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1. INTRODUCTION

THE substitutional load, or cost of evolution, was first defined by Haldane
(1957). He calculated the load for cases in which population size was
infinite, so that all changes in gene frequency were deterministic. The
substitutional load in a finite population was calculated by Kimura and
Maruyama (1969). In this paper I will take issue with their definition of the
load, and present calculations based on a definition which I believe corres-
ponds more closely to the spirit of Haldane's original discussion.

In the simplest case, consider a haploid population. Suppose that a gene
in the process of substitution has frequency x, and that its selective advantage
iss. According to Haldane's definition, the locus contributes s(l —x) during
the present generation to the substitutional load. He calculated the load by
summing this over all generations as the frequency changed from its initial
value to 1. The load per generation was calculated by multiplying by the
number of substitutions occurring per generation. I have argued elsewhere
that the substitutional load is more meaningful if defined as the reproductive
excess necessary to avoid extinction when the gene substitutions occur as
responses to periodic unfavourable environmental changes. If the repro-
ductive excess is d, the number of surviving offspring of the present genera-
tion will be:

(1 +d) 17 (1 —sj(l —xi)),

where the product is taken over all loci segregating in the offspring genera-
tion. The first half of the expression is the fecundity, and the second half is
the mean viability of these offspring. The number of offspring surviving
after T generations will then be:

(1 +d)T 1117(1 —sj(l —xj(t))), (I)
t i

where sj is the selection coefficient at the ith locus, and xj(t) is the frequency

of the favourable allele at locus i in generation t.
Ifthe population is not to become extinct, (1) must be greater than one

for large T. Taking logarithms, we must have

loge (l+d) Zlog (l—sj(l—xj(t))). (2)

If the i are small, which we assume,

—loge (1 —s(l —x)) s(1 —x),

so that we must have

loge (l+d)
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Ifdis small, loge (1 +d) so that we can take as the value of dnecessary to
avert extinction

d = E2'sj(l—x(t)). (3)

Since all of the approximations have the effect of underestimating d, the
value given in (3) may be taken as a lower bound in those cases in which the
approximation is poor. When we can assume that sis small, but when d is
not small, the substitutional load calculated from (3) will measure not the
reproductive excess but the natural logarithm of the number of offspring
per parent necessary to prevent extinction. Equation (3) is exactly the same
as the Haldane definition of the substitutional load. Note that equation (3)
gives the substitutional load per generation. For the remainder of this paper
the discussion will be in terms of load per substitution. This can be con-
verted to load per generation by multiplying by the number of substitutions
per generation.

For the deterministic case in which the gene frequency increases from
p to I, we can use Haldane's formula to obtain the substitutional load:

L=J(l_x)dt. (4)

But when random genetic drift is present, it is not obvious what to do. If
we start with a large number of replicate populations, each with initial gene
frequency p0, and allow selection and drift to proceed, some will end up with
a gene frequency of 1 and some with a gene frequency of zero. In any
population of the first sort, integral (4) will be finite. But if a population
loses the favoured allele, it will have a load of s per generation forever, so
that its substitutional load, and hence the average substitutional load over
all the replicates, will be infinite. Kimura and Maruyama (1969) dealt with
this problem by assuming that the substitutional load is s(l —x) as long as x
is between zero and 1, but as soon as a population loses the favoured allele,
there is no further contribution to the substitutional load. This will prevent
the average load from being infinite. They calculate the average load
incurred by a population which starts with a gene frequency of p, and then
divide this by U(p), the probability of fixation of the favoured allele. Thus,
their final result is expressed as the substitutional load per completed sub-
stitution.

