential equations satisfied by gametic
frequencies considered explicitly the mating structure of the population or
fertility differences between matings.

In a previous paper (Nagylaki and Crow, 1974, hereafter referred to as
I), ignoring age-structure, but permitting matings to have differences in
fecundity, we constructed continuous selective models for a single auto-
somal locus with multiple alleles, with or without distinguishing the sexes,
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and for two alleles at each of two loci in monoecious individuals. Without
restricting the mating system, in each case we derived differential equations
for the genotypic frequencies, and established the validity of the customary
Maithusian-parameter differential equations satisfied by the gametic
frequencies. We devoted particular attention to the conditions for Hardy-
Weinberg proportions under random mating. Since it was shown that
Hardy-Weinberg proportions will occur only in special cases, generally, the
evolution of the population in these models is specified by the usual differ-
ential equations for the gametic frequencies only when these differential
equations are supplemented by the ones we deduced for the genotypic
frequencies. In I, the general theory was also applied to two particular
assortative mating patterns, and in a subsequent paper (Nagylaki, 1974) it
was extended to incorporate mutation and migration.

Our aim now is to formulate a model without age-structure, but with
arbitrary mating system and differential fertility, for a single X-linked locus
with multiple alleles. The general differential equations for the genotypic
and allelic frequencies will be solved for the particular case of random mating,
no selection, and constant birth and death rates. We shall devote special
attention to the approach to equality of the gene frequencies in males and
females and to the approach to Hardy-Weinberg ratios in females. An
experiment to determine whether natural populations are more likely better
approximated by discrete or continuous models will be suggested.

2. THEORY

As far as possible, we shall follow the notation of I, employing unprimed
quantities to refer to males and primed ones to females. Let 1V, N' be the
number of males and females. A1 will denote the alleles at the X-linked
locus of interest. Let flj,2n, n( = ni,) represent the number of A1 alleles
in males, in females, and of ordered A.4 females, respectively. Henceforth,
all genotype and mating designations will be ordered for convenience. The
frequencies of A1 in males and females and of A1A5 females are

= n1/N, p = n/N', P, = na/N'. (1)

The time-derivatives of n1 and n may be written as

= M Xk, 1ak, 11—dNp, (2)
ki

= (1/2)M (2')

whereM, x1 Jk ff0 d, d[ are the number of matings per generation,
the proportion of these which is between A1 males and AJAk females, the
number of male and female progeny from one such union, and the proba-
bility per unit time (generation) of the death of an A1 male and an A1A5
female. Except for the neglect of age structure, all of these quantities may
be functions of time, genotypic frequencies, and any other relevant variables
and parameters. If i j, n is simply one-half the number of females with
unordered genotype A1A5; we do not employ the convention (as (2') shows)
that A1 comes from the male and A2 from the female parent. With our
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definition, we shall have, initially, n(O) = n1(O). Then (2') implies that
this symmetry is preserved for all later times: n(t) = n(t).

Instead of the birth rates of the various types of unions per mating,
defined above, it will be more convenient to use birth rates per male and
female:

a,Jk = MâjJk/N, aJk = Mâ.Jk/N'. (3)

With (3), (2) and (2') become
= N Xk, flak, , — dNp, (4)

= (1/2)N' (4')

The mean mortalities for males and females read

(5)

a' = (5')
if

We define the average rates at which A1A1 females give birth to males, A1
males to females, A.A5 females to females by

Pc = X, Jak, ,, (6a)

pb = X,kla,kl, (6b)
id

= X, jja, . (6c)
k

The mean fertilities show at once that, as expected, males and females
contribute equally to females:

ë = (7a)

= (7b)

= = b'. (7c)

Observing that
N = N' = (8)

Equations (4) to (7) yield
1'J = inN, J' = iWN', (9)

where the mean fitnesses for males and females are

in = e—d, in' = e'—d'. (10)

From (1), (4), (4'), and (10) we obtain the differential equations for the
genotypic frequencies:

= Xk,Zak,l—(d+in)pl (11)
ki

= (1/2) (XI,Jka,Jk+XJ,ka,Ik)—(dJ+iñ')PJ. (11')
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Given the fecundities, mortalities, and the mating frequencies as functions
of the genotypic proportions, (11) and (11') completely specify the genotypic
frequencies. Summing (11') over j', we deduce the differential equations
for the gene frequencies

= pc1—p1(d1+iñ), (12)
= (l/2)(pb+pc)—p(d+iñ'), (12')

where the allelic mortalities and fertilities are given by

pd = Pjdj, (13a)

pcj = Pc1, (13b)

JC = (13c)
J

Note that the birth and death rates must be specified separately; the Mal-
thusian parameter combination does not suffice to determine the evolution
of the population.

