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1. INTRODUCTION

THE majority of investigations into the inheritance of continuously
varying characters using inbred lines have been concentrated exclusively
on the F2 and subsequent generations in the selfing series, with the
result that the potentialities of backcross generations for quantitative
inheritance have never been fully explored. True they are usually
more difficult to produce than the F2, but the extra labour required is

TABLE i
Scaling tests for the second backcross data of Mat/icr and Vines (1946)

Test Flowering time Final height

B11
B1,
B,1
B,,

2.90±184
432±P70*
366±P89
36O±2i4

035±255

—057±286
1296±295

* P = 005. ** P = <0001.

amply repaid in the form of additional information both on the
components themselves and on the linkage relationships of the genes
concerned. Although these generations are not commonly included
in biometrical experiments, Mather and Vines (1952) have used them
in conjunction with the F2, F3 and F4 generations to study the inherit-
ance of flowering time and final height in varieties i and 5 of Xicotiana
rustica. Because the experiment containing the recurrent backcross
generations gave very heterogeneous second degree statistics—
particularly the covariances—Mather and Vines concluded that their
future use in quantitative inheritance must be suspect until such time
as further experiments could clarify the situation. Consequently these
generations were excluded from their experiments in subsequent years.
Mather and Vines did point out however that the performance of the
backcross generations might have been affected in some way by their
parents having been raised in a glasshouse during the preceding winter.
They suggested that such conditions could have produced seed which
for developmental reasons was more variable than normal.
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Re-examination of Mather and Vines' data in the light of more
recent developments in biometrical genetics makes it possible to glean
some further information about the behaviour of recurrent backcrosses.
Individual scaling tests similar in nature to the A, B and C tests devised
by Mather (1949) reveal only one departure from zero of borderline
significance amongst the second backcross generations for flowering
time, whereas for height two of them—the B,2 and B22 tests—show
highly significant differences from expectation (see tables i and 5).
This result lends some support to Mather and Vines' suspicions about
these generations, at least for one of the characters under investigation.
More precise evidence on this point comes from a joint scaling test (see
Cavalli, 1952 Jinks, 1955) in which it is possible to fit a model based
on weighted least squares estimates of the mid-parent M, additive
[d], dominance [h], additive xadditive [i], additive xdominance [j]
and dominance x dominance {l] parameters to the generation means
thereby gaining some insight into the type of genetic system controlling
the characters in question. It should be mentioned that these para-
meters are defined around the F0 mean after the mixed metric model
devised by Hayman and Mather The goodness of fit of any
particular model can be determined by means of ax2 test. Re-analysis
of the appropriate data in Mather and Vines' experiment reveals the
presence of interactions between non-allelic genes for both characters
but especially amongst those genes controlling the expression of height.
Considering this character first, if the second backcross generations are
excluded from the scaling test a model based only on additive and
dominance effects is sufficient to fit the remaining data adequately, a
result which would seem to implicate the recurrent backcrosses as the
chief source of the apparent non-allelic interactions. Turning to
flowering time, a simple additive and dominance model does not fit
the data satisfactorily even after omission of the second backcross
generations. If, however, these generations are retained and the
F3 and BIP generations removed instead, such a model can account
for the variation observed between the generation means. Thus for
flowering time it is these latter generations, not the recurrent back-
crosses, which are responsible for the presence of non-allelic inter-
actions. The high covariances between first backcross plants and their
second backcross progenies mentioned by Mather and Vines may
conceivably be due to a genotype xenvironment interaction particularly
in view of the fact that the first backcross plants were grown in a glass-
house the preceding winter. Moreover evidence accumulated over
the years in connection with other experiments using the backcross
generation of IV.. rustica indicate that with few exceptions they behave
normally in respect of both final height and flowering time. Clearly
therefore there are no compelling reasons for rejecting backcross
generations as being of only limited value in experiments on quantita-
tive characters, though more work is obviously required to assess the
usefulness of the second backcross generation.
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For this reason an experiment with X. rustica which included these
generations was initiated in ig6o and repeated in 1961 and 1962. The
present paper describes these experiments in detail and attempts to
determine the part which backcross generations can play in studying
the inheritance of continuously varying characters.

2. THE EXPERIMENTAL DESIGN

The two inbred varieties of JV. rustica used in the present experiment
were the same two varieties used by Mather and Vines. In all three
years, 1960, 1961 and 1962 the following generations were grown:
P1 (= Vi), P2 (= V5), F1, F2, B1, B2, B11, B12, B18, B21, B22 and B2,.
Individual plants chosen at random from amongst the first backcross
generations—B1 and B2—were crossed in turn to both P1 and P2 and
selfed to give the second backcross (B11, B12, B21 and B2) and first
backcross selfed (B18 and B28) generations. As will be seen later the
use of a common female parent yields additional information about the
components of variation. The detailed structure of the experiment is
given for all three years in table 2. A randomised block design, in
which randomisation was at the level of the individual plant, was
employed throughout. In 1960 there were 3 replicates, but in 1961
and 1962 there were only 2 giving 3000, 4500 and 3520, as the total
number of plants grown in each year respectively. Because of in-
sufficient glasshouse space the 2 blocks of the 1961 and 1962 experiments
had to be sown approximately a month apart. This meant that each
block became virtually a separate experiment.