I have argued elsewhere (Felsenstein, 1971) that the substitutional load
is imposed by deterioration of the environment. In our model, each change
in the environment depresses the fitness of one allele at a different locus. The
unfavourable allele remains in the population for some time after the
environmental change. This depression of fitness necessitates a reproductive
excess to avoid extinction of the population. Thus, the load results from the
lag in evolutionary response to environmental change. On the other hand,
if a favourable mutant occurs and is substituted in the absence of any
deterioration of the environment, this substitution is not accompanied by any
substitutional load. In fact, such a substitution makes the population better
able to bear substitutional load, since it either increases fecundity or decreases
mortality.

If this view is accepted, then we cannot assume that the load becomes
zero as soon as a favourable gene is lost. If the environment deteriorates,
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and if the favoured allele is lost as a result of genetic drift, there continues to
be a load of s per generation until the favoured allele recurs by mutation and
is substituted, thereby finally nullifying the effect of the environmental
change on fitness. If the rate of mutation to the favoured allele is zero, the
average load imposed by an environmental change will be infinite. A certain
fraction of the time there will be no successful evolutionary response to
environmental deterioration, and the fitness of the organism will continually
decline. To calculate the substitutional load we must, therefore, consider
not only the initial gene frequency and the selection coefficient but also the
mutation rate. Let us calculate the substitutional load with this in mind.

2. TuE BASIC DERIVATION

We will derive a diffusion approximation to the substitutional load.
This will be done heuristically, without any pretence at rigor. Consider a
haploid population of size N with initial gene frequency p, selection coeffi-
cient s and mutation rate u to the favoured allele. Let the unit of time be
N generations. We consider a series of these populations, with N getting
larger and u and s becoming smaller such that .J'fs and J/u remain constant.
The populations in this series will behave more and more like a diffusion
process, the change in gene frequencies in a unit of time becoming more and
more nearly continuous. The diffusion equation which describes the limiting
process is used to approximate to the behaviour of the initial population in
the series.

Let P(q, p)dq be the probability density of the gene frequency (q) in the
next generation (1/N of a unit of time later), given that it isp in the present
generation. Let L(p) be the function we seek to derive, the expected sub-
stitutional load in a population which starts at gene frequency p. Since the
total load is the load in the present generation plus that expected to be
incurred in future generations, we have

L(p) =
s(l_p)+JP(q,P)L(q)dq. (5)

If L(p) is analytic, we can expand it in a Taylor series around q =p.
Substituting this for L(q) in (5), and ignoring the third and higher

powers of (q —p), which we can do since q does not change much from p in
one generation,

L(p) s(l —p) +L(p) J P(q,p)dq+L'(p) JP(q,P)(q_P)dq

+L"(p) JP(q,p)(q_p)2dq. (6)
We note that

J P(q,p)dq = 1, (7)

J P(q,p)(q—p)dq M(p), (8)

and
JP(q,p)(q_p)2dq = V(p). (9)

M(p) is the expected change in gene frequency per unit time when the gene
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frequency is p. V(p) is the variance of gene frequency per unit time, given a
gene frequency of p. We can make use of (7) and eliminate an L(p) from
both sides of(6). Substituting (8) and (9), and multiplying both sides by X,
we finally obtain the differential equation

jJT(p)L"(p) +M(p)L'(p) +Xc(1 —p) = 0. (10)

In the present case, the variance of gene frequency is due to random genetic
drift, and the deterministic change is due to selection as well as mutation to
the favoured allele, so that

M(p) =Jsp(1—p)+Ju(l—p), (11)
and

V(p) =p(1—p). (12)

Substituting (11) and (12) into (10) and eliminating a factor (1 —p), we get

pL"(p)+[J'fsp+Xu]L'(p)+Xs 0. (13)

This is a straightforward second-order differential equation, of a type whose
solution is well known. It can be solved if we are given boundary conditions
for the function L(p). The conditions used here are

L(l) = 0 (14)
and

L'(0)<co. (15)

The first is fairly obvious, since there can be no substitutional load if the
favoured allele is already fixed at the outset. The finiteness condition on
L' (0) is less obvious, but it too can be demonstrated. It seems to give quite
usable results. Using (14) and (15), the solution to (13) is

ri rx
L(p) = 2Xs

J
e2N8Xx2N

J e2N8YySNUdy dx. (16)p 0

There is no explicit solution to this integral, but it can be evaluated numeri-
cally and approximated for extreme values of J\1s and J\1u.

