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SUMMARY

The I.QQ. scores of 3558 individuals from a pedigree study were subjected to a
biometrical genetical analysis. Only models which took account of assortative
mating provided a statistically adequate summary of the observed variation for
intelligence. The conclusions of this study agreed with a published analysis
of other data in demonstrating a large additive genetical component of varia-
tion and the effect of assortative mating. Although the study detected no
significant dominance, it was shown on theoretical grounds that the observed
data were consistent with complete dominance for 1.Q.

1. INTRODUCTION

WHILST it is an easy matter to detect a marital correlation for human traits
it is often more difficult to detect the genetical consequences of assortative
mating. Fisher (1918) proposed a genetical model of continuous human
variation which incorporated the effects of assortative mating. Fisher’s
model was employed by Burt and Howard (1956) in their analysis of intelli-
gence and, more recently, by Jinks and Fulker (1970) when they applied the
techniques of biometrical genetics to the analysis of Burt’s correlations between
relatives for 1.Q). (Burt, 1966). Jinks and Fulker proposed a test for the
genetical consequences of assortative mating based on a comparison of
within- and between-family components of genetical variation, but showed
that the test was ineffective in the presence of dominance. They were able
to detect assortative mating in the presence of dominance by including the
parent-offspring correlation in their analysis to provide an estimate of addi-
tive genetical variation. Although the effect of common environments is
small for 1.Q ., Jinks and Fulker suggest that these effects may inflate the
estimate of additive variation leading to an underestimation of dominance.
The scaling test they propose, furthermore, requires comparing estimates of
components of variance for which standard errors are large, and involves the
observed value of the marital correlation as a further parameter in the specifi-
cation of the model.

It is possible, in theory and in practice, to develop a scaling test for the
detection of assortative mating which involves data on only one generation.
The method to be discussed does not require an estimate of the marital
correlation but can be used to predict the marital correlation as a desirable
independent validation of the model. The solution is achieved by the direct
fitting of genetical models to the meansquares derived by a hierarchical
analysis of variance of the individuals in the last generation of many-
generation pedigrees.
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2. TuE DATA

I.Q . scores were analysed for 3558 individuals from a number of pedigrees
of Reed and Reed’s (1965) family study of mental retardation. Only pedi-
grees with fully documented relationships for at least five generations were
selected. The number of individuals was chosen to be the smallest likely to
discriminate between various models with reasonable confidence (Eaves,
1972). Within each pedigree some data were omitted to clarify the genetical
interpretation of the statistical analysis:

1. Offspring of known consanguineous matings were excluded.

2. Where an individual married more than once the offspring of only one
marriage were included.

3. Individuals appearing in more than one pedigree and their offspring,
were excluded.

4. In the case of like-sexed twins one individual of the pair was omitted
because the zygosity of the pairs was unknown.

Two further assumptions, applicable to any genetical analysis of Reed
and Reed’s data are necessitated by the structure of the original sample:

1. That the selection of pedigrees with at least one instance of mental
retardation still provides a sufficiently representative sample of the
population for a genetical analysis of continuous variation.

2. That any missing 1.Q) . records are randomly distributed throughout
the sample.

The I.Q). scores given in the study are those achieved nearest the age of
14 years, and where scores on both group and individual tests were available
the authors adopted the latter on account of their greater reliability. No
overall mean and variance is quoted for the study, which involves data on
over 80,000 individuals. A mean of 10544 (N = 10767) is obtained by
combining the figures given for the means of 1866 male spouses, 1866 female
spouses, 1047 children of normal persons with retarded siblings, and 5988
children of normal persons without retarded siblings. The variance of these
data is 224-94. The sample analysed in this paper has a mean of 105-06 and
a variance of 197-18 which may indicate that the sample is a little under-
representative of the total variation. It is difficult to assess the consequences
of this difference for a genetical analysis. The number of individuals excluded
from a subset of 1351 individuals was 102, ¢.e. 7-5 per cent. of the total avail-
able scores were excluded for various reasons. The figure is perhaps un-
comfortably large and may result in the genetical model which emerges from
the analysis being unrealistic as a model for the variation in the reference
population. In spite of these difficulties it was decided to proceed with the
analysis because sufficient is known about the genetical system underlying
differences in intelligence for any major discrepancies to be immediately
apparent. Indeed, it will be shown that the results of this analysis are
clearly consistent with the outcome of other research on the genetics of
intelligence.