Seeds from the various families were sown in appropriately
numbered paper pots containing John Innes No. i compost mixture.
Two seeds were sown in each pot and after approximately a fortnight
the seedlings were thinned out leaving only the centre plant in each pot.
This procedure was adopted in order to minimise the risk of conscious
selection. Subsequently the plants were transferred to frames and
were finally planted in the experimental field, still in their paper pots,
in rows set 27 inches apart with 12 inches between plants within rows.
Flowering time in days from an arbitrary date and final height in
inches were recorded in all experiments.

3. THE FIRST DEGREE STATISTICS

(I) Analysis of variance
The observed values of all the generation means in all seasons are

given together with their standard errors in table 3. An analysis of
variance carried out on these means for the two characters will indicate
not only if there are differences between years and generations but also
whether the generations respond differently to the external environ-
ment (cf. Jinks and Mather, 1955). The error for these analyses is
derived from the variation between replicate estimates of a generation
mean within years. As expected the characters show significant
differences between generations and years (table 4). Furthermore it is
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evident that the characters are being controlled by genes showing a
differential response to the environment. Closer examination of the
data does reveal, however, that for height the genotype xyears
(environment) interaction arises chiefly from the anomalous behaviour

TABLE 4

Analysis of variance of the generation means for (a) flowering time and
(b) height, (i) for all years and (ii) with the 1960 data excluded

(a) Flowering time

Item
(i) (ii)—

D.F. MS. D.F. MS.

Years
Between generations F1 v.

remainder
I

1761674
103391

1
1

143.9562***
75932

Between remainder 10 404396*** 10 124781**
Yearsx Generations 68244*** fl 23512**
Between blocks within years
Within blocks

Total

4
44

13.4177***o8ii8
2

22
6.79o6***
07106

83 47

(b) Height

Item
(i) (ii)

-—
D.F.

2
I

—
M.S.

4226623***
141.2781***

D.F.

i
s

MS.

i6.96***
8.78o***

Years . . .
Between generations F5 v.

remainder
Between remainder .
Yearsx Generations .

10
22

I103766
5.7332***

50
II

4I2I27
11588

Between blocks within years
Within blocks

TotaL .

4
44

2145732***
V4927

2
22

407.3660***
2o663

83 47

** P = 001-000I. P = <oooi.

of some generations in the i960 experiment, since exclusion of that
year's data renders the interaction non-significant. For flowering
time, on the other hand, no one season can be held solely responsible
for its significance though the contribution of the 1960 results to the
genotype x environment interaction is disproportionately high. One
further point which emerges from this analysis is the significance of the
item measuring the differences between the F1 and the other genera-
tions for height and its non-significance for flowering time. This
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obviously bears upon the question of heterosis and it will be discussed
further in a later section.

(ii) Scaling tests

Scaling tests similar to the A, B and C tests of Mather have been
devised for the second backcross and first backcross selfed generations.
The structure of these tests together with the errors to which they are
subject are given in table 5. Also included in this table are the
expectations of the various tests in terms of the first order interaction
parameters [i], [j] and [1] and four second order parameters [wJ, [xJ,

TABLE 5
Scaling tests devised for the generations grown in the experiment together with their appropriate

variances and expectations. The standard error for each test is taken as V' V. Those
tests marked with one asterisk are expected to depart most significantly from zero assuming
[i] = [j] = [1] and + ([w] = [x] = [y] = [z]) and those with two asterisks to
depart most significantly f [i] = [ii [1] and — ([w] = [x] = [y] = [zJ)

Test Variance Expectation

A: P1+P1— 2fl Vi+Vñ+4Viij 4([ij—fj]+ [1}+Ew} — [xj+4f.y]
_kD*

B: P2+ P1— 2z Vi+V11+4Vi k([i]+fjJ+[l]—}[w]— [x] —jy]
—Hz])**

C: P1+P5+2F1—4P2 Vh+V+4Vj+ x6V 2([i]+4[1]__i[x])**

B11: 3P1+F1—4fl11 9Vj+VI+ i 6Vij

B12: P2+3P1—4B12 V+gVj+ i6V ([i] +rj]+[1J—rwJ— l[x] —H.']
+ 1[z])**

B,1: P1+3P1—4fi21 Vi+gVji+ i6Vi H[i]—[jI+[11+*Cw]— I[x]+*[y]
+ Hz]) *

B,2: 3P2+P14B22 9V+Vii+ i6V I([i] + [j]+ [1] —j[w] —x] —{y]
— [z])**

B15: 5P1+2P1+P,— 8j 25vpf+4Vpr+vp+ 64Vi 2(2[iJ—k[j]+[l]+[w]—[x] +1[yl
—

B25: 5P2+ 2P1+P1—8B2s 25Vp+4VFI+VPi+64VB 2(2[i] + k[jJ+l[l] —I[w] —*[x]--- L]_[])**
For definition of [w], [xl, [y] and [z] lee text and table 7.

[y] and [zJ which will be defined more precisely at a later stage. The
object of these individual scaling tests is to pick out those generations
which are exhibiting non-allelic interactions, although the fact that a
particular test does not depart significantly from zero is not necessarily
conclusive proof of their absence from a given generation (see tables
5 and 6). It is clear, however, that both characters are controlled by
interacting genes. Moreover the results of identical tests are not always
homogeneous over seasons or even between blocks within seasons.
Such differences are normally indicative of genotype x environment
interactions and hence they corroborate the results of the analysis of
variance. Overall, both characters are more or less equally susceptible
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to non-allelic and environmental interactions, although these tests do
suggest a virtual absence of any interactions for height in 1962.