3. APPROXIMATIONS TO THE LOAD

(a) J'fumerical evaluation of the integral by series approximation
One of the best, if most tedious, ways of evaluating L(p) is to expand

e—2' and e2N8Y in (16) as power series in .Ns. The body of the double
integral can then be replaced by a power series, which can be integrated
termwise. The result is

(_lV(2JVs)I+k+1(l_hI+k+1
L(p) E . . \. (17)j0k=0 j!k!(2JtIu+lc)(j+Ic+l)

This series will converge, but for large Xs convergence may take so long that
evaluation by computer is expensive. Table 1 gives values of the load
obtained by use of (17). However, the bottom lines of the table, where
21vs = 100, are calculated using approximations (d) and (e), given below.
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TABLE 1

Substitutional load calculated from the double integral, for various values of 2Nu, 2Ns and p.
The values for 2Ns = 100 are calculated using approximations (d) and (e)

2Nu
2

2Ns P 10 10 I0 1 10 100

l0 0 09995 9995x 102 9995x 10 9998x 10' 1000x 10 1000x 10
001 09895 9895x 10—2 9895x 10 9898x 10 9900x l0 9900x 10—6
01 08995 8995x 10 8996x 10 8998x 10 9000x 10 9000x 10
05 0•4996 4996x 10—2 4997x 10' 4998x 10 5000x 10 5000x 10

10—2 0 9950 09951 9955x 10—2 9975x 10 9995x I0— 1000x 10
001 9850 09851 9855x 10—2 9875x 10-- 9895x 10 9900x 10
01 8951 08951 8'955x 10 8975x 10 8-996x 10' 9'000x 10
05 4•963 04963 4966 x 10—2 4981 x 10-2 4997 x 10—i 5•000 x 10

10_i 0 9517 9521 09560 9755x 10—2 9955xq02 9'955x 10'
001 9417 9•421 0•9460 9655x 10—2 9855x 10 9895x 10
01 8522 8526 08564 8758x 10—2 8995x 10 8955x 10
05 4640 4643 04671 4817x 10-2 4966x 10-8 4966s< 10

0 6324 6352 6607 0•7966 9569 x 10—2 9951 x 10
0.01 6225 6253 6507 07866 9'469x 10—2 9851 x 10—2
01 5373 5400 5651 06990 8574x 10—2 8951 x 10—2
05 2389 2408 2583 0•3528 4680x 10—2 4963x 10

10 0 l0027 10275 12625 2880 07056 9•535 x 10
001 907•6 93•23 11•669 2'782 06956 9435x 10—2
01 3703 3923 6018 2•083 0•6099 8540x 10_2
05 7527 l5023 08825 06920 02947 4655 < 10

100 0 100518 10518 15181 6104 2•398 06931
0.01 37227 4117 8064 4•713 2303 06832
01 2348 2307 2303 2•301 1705 05978
05 06931 06931 0693l 06931 06061 02877

(b) Approximation when Ns is small
When .Ns is small, we can discard all but the first term of (17), the one

in whichj = k = 0, ignoring higher powers of Xs. Then

L(p) (I-p) =(l-p). (18)

