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Sa and chestnut (Eddleman and Bell, 1963) had not changed. Thus it is
probable that the Sz gene has not been involved in an inversion, at least of
very great size.

The data clearly indicate the presence of a balanced lethal system in
this species of flour beetles. In addition to being useful in genetic studies
once sufficient genetic markers become available, the lethal gene also serves
a useful immediate purpose. In order to maintain the Sa stock, it is neces-
sary to select mutant individuals at frequent intervals. With the balanced
lethal system present in the stock, it can be maintained for a considerable
length of time without having to be selected. Furthermore, it might be
possible to balance an Fta strain with the same lethal, particularly if it is
located between Sz and Fta.

4. SUMMARY

A balanced lethal system is described in linkage group VII of the flour
beetle, Tribolium castaneum. Short antenna (Sz), a dominant gene with
recessive lethal effects is located from 0-5 to § units from an autosomal lethal.
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1. INTRODUCTION

THE classical treatment of the problem of the probability of survival of a
favourable new mutant has always supposed that the population in which
the mutation occurs is of constant size. This may well be the most commonly
occurring situation, but two other cases at least deserve some attention.
These are, firstly, the case where the population size undergoes cyclic
fluctuations, and secondly the case where the population size is initially
small and then grows fairly rapidly until it reaches an equilibrium value,
where it levels off. In this paper we derive survival probabilities under
each of these circumstances.
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2. CYCLIC POPULATION SIZE

It is convenient to use haploid population terminology, although this
can readily be changed to diploid. Thus a mutant, in the diploid case,
means a heterozygote having one mutant and one wild type allele and by
offspring of a mutant we mean always such a heterozygote, wild type
offspring not being of interest. We may ignore, in the diploid case, the
formation of homozygous mutants, since these will occur with negligible
frequency during the critical early generations after the initial mutant is
born.

Consider a population whose size assumes the cyclic sequence of values
M, Nay ooy Niy Nyy Ny, ... At the locus in question some allele A4 is
fixed in the population and at time zero a new mutant a appears, after
which there is no further mutation. Suppose that the mutant produces
148 offspring, on the average, for every one produced by the wild type.
We wish to find the probability of eventual survival (i.e. fixation) of the
new mutant. It is clear that this probability will depend on the size of the
population when the mutation first appears, so that our analysis must derive
a set of £ survival probabilities, corresponding to the £ possible initial
population sizes.

Any mutant individual (i.e. not only the initial mutant but also its
descendants) can be classified into one or other of k types T, ..., Tk,
according to the rule that the individual is 7; if it exists at a generation
when the population size is N;. Writing Tk, = T, for notational con-
venience it is clear that a 7; mutant can have only T;., offspring, and
further that the mean number of such offspring is

(148)Nisa/Ni (2.1)

(We make the notational convention that Ng,; = N;.) These considera-
tions enable us to use immediately the mathematical results for multiple-
type branching processes given by Harris (1963, pp. 40, 41, 46). In brief,
the relevant results of Harris may be stated as follows. Let m;; be the mean
number of offspring of type T; from a T; parent, and let M be a matrix
whose i-jth. element is m;;. Then if the absolute value of the largest eigen-
value of M exceeds unity, the probability of survival of the mutant exceeds
zero; if this largest eigenvalue is less than or equal to unity, the probability
of survival is zero. In the former case, if S; is the probability of extinction
of the line initiated by a mutant which first appears when the population
size is NV, then the S; (i = 1, ..., k) are the unique positive solutions less
than unity of the set of equations

Si = £ (S, s SE) (i =1, ooy B) (2.2)

The interpretation of f; (S, ..., k) is that the coefficient of §%, §%, ...
87 in its Taylor expansion is the probability that a T; parent has « offspring
of type T, B of type Ty, ..., y of type Tk: that is to say fi (S, ..., Sk) is the
probability generating function of the offspring distribution from a T;
parent. Since, in our case, a T; parent can have only T3, offspring, we

may write (2.2) as
S = fi (Sis) (2.3)

where Sg,, = ;. The functions f; (S) must satisty, from (2.1) the require-
ment

Si (1) = (148) NN (2.4)
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In the rest of this paper we shall assume, for convenience of exposition
and for the purpose of obtaining numerical results, that all offspring distribu-
tions are Poisson. In this case equations (2.3) and (2.4) give