The data analysed here usually relate to the fifth or sixth generation
descendants of the grandparents of individuals institutionalised for mental
retardation in the period 1911-18. This means that the scores are fairly con-
temporaneous and may, therefore, not be so susceptible to differences in
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test procedure and standardisation as scores on ancestral generations. The
relative contemporaneity of scores on collateral relatives is a further advan-
tage of the analysis to be presented in comparison with the analysis of data on
successive generations.

3. ANALYSIS OF VARIANCE AND COMPONENTS OF VARIATION

In addition to actual 1.Q) . scores on 3558 individuals, Reed and Reed’s
data allow the complete specification of the pedigree relationships of every
individual in this study as far back as the great-great-grandparents. The
descendants of 53 pairs of great-great-grandparents are analysed here.
Within each great-great-grandparent the contribution of each great-
grandparent may be specified, and within each great-grandparent we may
define the effect of each grandparent. This hierarchical model can thus be
followed until finally the score of each individual within a family can be
specified in terms of the contribution of his successively more remote
ancestors.

The total variance, %, may thus be partitioned into its components.

2 __ 2 2 2 2 2
Op = Opgggpt Oggp+ Ogp+ Op+ 0y

R : .
where: "Wg‘"’ = between great-great-grandparents component of variance;

o2 = within great-great-grandparents, between great-grand-

900
parents component;
oz, = within great-grandparents, between grandparents com-

ponent;
o3 = within grandparents, between parents component;

2 = within families component of variance.

Ow

The analysis of variance is presented in table 1. No direct F test of the
variance components is possible because the highly unbalanced structure of

TaBLE 1

Analysts of variance

Item d.f. M.S.

Between great-great-grandparents (GGGP) 52 971-8298
Within great-great-grandparents:

between great grandparents (GGP) 113 554-5149
Within great grandparents:

between grandparents (GP) 401 308-5967
Within grandparents:

between parents (P) 902 234-3704
Within families (W) 2089 121-6629

the hierarchy results in the coefficients of the same variance component
changing from one meansquare to another. The expectations of mean
squares and the estimates of the variance components are given in table 2.
The coefficients of the ¢%’s are calculated by an extension of the method
outlined by Snedecor (1956). The standard errors of the components,
which enable their significance to be tested, are obtained as the square roots
of the diagonal elements of the inverse of the information matrix.

M = (C'WC)-!

where C is the matrix of the coefficients of the variance components in the
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expectations of meansquares, and W is the diagonal matrix of weights. The
elements of W are the reciprocals of the theoretical variances of the observed
meansquares and are thus obtained from

Wy = d;2x;
where W; is the ith diagonal element of the matrix W,
d; is the number of d.f. corresponding to the observed variance x,.

From table 2 it can be seen that all the components of variance are
significant beyond the 5 per cent. level with the exception of of,,. ., which
would be significant only at the 13 per cent. level. Four components
possibly five, are thus required by the statistical model to account for the
observed variation in I.Q). Presumably, therefore, this would form the
necessary minimum for any interpretation of I.Q) . differences based solely on
chance and cultural factors. It will be apparent, however, from the analysis
to follow that a greater economy can be achieved by relating the components

TABLE 2

Expectations of meansquares and estimates of variance components

Item E.M.S. 42 S.E.
GGGP a:,+2'949602,+9-0202031,+25'74060;”+66'63690;g” 5-1269 4-54
GGP af,,+2-95480;+ 7'89010:p+ 19~3830c1;m, 9-5719* 5-85
GP a:,+2-3754a;+5-4514a:p 13-3355% 6-34
P aﬁ,+2-34360§, 48-0916%** 7-02
w a2 121-6629%** 5-32

w
*** = Significant at the 0-001 level. One tail test.
* = Significant at the 0-05 level.

of variance, and consequently the observed meansquares, to their expecta-
tions on the basis of a genetical model.