The approximation can be motivated as follows: When Xs is very small,
selection has almost no influence on the course of events. Suppose that Xu
is small, so that we have to wait long periods of time between mutations. A
population starting with a gene frequency of p will have a probability 1 —p
of losing the favoured allele due to random genetic drift. If the favoured
allele is lost, there will be an average of Xu new mutants occurring per
generation, each of which has probability l/X of drifting to fixation rather
than loss. The population will then have to wait I/u generations until a new
mutant destined to be successful arises. During each of these generations
there is a load s. We ignore the reduction of the load by the presence of the
favoured allele during the generations preceding its initial loss, as well as the
load incurred between the time a successful mutant occurs and the time it is
fixed. The total load is then s(l —p)/u.
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On the other hand, when J'Iu is large, the changes in gene frequency will
by nearly deterministic and mostly the result of mutation pressure. Then
we almost never have loss of the favoured alleles initially present. We can
use a deterministic treatment:

= u(1—p)

L(p) =
Js(l-_p)dt

= J0dt = (l—p). (19)

This happens to give the same result. It is, therefore, at least reasonable
that (18) holds for intermediate values of J'Tu.

(c) Approximation when Nu is small
We can apply a similar argument when Xs is large, as long as .Jfu is so

small that most of the load is incurred while waiting for the occurrence of a
mutant. The probability that the favoured alleles initially present at
frequency p fix is (Kimura, 1962)

1 —e2N8P
U(p) =

1 _e2Ns (20)

If fixation occurs, we count the load as being approximately zero. If the
favoured alleles are lost, which will happen 1 —U(p) of the time, we must
wait for a successful mutant. There are .Nu nesr mutants per generation,
each with probability

u() 1_e2N8 (21)

of succeeding, so that the total load will be

s(1—U(p))

J%ruU()
—e_21

2Xu (22)

This equation can also be derived by taking the double power series in (17),
and ignoring terms in (2Xu + l)1, (2Xu + 2) ', . . . which should be small
relative to terms in (2Xu)' if 2Yu is sufficiently small.

(d) Approximation when both Ns and Nu are large

If we divide all terms in equation (13) by Xs, and then let Xs-*co
assuming that .JSTualso becomes indefinitely large in such a way that the ratio
uJs remains constant, we obtain

(P+)L'P+l = 0. (23)

With the boundary condition L(l) = 0, we can solve this, obtaining

L(p) = loge (24)
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This is simply the load in a deterministic model in which forward mutation
is present. Note that when u = 0, equation (24) reduces to L(p) = —log p,
Haldane's original result.

(e) Approximation when Ns is very large and Nu is small
When J'Is is very large, so that the probability of losing those favoured

alleles which are initially present is essentially zero, formula (22) would
predict a load of zero. A better approximation can be developed by taking

TABLE 2

Identity and accuracy of the best approximation to the load. Accuracy as number of
correct significant figures, to a maximum offour

2Xu

2Ns P i0 10—2 10_i 1 10 100

10' 0 c4 c4 c4 c,d3 b,d4 b,d4
001 c4 c4 c4 c,d3 b,d4 b 4
01 c4 c4 c3 c,d3 b,d4 b 4
05 c4 c4 c3 c,d3 b,d4 b 4

i0 0 c4 c3 c3 c,d2 d 4 b,d4
0'Ol c4 c3 c3 c,d2 d 4 b,d4
01 c4 c4 cS c,d2 d 3 b,d4
05 c4 c4 c3 c,d2 d 3 b,d4

10—1 0 c3 c3 bi d 1 d 3 d 4
001 c3 c3 c2 d 1 d 3 b 3
01 c3 c3 c2 d 1 d 3 d 2
05 c3 c3 c2 d 1 d 3 d 4

1 0 c3 c2 ci d 0 d 2 d 3
001 c3 c2 ci d 0 d 2 d 3
01 c3 c2 ci d 0 d 2 d 4
05 c3 e2 ci d 0 d 2 d 4

10 0 c2 e2 el d 0 d I d 3
001 e 4 e 3 e 1 d 0 d I d 3
01 e2 e2 e2 d 0 d 1 d 3
05 ci el eO e 2 d 1 d 3

equation (16) and approximating the inner integral, assuming that Xe is
large and Nu small:

rx rx fx
I e2'Yy21dy x21 J e2TYdy+ j y2"'dy. (25)
Jo 0 0

We substitute this into (16) and finally get

1 1 — e_2Nsx e2-'° —e2N8
L(p) dx+ 2Xu (26)

The integral must be evaluated numerically, but this is not difficult.
Table 2 presents, for points corresponding to those in table 1, the identity

of the best approximation and a rough indication of its accuracy.