St = exp —[(148) (Niyy/ M) (1—8141)] (2.5)
or, in terms of survival probabilities 7; = 1—.8;,
—log (1—mg) = (148) (Msaf M) miyy (i =1, ..., k) (2.6)

Again we have wg,, = m;. Before solving (2.6) we must prove that the
required survival probabilities are positive. The result of Harris quoted
above assures us that this is the case if the largest eigenvalue of M, where

o NN, o o..0
o o .Ns/Nz 0...0

M = (1+3)

exceeds unity in absolute value. Now the eigenvalues of M are easily shown
to be

(148)6; (j=1,..,k)
where the 8; are the kth roots of unity, given by
b = exp (2mijlk), (j = 1, ... B), i = —1

Since the absolute value of each ; is unity, all the eigenvalues have absolute
value 148 so the condition that survival probabilities exceed unity is § > o.

The numerical solution of (2.6), while tedious, is straightforward, the
following algorithm being applicable. Put ¢ = 1 in (2-6) and choose a trial
value for 7. From (2:6) calculate 7,. Now put i = 2 in (2-6) and using
the calculated value of =, calculate m;, and so on. Eventually a value
k4y 1S Obtained from this process. If my,, exceeds the trial value =, then
the latter is too large and a smaller value should be chosen; if g, is less than
m, the latter is too small. If g, = m, then this is the required value and
the remaining values m,, ..., mx will also have been calculated. Such a
procedure can lead to satisfactory values for the m; after three or four
iterations.

Numerical example. Consider a population whose size assumes the cyclic
sequence of values VN, 2V, 4N, 2N, N, 2, . . .; that is for two consecutive
generations the population size is doubled, then for two consecutive genera-
tions it is halved, after which the process starts again. If § = o-01, survival
probabilities are positive and solve

2:02 my = —log (1—m), 2:02 mg = —log (1—m,),

0:505 my = —log (1—mg), 0-505m = —log (1—m,).
We find

7y = 0-0382, m, = 0-0193, mg = 0-0096, m, = 0-0191.
When § = o-1 we find

m = 02985, my = 0:1612, 73 = 0-0799, m, = 0-1514.

We note the strong dependence of survival probabilities on the size of the
population when the mutation first occurs. Indeed, survival probabilities
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seem to be roughly proportional to the inverse of the population size when
the mutation occurs; we now show when 8 is small (not larger than about
0-05), k moderate (not larger than 5 or 10) and the /N; not too different,
that this is a general result.
Putting (14+8)~1 N¢/Ng,, = Ry, we get from (2.6) (ignoring terms of
order %),
T = Ry (mit+4m). (2.7)
Similarly
Ty = Rig(meg+3n3,).

= Ri Rimi+4[Ri Riyy+RE Ry ] 73 (2.8)
Continuing this process we find

iy = Reyg g Rimi+3[Re . Riyg
+R,2L Ri+1 Ri+1—1+ (Ri Ri+1~2)2 XR¢+1_1] ‘lT%. (29)
Now m¢ g = m, so that to the order of accuracy considered

m o= 2[1—Ri x_; ... Rt][Ri R1+k_1—|—R% e Ry

&+ (Re o Ryst)?® Reska] (2.10)
Now R; ... Rt+k_1 = (I—{—S)_k
= 1 —kd,

so that from (2.10)
m = 2N RS(N g+ o +N 7)™
If we define the harmonic mean N* of the population sizes by

EN*-1 = N4 L+ N,
we have finally,
m = 28N*¥[ N (2.11)

We note that = is thus, to this order of approximation, inversely propor-
tional to N, verifying our previous observation.

It is reasonable to assume that any mutation which occurs during any
given cycle will occur when the population size is N¢ with probability
Ni/(My+ ... +Ng). In this case the weighted survival probability
7w = (YmNg) [(ZNg) becomes

m = 20N*|N,

where N = (N,+ ... +Ng)/k. For given N and £, this weighted value is
maximized when the N; are equal, where it assumes the value 28; when
the V; differ considerably the value may be considerably less than 28. Thus
we conclude that constancy of population size is a favourable condition
for survival of new mutants.