4. THE GENETICAL MODEL

Tisher (1918) pioneered the genetical interpretation of the correlations
between relatives. His work has been the subject of a detailed commentary
by Moran and Smith (1966), has been summarised in relation to intelligence
by Burt and Howard (1956) and his particular treatment of assortative
mating has been outlined by Crow and Felsenstein, 1968). Fisher’s model
forms the basis of the subsequent analysis and it will be sufficient here to
relate the expectations which Fisher gives for correlations to the expectations
of the meansquares obtained in this particular analysis.

For a population in equilibrium under assortative mating the correlation
between pairs of collateral relatives having one pair of common ancestors is

given by
(1 +4
Tp = €10y

The parameters are defined as follows:

n
) + %(n+1)A(n—1)cl(1 —02).

4 is the correlation between the additive genetical deviations of spouses;
¢y is the proportion of the total variation which can be ascribed to
genetical differences (i.e. the * broad heritability **);
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¢ is the proportion of the genetical variation which is additive;

n is the number of opportunities for genetical recombination in the
shortest path in the pedigree linking the relatives under consideration
(i.e. n = 1 for sibs, 3 for first cousins).

The additive variation which comprises the numerator of ¢, is made up
of that part which would result from random mating a population with the
same gene frequencies and an additional fraction which arises because of
assortative mating.

It can be shown quite simply that ¢;c, is the proportion of the total
variation which is due to additive genetical effects (i.e. the * narrow herita-

bility *, #t,) and ¢;(1 —¢,) is the proportion of the total variation which is
due to dominance effects.

Since the correlation 7, is the ratio of the variance between groups of
nth degree relatives, of, to the total variance, o%

] — 22
te. 1, = 0p,/cm,
we may write the expectation of ¢, as
bn
e _ ., 2
Opn = TnOrp-

Or, in terms of Fisher’s model

14+ 4\"
oty = o %[clcz(

)] +eptranda -

Now ¢%, cancels in both parts of the right-hand side of this expression since

¢1¢3 and ¢;(1 —¢,) are both ratios involving ¢% as denominator. This leaves,
again in Fisher’s notation:

n
(.,2+ lfA _rz) (I ';‘A) +%(n+l)A(n—l)€2

1 1+ 4\"
2 (1_—2)( : ) + 1D glnD 2

where 72 is the additive genetical component of variation, and
¢? is the dominance genetical component.

It is convenient at this stage to relate 72 and €2 to the more familiar
notation of biometrical genetics (Mather and Jinks, 1971) and write finally,
72 = 4Dp
62 = %HR

When n = 1, that is for the variance component between families of full

sibs,
1 1+4
%y = $Dr (I—A) (%) +16Hr
which reduces to the expectation given by Jinks and Fulker (1970) namely:
1+4

ng = %DR (2(]‘_/1)') +T]:€HR

2
Tbn

I

4
= iDr+1% (1 —A) Dr+y¢Hp.
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The expectations of o? for the other degrees of collateral relatives are
given in table 3. Additional parameters may be added to the model to
specify environmental effects should these be required.

TaBre 3
Expectations of components of variance

a? n Dp Hr
1 G e
B %(I—IA) (#)5 o
The 3 5 (T—I_A) (#)3 oA
W )
% — % s

It is not possible to relate the ¢%'s in the table directly to those in the
hierarchical analysis except in the case of o}, and op,,,,. The ¢%s at the
intermediate levels have to be adjusted to take account of the variation
removed by components at higher levels in the hierarchy.