A more comprehensive picture of the genetic systems involved in
the control of these two characters can be obtained from the joint
scaling test of Cavalli (1952). Because twelve different generations
were grown in this experiment, it was possible to fit not only the para-
meters M, [d], [h], [i], [j] and [1] measuring the main effects and first
order interactions of the genes concerned, but also four additional
parameters [w], [x], [y] and [z] estimating the second order inter-
actions between additive xadditive x additive, additive >< additive x

TABLE 7

Expectations of the generation means in terms of A4, [d],
[h], [i], {j], [1J [w], [x], [y] and [z]

Coefficients of:

Generation
M [d] [h] [i] [3] [1] [w] [x] [y] [z]

I ' — I ' —I I —I
I —I ... I I I —' —I — —i
I
I

...

...
I

I
...
•..

...
•..

I
•..

•..
•••

•.. ... I
•••

I ... I ••. ••
I —f I I •.. •.. —I •..

3T 1
iT

Q16 i16 16 Il64 104 364 ..i_84
I
I

3
1
iT

1
iT
3
iT

S..16
L.16

..5_16
16

1
liT
1T

2?jiT
2

%TTi

.L.64
2

64
.L.64

64
..L.64

I 15T 3
iT

..L.16 18 1
TiT

1 —i_64 64 64
I 1

iT
1
iT

1I 16 16 A
6

_i_16 32 64
I 1 1

iT
1
iT

.1
2 i 1i 16 L.32 .L04

dominance, additive xdominance >< dominance and dominance><
dominance xdominance respectively. For comparison with van der
Veen's 0 notation (1959) W = abcI, X Jai,lc,.Y ==JaIbc and z = lIabc.
Expectations for the twelve generations in terms of these ten parameters
are given in table 7. Clearly the results of the joint scaling tests merely
confirm previous results in indicating the presence of non-allelic
interactions amongst the genes governing both characters (table 8).
By successively fitting appropriate models to the data it is possible to
gauge the importance of the first order and second order interaction
effects in relation to the main effects of the genes concerned. For
example, by initially fitting a model based on M, [d] and {h] and then
one depending upon M, [d], [h], [i], [j] and [1] to the same data, the
improvement in the goodness of fit of the latter model over the former
will show whether [i], [J] and [1] jointly account for a significant
amount of the variation present amongst the generation means.
Again the evidence points overwhelmingly to the presence of inter-
acting genes (table 9). Indeed it appears that even the more complex
interactions embracing sets of three genes occur quite frequently.

P1
P2
F1
F2
B1
B2
B11
B22
B21
B11
Bis
B25
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This is perhaps not surprising in view of the many genes which must be
concerned with the expression of flowering time and final height,
although there are of course numerous crosses between other .N rustica
varieties in which these two characters show no evidence of inter-
actions (see Jinks and Morley Jones, 1958). Whilst it is not possible

TABLE 9a

Significance levels of the main effects [d] and [h], the first order interactions
[i], [j] and [I] and second order interactions [w], [x], [y] and [a]

Flowering time

Parameters D.F. x1 for 1960

1961

—
1962

Block I Block II Block I Block II

[d] and [h] . .
[i], [J] and [1] .
[iv], [x}, [y] and [z]
Remainder . .

2

3
4
2

329.530***
84.o39***
66.855***
21.841***

13.414**
26.455***
27.307***
4984

157.779***
10307*
19.737***
0504

134.134***
32330***
14.385**
132O1**

I29175***
40434***
5•3o8
572I

TABLE 9b

Height

Parameters D.F. x2 for 1960

ig6i

—
1962

Block I Block II Block I Block II

[d]and[h] . .

[i], [J] and[11 .
[iv], [x}, [y] and [z]

Remainder . .

2
3
4
2

1626.516***
o•8o6

40451***
46557***

207.835***
20.557***
5692

14.865***

I145I02***
22722***
6136
•43

480664***
5094
5283
3.037

466.556***
1123
4•317
5858

* —P = 005-O0J. ** —P ooi-oooi. *** —P = <O•OO1.

to draw firm conclusions on this point, it does appear from the
significance levels of these components over the different seasons that
non-allelic interactions figure more prominently in the expression of
flowering time than they do for height.

(iii) Components of heterosis

From the weighted least squares estimates of the components of the
generation means it is possible to predict the effects of heterosis and
compare this expectation with the value calculated directly from the
mean observed for parental and F1 generations. Adopting the
definition of heterosis used by Jinks and Morley Jones (1958), that is
the difference between the mean of the F1 generation and that of its
better parent (P0), the measure of heterosis F1 —P0 = [hi +[1i
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+1[z] I —I[d] +[i] [i]+1{l] +[w] —j{x] +1{i'] —j[z] 'which equals
I[h] —[i] +[x]+[z] I —[d] —[j] +[w] +[yJ . Previous analysis
has already shown that for flowering time the F1 mean is not signifi-
cantly different from the means of the remaining generations and,
moreover, since the F1 mean generally lies within the parental range
there can be no heterosis for this character. For height, on the other
hand, the F1 is consistently superior to the better parent, although this
difference generally fails to reach significance at the 5 per cent. level of
probability (table io). It is noticeable that in 1960, when the effects
of heterosis are most marked, non-allelic interactions play a more
important part in the expression of this character, thus tending to
confirm the finding of Jinks and Morley Jones that interactions are a
major source of heterosis, although as the flowering time results
demonstrate interactions do not inevitably give rise to heterosis.