4. Dir'iow'
All of the above equations are for haploid models. With a diploid model,

if the fitnesses of the three genotypes are

AA l+2s
Aa l+s
aa 1,

and the number of diploid individuals is .N, then we can use all of the above
equations, except that we must replace 2JVs by 4J/s and 2Xu by 4Wu.

When the heterozygous genotype is not intermediate, but shows some
other level of dominance, we can no longer use equation (16). Such cases
will not be dealt with here.

5. RESULTS

Figs. 1 to 6 show calculated values of the substitutional load. These are
plotted from table 1, and by using the approximation formulae (b) to (e) for
interpolation and approximation.

Fin. 1.—Substitutional load as a function of mutation rate and initial gene frequency, with
2Ws = 01. Crosses indicate points calculated by numerical evaluation of the double
integral, boxes indicate points calculated from the best available approximation
formula.

Figs. 1 and 2 show the load plotted against 2Xu for small (0.1) and large
(10) values of 21'(s. In both cases the result is as expected: the higher the
mutation rate, the lower the substitutional load. When 2JVs is small, the
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load is nearly proportional to the initial frequency of the disfavoured allele,
so that going from an initial gene frequency of zero to a low initial frequency
has little effect on the substitutional load. But when 2Xs is large and when
21(u is small, initial frequency of the favoured allele has a much larger effect
on the load. If even a few copies of the favoured allele exist in the population,
the strong selection makes it likely that the favoured allele will rapidly fix.
But if no favoured alleles are present initially, the low mutation rate insures
a long wait for mutants, with a large load incurred each generation. This
interpretation of the form of the curves is bolstered by the fact that when
initial gene frequency of the favoured allele is high, the load is not much
reduced by an increase in mutation rate, since enough copies of the favoured
allele already exist to insure its early fixation irrespective of the mutation
rate.

0

.1 100

Fits. 2.—Substitutional load as a function of mutation rate and initial gene frequency, with
2.Ns = 10. The wavy nature of the curve for P = 05 may be a result of the inaccuracy
of the approximations.

Figs. 3 and 4 show the effect of different values of s on the load, for small
(0.1) and large (10) values of 2Xu. When 23'/s is small, selection will have
little effect on the dynamics of gene frequency change. Increasing s will
increase the impact of selection on the size of the load incurred in each
generation, without having much effect on the number of generations which
the deleterious alleles persist. As s increases, therefore, the load is approxi-
mately proportional to s. In fig. 3, where 2Xu is 0.1, as 2iVs becomes larger
than 1, selection suddenly becomes effective. Increases in s in this range
have a much greater effect in increasing the effectiveness of selection than
they do in increasing the impact of the deleterious allele on the load. Thus,
the load passes through a maximum and begins to decrease. Finally, when
2Ws is large, an asymptote is reached at the infinite-population values given

10

.1
.01 1 10

2Nu
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214;

Fin. 3.—Substitutional load as a function of selection coefficient and initial gene frequency,
with 2Xu = 0l.
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Fia. 4.—Substitutional load as a function of selection coefficient and initial gene frequency,
with 2Xu = 10.
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Fic. 5.—Substitutional load as a function of population size and initial gene frequency,
with u and s held constant, with u/s = 100, so that 2Ns = 001 x 2Nu.