To elucidate the behaviour of the model, let us continue by assuming
random mating,

XIJk = Pik, (14)
and no selection,

a,Jk = C, aJk = C', (15a)

d1 = d, d = d'. (15b)

Substituting (14) and (15) into (6) and (13) yields
= d', b = c = C', c, = c. (16)

Inserting (16) into (12) and (12') and recalling (10), we find
= c(p—p1), (17)

= (l/2)c'(p—p). (17')
From (17) and (17') it follows at once for constant fertilities that the quantity

c'p(t) + 2cp(t) = c'p(O)+ 2cp(0) (18)
is conserved. Denoting the difference between the corresponding allelic
frequencies in the two sexes by

q(t) = p.(t)—p(t), (19)
we obtain from (17) and (17')

4, = —[c+(1/2)c']q. (20)

At equilibrium, (18) and (20) yield

p.(co) = p(co) = [c'p1(0)+2cp(0)]/(c'+2c). (21)
Substituting (14) and (15) into (11') leads to

Pj = (1!2)c'(pp+pp)—c'P. (22)
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It is easy to see from (17), (17'), and (22) that the deviation

Q = PJ—pp (23)

from Hardy-Weinberg proportions in females satisfies

= —c'Q1. (24)

The death rates do not appear in equations (17) to (24) because nonselective
deaths do not alter the genotypic frequencies.

If the fertilities are constant, (20) and (24) give

q(t) = q(0)e_+/2']t, (25)

Q;(t) = Q(O)e_"t. (26)

From (9) we find readily that the sex ratio s = Y/X' always satisfies

= (m—,ñ')s, (27)

which in this case reduces to

= (c—c'—d+d')s. (28)

Hence, if births do not change the sex ratio, i.e. if c' =c, then (18) and (25)
simplify to

p(t)+2p(t) = p.(O)+2p(O), (29)

q.(t) = q(0)e_(3c2)t. (30)

3. Discussior'

The result (29) agrees with the well-known constancy of the weighted
mean of gene frequencies in the discrete, non-overlapping generations model
(see, e.g., Crow and Kimura, 1970, pp. 44-47). In our continuous model,
however, the difference between the male and female gene frequencies
approaches zero monotonically according to (30), while in the discrete case
the decay is oscillatory (see, e.g., Crow and Kimura, 1970, pp. 44-47):

q(t) = q(0)(—l/2)t. (31)

The difference between (30) and (31) arises because discrete changes in
gene frequency allow an overshoot. The approach to Hardy-Weinberg in
the discrete model is easily derived. From (23),

Q;(t + 1) = (1/2)[p(t)p(t)+ p(t)p(t)] —(l/4)[p(t)+ p(t)] [p(t) + p(t)]
= —(l/4)q(t)q(t) = (1/4)Q(t), (32)

where we used (31) in the last step.
Therefore,

Q(t) = (1/4)tQ(0). (33)

Thus, the deviation from Hardy-Weinberg tends to zero without oscillation.
It is interesting to note that in the continuous model the gene frequency
difference tends to zero faster than the deviation from Hardy-Weinberg,
whereas in the discrete case the opposite result holds.
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A question of considerable biological importance is which of the two
simple models discussed at the beginning of the paper approximates better
a natural population with overlapping generations. The most sensitive test
provided by the theory developed above is an experiment to look for the
presence or absence of oscillation in the approach to equality of the male
and female gene frequencies at an X-linked locus. It would be desirable
to follow the male and female gene frequencies in a continuously-reproducing
population of Drosophila or some other suitable organism. Nature would
be simulated most closely by starting the population in demographic equi-
librium, and the results would be simplest and least ambiguous if the mutant
used were nearly neutral. One can monitor the amount of selection by
recalling that the weighted gene frequency combination (18) remains
constant as long as the gene is neutral and births do not alter the sex ratio.
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