TABLE to

The components of heterosis for height

Season

Components
ig6o

1961 1962

Block I Block II Block I Block 11

[h —[i]+{xJ+k[z}J
— [d]+4[jJ+[wJ

+1[,Jj
Predicted heterosis
Observed heterosis

(F1—?,)

88g
— 723

i66
4°5± I o5***

595
— 23O

365
277+P75

904
552

352
226± 115*

552
— 363

P89
I 55±098

6 4
—I-—o67

7IO
2O9± 151

* —P=oo5.ooI. —P=<o'ooi.

With regard to the type of genetic systems controlling these two
characters it is, as Jinks and Morley Jones point out, difficult to make
inferences about the kind of interaction from the magnitude of the
estimates. In practice the classification of interacting systems must
therefore depend on the relative signs of these components, particularly
those which are unaffected by the degree of association (r). Of the
components [d], {h], [i], {i] and [1] Jinks and Morley Jones have shown
that only [h] and [1], that is those depending solely on dominance
effects, arc independent of the degree of association. This system can
be extended to cover interactions between sets of three genes. Assuming
that the parents P1 and P2 differ at k loci and that of these P2 has k' of
greater effect then of the k(k —i) (k —2) possible combinations of three
genes, *k —k'(k —k' —i)(/c —Ic' —2) sets have 3 genes of increasing
effect in P1, *k'(k' —i) (k' —2) sets are between 3 decreasing genes,
k'[(k —Ic') (k—k' —i)] are between 2 increasing genes and i decreasing
gene and k —k'[(k') (Ic' —i )J are combinations involving i increasing

G
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gene and 2 decreasing genes. Considering only [w], [x], [y] and [zi,
the two parental means can be written as

= —Ik'(k'—I)(k'—2) —k'(k—k')(k—k'—i)}w

+[*k'(/c'—I)(k'---2) +k'(k—k')(k—k'—i)]w—[(k—k')
(k—k' —I)(k—2) +kk'(k—I)(k—2) —k'(k—k')(k—2flx±[(k—k')
/c(k —x) —(k')4k(k —i)Jy—[k(k —i) (Ic —2)].

If r is put equal to i — (see Jinks and Morley Jones) this becomes

P kr2—ip' = —i Zx+rZy—E.
The coefficients in front of the parameters derive from the fact that in
the mixed metric model of Hayman and Mather the interactions are
defined around the F2 generation mean. Not surprisingly only [z]
amongst the second order parameters remains unaffected by the degree
of association.

With sets of 3 interacting genes it is possible to specify the relation-
ships between the components of generation means so as to yield
genetic ratios corresponding to those expected on the basis of inter-
actions in the classical Mendelian sense. This classification is merely
an extension of the one devised by Hayman and Mather covering
interactions between pairs of non-allelic genes. Since the classification
of the gene system must depend primarily on the relative signs of the
first and second order parameters both in relation to each other and to
the main effects, the interacting systems fall into four main categories
which can be defined as follows:

(i) d=h=[i=j=l=(w=x=y=)];
(ii) d_—h—_---{i=j=l=---(w=x=-—y=z)];
(iii) d=k= —[i=j=l=(w=x=y=fl and finally
(iv)d=h=1{i=j=l==—(w=x=y=)].
Of these four basic types the first is a classical complementary inter-
action requiring the presence of all three genes and which yields a
27:37 ratio in the F2 generation. The second is a duplicate interaction
giving a 63:! ratio in the F2; the third requires that at least two genes
be present for an interaction to occur but that the addition of the third
gene has no effect. This gives a 54:10 ratio in the F2, whilst the last
type yields a duplicate interaction for the first two genes with the
third gene having an effect over and above that of the first two thereby
giving an F2 ratio of 27:36:!.

Remembering that of the parameters only [Ii], [1] and {z] are
independent of the degree of association and considering flowering time
first, in 1960 [Ii] and [z] are both significantly negative whilst [1] is
significantly positive, which is indicative of a duplicate type interaction
between sets of three genes. In 196 i and r 962, on those occasions
when these three parameters are significant, [h] and [1] take the same
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sign but [z] is now positive. This situation appears to square with a
duplicate type interaction for the first two genes with the presence of
the third gene producing an additional response. It would seem there-
fore that flowering time is controlled in the main by genes which show
a preponderance of duplicate type interactions. This conclusion is
borne out by the results, since in 1960 and i961, when these components
are significant, the majority of the generations have a mean flowering
time greater than the mid-parent, that is closer to P2 the later flowering
parent than P1 (see table 3). For height, on the other hand, little can
be said about the type of interactions which occur if only because of the
insignificance of the interaction parameters, particularly [1] and [zJ.
Indeed it is obvious from table 9 that the interactions as a whole account
for a much smaller amount of the variation relative to the main effects
than they do for flowering time. At first sight these results may appear
to conflict in that despite the prevalence of interactions for flowering
time it does not show any heterosis. But heterosis can only arise through
the action of dispersed complementary genes, whereas the tests indicate
that the interactions are chiefly of a duplicate type for flowering time
and duplicate interactions cannot result in heterosis.

To summarise, both characters are controlled by genes which.
besides showing additivity and dominance, interact amongst them-
selves and with the external environment, although the evidence does
suggest that height is perhaps less affected by such interactions than
flowering time. Heterosis is absent for flowering time, whilst it only
proves to be of significance for height in that season when interactions
are most widespread even though the F1 generation is consistently
taller than the better parent.