2 g2 g2
Thus, %99p = “bggp ~ “bgggp

R S

%p = %bgp ™ %bggp
2 _ g2 2
% = % %ogp
At this stage the coefficients of the expectations are better evaluated
numerically than algebraically using the algebraic coefficients of table 3 and
substituting for particular values of 4. A column vector of coefficients, b,,
is thus generated for the ith parameter of the model. Multiplying the original
matrix of the coeflicients of the variance components, C, by each b, gives the
coeflicients of the parameters of the genetical model in the expectations of

the observed statistics,
i.e. z, = Abi.

The individual vectors, z;, may be combined into a matrix Z which sum-
marises the coeflicients of all the genetical parameters in the expectations of
meansquares of the hierarchical analysis.

5. FITTING THE GENETICAL MODEL

Providing the number of parameters, p, is less than the number of
observed statistics, £, we may obtain weighted least-squares estimates of the
parameters by solving the equations

(Z’WZ) " (Z'Wx) = 6

where Z and W are the matrices of coefficients and weights as already
defined, x the vector of observed statistics, and 6 is the vector of estimates.
The application of this procedure to genetical analysis is discussed by Cooke
et al. (1962). The sum of the weighted squared deviations of the observed
statistics from their expectations when the model is fitted is a chi-square for
(k—p) d.f., and can be used to test the goodness of fit of the model. By
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deleting redundant parameters, or fitting additional parameters when
necessary it is possible to arrive at the simplest model which will account for
the observed variation (Jinks, Perkins and Gregory, 1972).

The basic genetical model fitted to the data included four parameters:
Dpr and Hp specifying additive and dominance genetical variation, and E;
and E, specifying within-family and between-family environmental in-
fluences. With no independent estimate of E, from groups of separated
twins or sibs it is not possible to separate Hg, E; and E, with the result that
the information matrix is singular. Only three independent parameters can
be fitted. Either E, can be estimated on the assumption that Hp is zero, or
Hp, can be estimated on the assumption that E, is zero. Since the full model
involving four parameters gives an information matrix of rank 3 the additional
parameter is redundant with this set of data and both three-parameter
models will give the same chi-square test of the residual variation.

The genetical model was fitted firstly on the assumption of random mating
and subsequently assuming various degrees of assortative mating.

6. TESTING THE ASSUMPTION OF RANDOM MATING

Table 4 gives the expectations of meansquares in terms of the genetical
and environmental parameters on the assumption that 4 = 0. Fitting

TasLe 4
Expectations of meansquares for genetical model

1. Random mating
A

[ Al
Meansquare Dpr Hp E, E,
GGGP 1-7878 0-3719 1 2-9496
GGP 1-4010 0-3722 1 29548
GP 0-9509 0-3360 1 2-3754
P 0-6894 0-3340 1 2-3436
W 0-2500 0-1875 1 0

various combinations of the parameters gives the estimates and significance
levels presented in table 5. No two-parameter model fits the data if we

TaBLE 5
Estimates of genetical and envir tal parameters (random mating model)
Model Dp Hp E, E, x? d.f. P
1 401-44%*x — —_ — 59-82 4 *okk
2 187-98% * * 380-35%** — — 15-70 3 * %
3 296-07*** — 46-31*** — 17-31 3 Fkk
4 406-01%**  —476-45* 109-44*** — 4-89 2
5 405-54% % * — 20-22%** —29-68* 4-89 2

*** = Significant at 0-001 level.
** = Significant at 0-01 level.
* = Significant at 0-05 level.
Dashes indicate that the particular parameters were deleted from the model.

assume random mating since all the chi-squares are significant beyond the
1 per cent. level. It is noticeable that the three parameter models, 4 and 5,
give significant and negative estimates of Hp and E, respectively. This
result suggests a fundamental failure of the random mating model for I.QQ
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One possible explanation, of course, may be the cultural determination if
1.Q) . differences, but a further, more tangible, possibility may be the effect of
the mating system on the pattern of genetical variation.