3. INCREASING POPULATION SIZE

We consider in this section the case where the population size increases
during early generations and then levels off at a stable value; to be definite
we suppose that the population size assumes the sequence of values Ny,
Ny ooy Nie_1y Nies Ni, Ng, ... Here we are thinking mainly of the case
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where N, > Nj_,, although the subsequent analysis is quite general. Let
the mutation first occur when the population size is N;. Here we can
classify a mutant into one or other of £ types T, ..., Tg, where a T; mutant
is born into a population of size ;. Now a T; mutant (i = 1, 2 ... k—1)
can give birth only to Tj,; offspring, while a T} mutant can give birth
only to T offspring. If we suppose that a mutant produces 16 offspring,
on the average, for every one of the wild type, then the matrix M (see
previous section) is of the form

0 NN, o o ..o
o o Ng/N, o ..o
M= (1+8) {0 o o NM/N; ..o

(0] (0] (0] (0] e I

The only no-zero eigenvalue of this matrix is (1-+38); thus 8§ > o is again
the necessary and sufficient condition that survival probabilities are positive.
In this case, if S; is the probability of eventual extinction of the line initiated
by a single new mutant born when the population size is N, then the .S;
are the unique positive solutions (less than unity) of the set of equations

St = exp —[(148) (M) Vo) (1—8111)], (=1, ... k—1) (3.1)
Sk = exp —[(1+8)(1—5k)] (3-2)

These equations are best solved by solving (3.2) for Sy, using (3.1) with
i = k—1 to find Sx_; and so on, working back to §;. In this case an iterative
procedure is not required.

Numerical example: Consider a population which assumes the sequence
of sizes, N, 2V, 4N, 8N, 8N, 84, ..., and for which § = 0-1. Then using
(3.2), my solves

—log (1—m,) = 1-1 =,
so that my = 0-1761.
Using (3.1) with i = k—1,

—log (1—mg) = 2:2 (0-1761)

so that my = 0-3212.
Similarly my = 0:5067,
m = 0-6720.

Clearly a mutant born in generation 1 has a substantial chance of
survival, due mainly to the subsequent increase in population size. In
this respect it is interesting to note that had the population size increased
immediately from N to 8, the probability of survival of a mutant born in
generation 1 would solve

—log (1—m;) = 8.8 (0-1761)
that is m = 0+7877.

This is somewhat larger than the corresponding probability when the
increase in size requires three generations. A further observation is that
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had the population size doubled itself for a considerable number of genera-
tions, the probability of survival of a mutant born at the beginning of the
process would be close to the solution of

—log (1-—-m) = 22 m,
namely m = 0-8437.

The above remarks make it clear that the substantial determinant of
the fate of a new mutant is the absolute change in numbers of the mutant
rather than the relative changes in frequency compared to the wild type.
It is, of course, for this reason that all classical results have assumed stable
population sizes.

A final remark might be made about the fate of an unfavourable new
mutant. Taking the situation of the numerical case given above as an
example, if the fitness of the new mutant is between o-5 and 1 there will be
a tendency for the mutant to increase in numbers during the generations
when the population size is doubling; however as soon as the size stabilises
such mutants will soon die out. For example, a mutant with fitness 0-75
born in the first generation has probability 0:6438 of having descendants
in the fourth generation; in a stable population the corresponding proba-
bility is only 0-1564. Thus while the population size increases we should
expect that a variety of new and perhaps unusual types would appear, to
disappear again fairly soon after the population size stabilises.
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1. INTRODUCTION

THE interrelationships of chiasma frequencies in euchromatic bivalents in
the presence of extra euchromatin and heterochromatin have been de-
scribed (Shah, 1964, 1965). In the normal diploid there was an indication of
negative correlation in the standard bivalents while the addition of different
numbers of supernumerary chromosomes was associated with a non-linear
change in the character studied. In the present studies, the interrelationships
between the standard chromosomes and the heterochromatic supernumerary
chromosomes in plants with 2, 3 and 4 supernumerary chromosomes and
in an asynaptic plant with two supernumeraries are presented.

2. MATERIAL AND METHODS

The plants used belong to Dactylis glomerata subsp. lusitanica (2n = 14+B’s). All
the plants having 2 and 4 supernumeraries, except the asynaptic plant, are sibs
obtained from a cross of a diploid with no supernumerary and plant No. 7 (see
table 1) and the reciprocal cross.

* Present Address: Sugarcane Breeding Institute, Coimbatore-7, (Madras State), Indi;.
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