4. THE SECOND DEGREE STATISTICS

(i) Non-segregating generations
Variation within non-segregating generations must be environ-

mental in origin and therefore any heterogeneity amongst these
variances will reflect a lack of stability on the part of that particular
generation in its response to different environments. The homogeneity
of these variances within and between seasons can be readily tested by
means of a Bartlett test, from which it is apparent that height is the
more stable of the two characters (table ii). There is no evidence to
suggest that the F1 is any more stable than either of the inbred lines.
On the contrary, there is every reason to believe that overall it is less
stable than P1 and possibly P2 also. This view supports the conclusions
reached byjinks and Mather (1955) namely that in N. rustica flowering
time was the least stable of all the characters which they examined and
that the F1 was no more stable than the parents.

(ii) Unweighted estimation of the components of variance

Thus far we have only been concerned with estimating those
components pertaining to generation means. However, to obtain a
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clearer picture of the respective roles of dominance and linkage it is
necessary to turn to the components of the second degree statistics—
variances and covariances. Excluding linkage for the moment and
assuming the absence of non-allelic interactions, it is possible to define

TABLE ha
Variances of the non-segregating generations for flowering time

over blocks and seasons

cneratioeneration
D.F. M.S.

P2 F

(Block! i8 710 19 3083 39 3666
196o.!BlockII . 19 1906 19 3466 39 3334

B1ock III 19 3003 19 5510 39 3155

(Block I 19 2578 17 4770 37 3508
'6'BlockII 16 1265 17 391 36 975

(Block I 17 7.59 17 5'67 38 88
19€2B1ockII . i8 704 r6 8'83 36 2o64

Heterogeneity (Within seasons 4 1I67 4 23.83*** 4 19.64***

x2 Between seasons 2 8.61* 2 2257*** 2 14.28***

TABLE iib

Height

eration P1 P2 F1

M.S.

(Block I . .

I96OBlockII . .
Block III . .

(Block I . .
l9GhlBlk II . .

[Block! . .
1962BlkII . .

Heterogeneity (Within seasons .

x' iBetween seasons

i8

19i
i8
i6

i8

19

4
2

3o98
2037
942

1278
674

9.45
2417

11.63*
598

19
29
19

17
17

19
i8

4
2

70.57
49.40
2759

4446
1509

1384
2682

960
9.28*

39
39
39

37
36

39
39

4
2

39•5
1659
I9q4

2250
i88o

1118
3456

2045***
212

* —P = 005-001. ** —P = <0001.

these statistics in terms of four components, an environmental com-
ponent (E1) and three genetic components (D), (H) and (F). Of these
the former measures additivity, (H) dominance, whilst the latter is a
cross-product term in d and h which is the only component to take
sign depending upon whether increasing or decreasing alleles are the
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more frequently dominant. Since the presence of non-allelic inter-
actions has already been established, the estimates of these components
will be inflated in value because they will each contain some of the
variation properly attributable to interactions. Some caution must
therefore be exercised in interpreting the estimates obtained.

TABLE x
The expectations of the statistics used to calculate the components of variation

together with their observed values for flowering time

1960 ig6r 1962

Statistic Composition Rank-
Block I Block II Block III Block I Block II Block I Block II

E1 ... 78, 3010 3706 3591 9'02 781 4.45
VIF2 fD+IH+E1 1 4831 404O 74,79 67.,7 3803 47'88 4593
VB1 kD—F+*H i 5962 4P04 66.58 59'12 905 2276 2989

+E,
VB2 +D+F+H I 4628 5378 3858 3952 13'07 2953 4248

+ E,
VB11 ID—IF+*H 2 65'24 45'69 4456 5P08 1091 2804 283I

+ E1B2 D+*F+H 2 6g'95 39'82 54'OI 3885 1151 26'24 2849
+ E1

VB1S ID+-kH+E, 2 5644 5597 37.49 52I6 2058 3,., 4152
VB2S D—F+*H 2 30'24 4ry61 3792 4942 807 2310 2335

+E,
VB22 D++F+H 2 5P62 4396 4231 4667 936 1238 2720

+E1
VB2S ID+IH+E1 2 6831 5524 77'82 5645 15'21 3682 5603Vn D—kF+H I I239 1104 1203 18.56 Io•26 771 7.74

+ I/n(VBI1)Vj D+F+H I 248I 1067 1582 1506 423 936 6'72
+ '/nCcB12)V D—+F+H I 1927 I448 2364 5465 14.97 747 9'56

______ + '/nCB1s)
WBjjj12 wD—H I 5'61 444 347 696 2'98 3'lI 0'72
W611Th1s D—13F+'H I 931 10'36 924 1964 722 2I2 2'14
WB12/B1S D+F—H I 88 26I 842 ,o66 38o 0.3, —0.59V D—F+H I 2322 8•o9 767 1954 3.37 6 969

+ x/n(VB21)V D+*F+-H 1 28I7 23I2 1399 2465 345 469 633
+ 'In(VB22)

kD++F+H i 2825 27'12 3277 3055 780 6•72 950
_______ + '/n(VB2S)

WR21/B22 D—H , ,8'8o ,o'i 6'8, II'20 084 258 231
Wi72s 1D—i'iF—'iH I I300 1127 1049 13.95 8g 207 4'84W2S D+F+H i i886 16'93 1749 995 252 246 424

n = number of individuals within a family of that particular generation.