7. THE EFFECT OF ASSORTATIVE MATING

The possible influence of assortative mating may be investigated by
modifying the coefficients of the model to take account of some degree of
assortative mating. Table 6 gives the expectations of meansquares for a

TABLE 6
Expectations of meansquares for genetical model

2. Assortative mating 4 == 0-3
A

[ R
Meansquare Dp Hpg E,
GGGP 5-6281 0-3809 1
GGP 2-8638 0-3795 1
GP 1-5045 0-3401 1
P 0-8791 0-3307 1
w 0-2500 0-1875 1

three parameter model when 4 = 0-3. The value of 4 is chosen to be fairly
consistent with the observed phenotypic correlation between mates for I.Q) .,
but any similar value would suffice. Comparison of the model in table 6
with the random mating model in table 4 reveals how the contribution of the
additive component, Dpg, is greatly increased at the higher levels of the
hierarchy when assortative mating is incorporated into the model.

Various combinations of parameters may be fitted as before, to give the
results summarised in table 7. A simple additive genetical model, incorpora-

TABLE 7

Estimates of genetical and environmental parameters (assortative mating model A = 0-3)

Model Dr Hr E, X df. P
1 293.75%** — — 23407 4 Kk
2 102-41%*%  495.5]%%* — 694 3  ns.
3 163-13%** — 81-46%%* 151 3  ns
4 142:95%+*  141-09 50-46%* 074 2 s

**¥ = Sjgnificant at 0-001 level.
n.s. = Not significant at 0-05 level.

ting no dominance variation or environmental variation, once more fails to
fit the data. The additive-dominance genetical model almost fails if it is
assumed that there is no environmental variation. The most striking differ-
ence between this table and the corresponding table for the random-mating
model is the unequivocal fit of the two parameter model involving simply
additive genetical variation and within family environmental variation
(xtsy = 1:51). The significance of this result is only emphasised by the
failure of the Dy, Hr model to provide any adequate description of the data
with whatever mating system is assumed, and the failure of the Dg, £, model
to account for the observed variation on the assumption of random mating.
The method of analysis clearly permits the detection of the genetical conse-
quences of assortative mating and in this particular instance reduces the
number of necessary parameters from four to two, namely Dp and E|
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Having thus decided on a minimal model it is possible to find the value
of 4 which minimises the chi-square in order to provide the best-fitting model
for the observed statistics. Fitting models with other values of 4 also pro-
vides an indication of the sensitivity of the analysis to changes in the degree
of assortative mating assumed.

Table 8 gives the expectations of meansquares in terms of £, and Dpg, for
various values of 4 from O (i.e. random mating) to 0-8. The very marked

TABLE 8

Reduced assortative mating models

Coefficient of Dg for 4 =
A

r

Meansquare E; 0-0 01 0-2 0-3 0-4 0-6 0-8
GGGP 1 1-7878  2-5260  3-7038 56269  8-8543 24-6540 91-5345
GGP 1 14010 17672  2-2438  2-8637  3-7080  5-9895  9-6820
GP 1 09509  1-1076  1-2911  1-5046  1-7513  2-3613  3-1530
P 1 0-6894 0-7494 0-8125 0-8784  0-9472  1-0938  1-2520
w 1 0-2500  0-2500  0-2500  0-2500  0-2500  0-2500  0-2500

increase of the coefficient of Dg in the between great-great-grandparents
meansquare as 4 increases reflects the high degree of homozygosity and
linkage disequilibrium when 4 is large, and the comparatively small amount
of segregation taking place.