p
0
.01

.1

.5

Fso. 6.—Substitutional load as a function of population size and initial gene frequency,
with u and s held Constant, with u/s = 001, so that 2.Mr = 100x2Nu.
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by Haldane (except when p = 0). A doubling of the strength of selection
will halve the number of generations that the deleterious alleles persist, while
doubling the contribution they make in each of those generations to the load.
In fig. 4, where 2i{u is 10, there are no maxima in the load. The curves pass
smoothly from the phase in which load is proportional to s to the phase in
which load does not depend on s. It is not clear to me why there should be
this difference between figs. 3 and 4. It should be noted that for even smaller
values of 2iVu the heights of the maximum values of the load curve can be far
higher relative to the asymptotic values. Kimura and Maruyama also
found maxima in the plot of load against selection coefficient, but those
maxima were far less dramatic than the present ones.

Figs. 5 and 6 show the effect of altering X, so that 2JVs and 2Xu both
change but remain in a constant ratio to each other. When s is larger than u
(fig. 6) there is a substantial drop in the load with increasing population size.
But when u is larger than s, there is almost no effect on the load, since then
approximations (b), (c) and (d) are nearly equal.

6. AMINo-AcID SUBSTITUTION RATES

Kimura (1968) has argued that a population carrying out amino acid
substitutions at the rate indicated by protein sequence data would incur a
large substitutional load. He argues that this load could be circumvented
by assuming that most of these substitutions are in fact selectively neutral.

The calculations presented here do not rule this out. For sufficiently
small values of s, the load will approach zero. But these results do provide
a somewhat different perspective on the problem. Initial gene frequencies
are for the most part insignificant in their effects on the load. The mutation
rate becomes important. More importantly, the basic definition of the load
used here stresses that the load is the result of environmental deterioration.
This raises another possible way of avoiding having to assume a high sub-
stitutional load. If the mutants are occurring in the absence of environ-
mental change, and are substituted because of their favourable effect on
fitness, then there is no substitutional load at all. There need be no contra-
diction between high rates of substitution and the importance of natural
selection in the substitution process, provided that we can envisage a suffi-
ciently high rate of occurrence of favourable mutants.

7. SUMMARY

I. Substitutional load in a finite population is defined. The definition
differs from that of Kimura and Maruyama (1969) in that it assumes that
the load results from environmental deterioration, and ceases only when the
favoured allele has been successfully substituted. Thus the load is a function
not only of the selection coefficient, population size, and initial gene fre-
quency, but also of the rate of mutation to the favoured allele.

2. A diffusion approximation to the substitutional load in a finite haploid
population can be derived. It turns out to be a double integral which cannot
be explicitly integrated. A method of numerical calculation of the integral
has been defined. Approximations to the integral were developed for cases
in which various parameters of the model take on extreme values.
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3. The equations can also be used to calculate the substitutional load in
diploid populations, provided that the fitness of the heterozygote is inter-
mediate between the homozygote fitnesses.

4. An increasing rate of mutation to the favoured allele decreases the
substitutional load. The only case in which changing the mutation rate has
little effect is when the initial frequency of the favoured allele is high, selec-
tion is strong, and mutation rates are low.

5. When selection coefficients are small, the substitutional load is also
small. As the selection coefficient is increased, the load increases, ultimately
reaching an asymptote at the value calculated by Haldane. However, when
mutation rates are low, the load will pass through a maximum and approach
the asymptote from above. For very low mutation rates, this maximum can
be many times higher than the asymptotic value.

6. Increasing the population size, holding mutation rates and selection
coefficients constant, will in general result in a decrease in the load. How-
ever, this decrease will be very slight if the mutation rate exceeds the selection
coefficient.

7. The initial frequency of the favoured allele will have a strong effect
on the load only when the mutation rate is low and the selection coefficient
is large.

8. Even if rates of gene substitution are as high as is indicated by amino-
acid sequence studies on proteins, one need not assume that substitutional
load is very large. Either selection coefficients could be very small, as
Kimura has suggested, or the substitutions could be the result of favourable
mutants occurring in the absence of environmental change.
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