Unweighted estimates of the components of variance were computed
by the least squares technique described by Mather (i9), after
appropriate adjustments had been made for genetic sampling errors,
from the observed values given in tables 12 and 13. The genetic
picture which emerges from these estimations is predominantly one of
additivity for both characters with little evidence from the components

G2
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themselves for either dominance or one type of allele being more
frequently dominant than the other (table z). Furthermore, these
estimates confirm that the suggestion of heterosis for height must stem
from non-allelic interactions rather than over-dominance, since nowhere
does H quite reach significance at the 5 per cent. level of probability.
Thus the ratio V'H/D which measures apparent dominance can never
be significantly greater than i here.

To obtain a more comprehensive picture of how flowering time and
height are inherited it is necessary to take linkage effects into account.

TABLE i3

Observed values of the statistics used for calculating the components of variation of height

Statistic

1960 1961 1962

Block I Block II Block III Block I Block II Block I Block H

E1
V1F2
V'si

4518
5289

2574
2819
3804

1925
60.55
2204

2556
5686
3625

I465
3566
2581

1P43
3P16
I8I9

2402
47.59
2955

VB2
VB11
VB12
'c'BlS

Vfl21
VB2
cB2s

66o4
4027
56O3
5850
3963
6007
8443

4166
239I
3590
2508
2972
357I
2842

44.75
227I
4P02
28.99
2680
3519
39.56

3412
2540
3524
3293
3228
3529
4569

293I
1908
2088
2375
1748
1655
2351

2369
1P79
I409
1893
2o06
I954
2222

3440
2284
2215
3373
2267
37•45
2662

Vr,
Vi2
Vis
W1i]i2
WTi/isWjisV1V
WB2I/B22
Wi72s
W72S

872
459
2451

P36
8o2

—0.39
8go
2P51
1790

—243
563

—058

443
9.37
10.79
209
488
351
792

306I
920
p79

049

5o6
1397
1296
P95
536

—P29
871

32o6
2846

944

1201
1708
24.36
537
1277
1094
1255
2087
2695
622
1P06
1296

1208
729
1396
476
8•14
4.3'

766
742

1025
301
452
485

598
823
748
015
498
206
768
325
458
P72
310
I•9o

4.75
1511
5.73
336
355
462
9I6
1565
965
7.34
666g

This can be achieved by redefining the components so as to relate
them to the number of cycles of recombination undergone by the plants
or families comprising a particular statistic (i.e. ranking—see table i 2).
Definitions of the exclusive components required to take full account
of linkage in this experiment are given in table 15 and their calculated
values in table i 6. By successive fitting of inclusive and exclusive
models to the data and analysis of the resultant squared deviations
between the observed and expected values of the statistics it becomes
possible to determine whether a significant amount of the variation
present can be attributed to linkage. The deviation S.S. obtained
from fitting the inclusive model will include variation due to three
sources; linkage, residual interaction and error, whereas the exclusive
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S.S. can contain only variation from the last two sources. Both this
analysis in which seasons are considered separately and that in which
seasons are analysed jointly in order to test consistency over blocks and
seasons have been described in detail by Mather (ig) and by Mather
and Vines (i) so only an outline of the analysis will be presented
here. There are 22 basic equations and hence 22 degrees of freedom
for differences between observed and expected of which 4 are used in
fitting initially the inclusive components D, F, H and E1. The exclusive
analysis involves a further 4 components leaving r4d.f. for the measure-
ment of residual interactions. Because the blocks of the i 961 and i 962
experiments were separated in time it was decided to allow for differ-
ences between them in the analysis. This slight modification means
that the estimate of error variation consists solely of the blocks
xstatistics interaction which it must always do if there are significant
differences between blocks.

The season by season analyses given in table i provide no evidence
either of linkage or residual disturbance for height. This agrees
reasonably well with the results of the scaling tests carried out earlier.
But for flowering time there is good evidence for linkage in two of the
seasons—i 960 and i 962—where this item is significant or bordering on
significance even when tested against the residual interaction mean
square. Yet in 1961 there is not the slightest trace of linkage. Further-
more previous analyses suggest that non-allelic interactions constitute
a major source of variation in this character but the item measuring
residual disturbances is nowhere significant. The answer to this
apparent contradiction lies partly in the fact that the linkage item itself
can contain some of the variation due to interactions and partly in the
experimental design. The spatial separation of individual plants within
families both in the glasshouse and the field; the different sowing dates
of the blocks in the two seasons; the environmental instability of the
character are all factors which will contribute to and hence tend to
increase the estimate of error and thereby decrease the sensitivity of the
test of significance. These factors will of course affect height also but
to a lesser extent.

Turning to the joint anaiysis of seasons, as expected there is no
reason to believe that linkage is affecting the genes controlling height
(table i8). There is, however, evidence for residual disturbances
since the main item is significantly larger than the residual interaction
>< year item. For flowering time, on the other hand, there is evidence
for an overall linkage effect. Analysis reveals D to be the most
important of the linkage components since out of a total linkage S.S.
of 960 it alone accounts for just over 8oo. This indicates that in the
inbred lines coupling and repulsion linkages do not balance, but rather
there is a marked excess of one linkage phase over the other. However,
this point will be raised again later. It is also evident from these
analyses that linkage is not entirely consistent over seasons due
presumably to the 1961 results. The calculated values of the exclusive
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components likewise reflect this inconsistency. Thus the H components
range from being significantly negative in 196o and 1961 (Block I) to
being significantly positive in i g6 i (Block II) and 1962 (see table 6).
Negative values for these components are meaningless and are probably
the direct result of the interactions known to exist. Whilst the hetero-
geneity of the components is greater between than within seasons for
both characters this difference does not prove to be significant. Mather
and Vines (1952) and Jinks (1956), however, both found that, whereas
for height the components were equally stable within and between

TABLE i8

Analysis of variation for flowering time and height-seasons jointly. Model (i) includes dominance
effects, model (ii) is a purely additive model

:atN M.S. .
M.S.D.F.