Two additional models were also fitted in an attempt to minimise chi-
square; for 4 = 0-25,and 4 = 0-27. The results of fitting the various models
are summarised in table 9. The sensitivity of the model to changes in 4 is

TasLe 9
Summary of reduced models
A Dr E; X:s) htn ©

0 296-07%** 46-3]%** 17-31%** 0-76 0

0-1 239-23%** 61-0]%** 7-43 0-69 0-145
0-2 199-64%** 71-49%%* 2-08 0-64 0-313
0-25 179-81*** 76-88%** 1-26 0-61 0-410
0-27 173-06%** 78-72%** 1-25 0-60 0-450
0-3 163-13%** 81-46%** 1-51 0-59 0-508
0-4 134-99%* * 89-63%** 5-26 0-56 0-714
0-6 91.86%** 103-17%** 22.27%*** 0-53 1-132
0-8 61-82%** 114-38%** 47-80%** 0-57 1-404

**k = Significant at 0-001 level.
Note: All estimates, with the exception of those for A=0-08, are true maximum likelihood

estimates obtained by iteration.
obvious. The procedure adopted here can discriminate models involving
little or no assortative mating and those incorporating a high degree of
assortative mating from models which assume an intermediate value of A.
Interpolation on a graph relating x? to 4 suggested that values of 4 between
0-09 and 0-43 would provide a satisfactory model and that a value of 0-27
approximates to that satisfying the minimum chi-square criterion. Values
of 4 outside the limits given would lead to failure of the model at or beyond
the 5 per cent. level.

The proportion of the total variation which can be ascribed to additive
genetical causes is:
1

1
#e = gty P [z P2
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The values obtained for A, are given in table 9. About 60 per cent. of the
total variation is apparently due to additive genetical influences.

Since the value obtained for 4 has been derived without any reference to
the observed marital correlation the prediction of the latter from the para-
meters of the genetical model provides an important independent validation
of the method. The additive genetical correlation between spouses is given
by

A = ¢i6yp, in Fishers notation,
= ht,p in the present notation,

where p is the marital correlation. Given 4 and kt,, we can obtain an esti-
mate of u which can be compared with the value observed in the population.
The values of p estimated by this method are given in table 9. The estimates
are clearly highly sensitive to changes in 4 since 4t, and A4 are negatively
correlated. When 4 = 0-27, p = 0-45. Reed and Reed (1965) give 0-326
as the observed value for the marital correlation based on 1866 pairs, but
when a correction for unreliability is applied their estimate of the ‘“true >
correlation is 0-464 which is remarkably close to the value obtained when
A = 0-27. Either value for the observed correlation is well within the limits
of this analysis since the lower limit for 4 = 0-09 corresponds to p = 0-14
and the upper limit of 4 = 0-43 corresponds to p = 0-78. Both of these
figures are approximate, based on heritabilities derived by interpolation.

8. Discussion

This body of data, which forms part of perhaps the largest single study of
1.Q)., is clearly consistent with a simple genetical interpretation which takes
account of the observed degree of assortative mating. The only other study
which even approaches this magnitude is that by Burt (1966) and with which
some comparison is clearly necessary. The biometrical-genetical reanalysis
of these data by Jinks and Fulker (1970) provides the best basis for compari-
son.

In two important respects the two studies give directly comparable
results, namely: the estimate of the narrow heritability and the estimate of 4
which best satisfies the data. This analysis of Reed and Reed’s data provides
an estimate of 4, = 0-60 and A = 0-27, Jinks and Fulker’s analysis of Burt’s
correlations give Af, = 066 and 4 = 0-26. The similarity of these two
results is sufficient vindication of the comparison. One striking dissimilarity
between the two studies which cannot be dismissed lightly is the fact that
no dominance was apparently detected in this analysis whereas Burt’s data
reveal significant dominance when the parent-offspring correlation is in-
cluded in the analysis. Jinks and Fulker indicate that the estimate of Hp
they obtain is consistent with complete dominance for 1.Q} . if the gene fre-
quencies are equal at all loci involved in the expression trait. Indeed, their
own analysis of the within family skewness for Reed and Reed’s data is
indicative of directional dominance. It has been shown elsewhere (Eaves,
1972) that a study of the design and magnitude executed by Burt would be
capable in many instances of detecting complete dominance. It may now
be demonstrated using a similar procedure that the design and analysis
employed in this paper is unlikely to yield a significant estimate of Hg even
if dominance were complete.
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Let the total variance of the population be unity. Let the narrow herita-
bility be 0-60, 4 = 0-3 and let dominance be complete, i.e. Hg/Dr = 1-0.
The theoretical value of Dg and Hp is then Dr = Hp = 0-86. The broad
heritability is thus 08-2 approximately, leaving 0-18 units of variation ascribed
to environmental causes. Let all this variation be due to within family
environmental differences, i.e. put E, = 0-18. Following the procedure
described by Eaves (1972), we may generate expected values for the mean-
squares of the hierarchical analysis and compute weights for the weighted
least squares analysis for a sample of the size analysed in this study. The
simulated data and their expectations are given in table 10. The informa-
tion matrix and its inverse are given in table 11. Such data would yield
estimates and standard errors as follows:

Dp = 0-86 +0-14
Hp = 0-86 +0-88
E, =018+0-14.

TasLe 10

The model and the expected statistics for a population of unit total
variance when A = 0-3, Dr = Hr = 0-86, E, = 0-18

Meansquare  Dg Hg E, x Weights
GGGP 5-62 0-38 1 5-34 0-91
GGP 2-86 0-38 1 2-97 6-41
GP 1-50 0-34 1 1-76 64-73
P 0-88 0-33 1 1-22 303-01
w 0-25 0-19 1 0-56 3330-68
TapLe 11
The information matrix and the variance-covariance matrix of the parameters
Dr Hg E,
Dg 669-6340 288-1235 1219-8606
(Z’WZ) < Hr 288-1235 161-7751 757-6123
E, 1219-8606 757-6123 3705-7400
Dpg 0-0199 —0-1119 0-0163
(Z’WZz)~1 < Hg —0-1119 0-7747 —0-1215
E, 0-0163 —0-1215 0-0197

We can thus see that even with complete dominance the likelihood of its
detection is small with a design of this type and we may therefore conclude
that this analysis of Reed and Reed’s data and Jinks and Fulker’s analysis of
Burt’s data are consistent with complete dominance for I.Q) . Having noted
the likely consequences of fitting a dominance parameter to Reed and Reed’s
data we may consider the values obtained for Dy, Hr and E; when these
three parameters were fitted on the assumption that 4 = 0-3 (table 7). A
non-significant estimate of Hp is obtained, which is precisely what is expected,
but the estimate is at least consistent with complete dominance since it is
almost equal to the estimate of Dg. The additional parameter, however,
leads to no significant improvement in the fit of the model. Whatever
dominance variation there is, has been accounted for by the estimation of
Dpg and E; with which Hp, is highly correlated. The futility of attempting to
fit a dominance parameter is indicated by the fact that 94 per cent. of the
variation of the coefficients of Hg in the model of table 10 may be accounted
for by correlated variation in the coefficients of Dg and E,.

30/2—0
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Further evidence of the degree of independence of the parameters can be
obtained from the eigenvalues of the information matrix (table 11) which
are, in descending order: 4294-03, 241-89 and 1-23. These account for
94-64 per cent., 5-33 per cent. and 0-00 per cent. respectively of the total
information. The fact that the last eigenvalue is small implies that there is a
high degree of redundancy in the model and that the whole system could be
adequately explained by reference to no more than two orthogonal para-
meters. It is, therefore, to be expected that the analysis presented here,
whilst providing a comparatively sensitive test for the consequences of
assortative mating offers a poor test of dominance.

In the light of this discussion it is clear that the data of Reed and Reed
analysed here, and Burt’s data give results which are highly similar with
respect to the amount of additive genetical variation and the degree of assor-
tative mating and provide results which are consistent with the assumption
of complete dominance at the loci involved in the determination of individual
differences in 1.Q) . The analysis presented in the paper has the particular
advantage of detecting unambiguously the genetical consequences of assor-
tative mating without reference to any estimate of the marital correlation
except as a final stage in validation of the results by criteria external to the
analysis.
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