M.S.

Linkage . .
Residual interaction .

Heterogeneity between
years:

Linkage. . .
Residual interaction
Components . .

Heterogeneity within
years:

Linkage . .
Residual interaction
Components . .

4
14

8
28
8

i6
56
i6

24P62
8o24

14764
65'43

81r91

9422
3074

55219

z

19

2
38
4

4
76
8

8o3.8
6774

13550
8o'oo

i63.8

121

4828
100731

4
14

8
28
8

x6

56
i6

5568
6&o8

3903
2985

51380

6817
1337

43972

I 030
19 9532

2 714
38 3839
4 96599

4
76 2616
8 76639

seasons, for flowering time the components were considerably more
variable between seasons. The comparison of these results with either
of the previous experiments is not strictly valid for reasons which have
already been disclosed.

After fitting inclusive and exclusive models to the data based on
additive, dominance and environmental effects, models were then fitted
which depended solely on additive and environmental effects. It is of
interest to combine the resultant analyses of the two models as they may
shed further light on the inheritance of the characters under investiga-
tion. Basically this enables the inclusive and exclusive H and F com-
ponents to be examined more fully. There can be little doubt that
these two components play only an insignificant role in the expression
of flowering time, the major genetic component being additive (see
table 19). For height, however, the situation is rather different, since
the item measuring overall dominance is approaching significance at



Ho J. HILL

the i per cent. level of probability when tested against the main
residual interaction item. Dominance cannot therefore be ignored here,
it is not just a reflection of the non-allelic interactions which are known
to be present.

In conclusion, the pattern of inheritance emerging from these
unweighted analyses differs markedly between the two characters.
Flowering time is controlled by genes which are mainly additive in
effect and are probably linked whereas height is governed by unlinked
genes which exhibit dominance.

(iii) Weighted estimation of the components of variation

Hitherto we have considered only the unweighted least squares
estimates of the components which, though easy to perform, suffer

TABLE 19

Analysis of variation for flowering time and final height-combining models (i) and (ii)

Character Flowering time Height

Item D.F. M.S. M.S.

Inclusive component—H . . I k . 49779
Inclusive component—F . i J 59 i68
Linkage—due to D's . . 1 80384 030
Linkage—due to H's and F's . 3 5422 74.13
Residual interaction. 14 8o24 66o8
Between years

Inclusive H and F . . 4 9442 81•2o
Linkage—D's . . . 2 135.50 7I4
Linkage—H's and F's . . 6 I5169 4965
Residual interaction . 28 6543 2985
Components—inclusive D and E 4 16I328 96599

Within years
Inclusive H and F . . 8 5565 51 29
Linkagc—D's . . . . 4 V21 6543
Linkage—H's and F's . . 12 I2522 69o8
Residual interaction . . 56 3074 13.37
Components—inclusive D and E 8 100731 76639

from the drawback that they take account neither of the correlations
which must exist between some of the calculated values of the statistics,
nor of the differing precisions with which they are observed experi-
mentally. Adopting a weighted procedure which can take account of
both these factors should enable more efficient estimates of the
components to be obtained.

A weighted least squares analysis designed to meet these require-
ments has been programmed for the Elliott 401 computer at
Rothamsted, full details of which have been given by Cooke etal. (5962).
Before the estimation could proceed, however, the data had to be
tailored to fit the capacity of the computer. This entailed firstly a
reduction in the number of statistics from 22 to i 6; secondly, that the
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maximum number of components to be estimated should not exceed 8.
The requisite cut in the number of statistics was achieved by calculating
pooled estimates for those statistics having identical expectations.
Inspection of table 12 shows that V and Vj; V and V and
WB1I,B12 and WE21,B22 can be combined in this way. Likewise all the
information yielded by the rank 2 variances can be condensed into
three statistics. As regards the components, the inclusive estimates
present no problems since there are invariably only four to be estimated,
whilst in the exclusive analyses this difficulty can be overcome by
putting the V2B H component equal to (V12 +VB1) as in the un-
weighted estimations (see table 15). A sampling variance matrix
which incorporated all these features has been devised by my colleague
Mr R. Morley Jones. This matrix formed the basis for all the weighted
analyses, though certain minor modifications had to be made to the
expectations of the statistics in order to accommodate seasonal differ-
ences in the genetic sampling terms arising from structural alterations
in the experimental design. None of the information contained in the
data has been sacrificed during the formation of this matrix by
combining certain of the statistics or by eliminating one of the
components, but these manipulations do mean that the x2 testing the
goodness of fit of the model to the data is now based on correspondingly
fewer degrees of freedom.

Substantially the same genetic picture emerges from the weighted
inclusive and exclusive analyses as was obtained from the corresponding
unweighted analyses. Again, however, the interpretation of the
results is beset with difficulties since the models are fitted on the
assumption of no non-allelic interactions. That several of the models
do not fit the data adequately is a clear demonstration that such inter-
actions exist. Consequently to obtain valid estimates of the standard
errors of the components in those particular models the elements of the
inverted sampling variance matrix have to be scaled up by a factor
based on the observed x2 divided by its expected value, i.e. the degrees
of freedom. Having done this, it is obvious that the major genetic
component for both characters is additive (Table 20). Equally it is
apparent that for height, dominance cannot be entirely disregarded as
the H component is either significant or verging on significance
on several occasions, a result which is in complete agreement with
that obtained from the unweighted analyses.

Turning to the exclusive analyses, again there is no suggestion that
the genes controlling height are linked. But for flowering time there is
evidence both from the component values given in table 21, and from
the tests of goodness of fit of particular models (table 22) that the genes
concerned are linked. For any one block, the difference between the
x2 values of the inclusive and exclusive models provides a measure of
linkage, whilst the x2 remaining after having fitted the exclusive model
estimates the disturbance due to residual interactions. Dividing by the
appropriate degrees of freedom converts the x2 values into mean
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squares whence it becomes possible from a variance ratio test to deter-
mine whether the linkage effect is genuine or merely a reflection of
residual interactions. Such a test is only valid however if the inter-
actions affect all the components to an equal extent. Since we have no
evidence to the contrary it will be assumed that this requirement is
fulfilled. On the basis of this test it is clear that the only real evidence
for linkage comes from the 1962 experiment. But since it has already
been established that the principal effect of linkage is on the D com-
ponent, significant differences between the rank estimates of this

TABLE 22a

The detection of linkage in the weighted analyses—flowering time—degrees of freedom and
mean squares. Linkage has been tested against residual interactions and this latter item
has been tested against experimental error

Item D.F.
1960 1961 1962

Block I Block II Block III Block I Block II Block I Block II

Linkage . . .

Residual interaction .

4

8

417

231*

176

1.41

027

0'84

279

5.56***

331

4.93***

424**

055

6.14*

I13

TABLE 22b

Height

Item D.F.
ig6o ig6s

_______
1962

Block I Block II Block III Block I Block II Block I Block II

Linkage . . .

Residual interaction

4

8

3.64*

052

338

2.65**

V. small

234*

V39

203*

295

125

0O9

075

O77

2.46*

* P = o.05—0oI. P ooi—oooi. P = <000I.

component will also indicate to a certain extent the presence of linkage.
After allowing for the correlation between the additive components,
D2 is significantly larger than D1 in i g6o, suggesting that the genes are
linked in repulsion in the two parental varieties.

Finally concerning the questions of the relative efficiencies of the
weighted and unweighted analyses, it proves difficult to make a valid
comparison since the method evolved by Nelder (1960) assumes that
interactions are non-existent. Nelder's method can be used, however,
providing only those results known to be largely free of such interactions
are considered, namely the height data of 1962. Of the genetic
components H is the least efficiently estimated by the unweighted
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technique, whereas relatively little information about D, F and E1, is
sacrificed by this analysis. These results agree with those obtained by
Cooke et al. (1962) in an investigation involving inbred lines of
Drosophila melanogaster.

5. CORRELATIONS BETWEEN FLOWERING TIME
AND FINAL HEIGHT

Throughout these analyses the two characters under investigation
have been considered separately. It is known, however, that a cor-
relation exists between them in so far as the earlier-flowering plants
tend to be the shorter and vice versa. The weighted analyses reveal
that there is a correspondence between the total sums of squares for
the two characters over blocks and seasons (table 23). This indicates

TABLE 23

Weighted inclusive total sums of squares for flowering time and
final height over blocks and seasons

Character

1960 1961 1962—
Block I Block IL Block III Block I Block II Block I Block II

Flowering time

Height

48937

47o38

47P77

485'65

46325

47114

112613 104064

110378 102963

87446

84369

83953

84o74

that the correlation extends beyond the generation means to include
the variances and covariances. Moreover this correlation exists for
individual statistics such as V112, VB1, etc. This appears to imply that
the two characters have genes in common, although differences in the
mode of inheritance suggest that some of the genes are at separate
though closely linked loci. It would seem, however, that further
research is required to elucidate the causes of this correlation.

6. DISCUSSION

The inheritance of flowering time and final height in the iX5 cross
of X. rustica has been extensively studied from different viewpoints by
various workers including Mather and Vines (1952), Breese (1954),
Jinks and Mather (i) and Opsahl (1956) and it is therefore of some
interest to compare and contrast previous results with those presented
here. The first two investigations, which used the F2 selfing series of
generations, revealed non-allelic interactions in both characters, but
were unable to detect dominance for either flowering time or height.
Evidence of linkage for flowering time was obtained in both experi-
ments. Jinks and Mather's investigation was concerned primarily
with stability in homozygotes and heterozygotes. They found that the
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F1 was no more stable than its parents, a conclusion which is completely
supported by the present experiment. In an attempt to discriminate
between linkage and interactions Opsahi developed a novel approach
using F2 backcross generations. This increased the precision of his
experiment thereby enabling him to show that height was relatively
free from interactions and that the genes controlling this character
exhibited dominance. From the sequential analyses which he devised
he was unable to detect linkage unambiguously for flowering time
because of the large residual disturbances.

The results presented here are in general agreement with those from
Opsahl's experiment. There are, however, certain features of this
experiment, concerned primarily with the first and second degree
components, which require explanation. It is perfectly clear from the
components of generation means that if all the genes governing flower-
ing time and final height are taken into consideration, then both
characters show additive and dominance effects. This is because the
models fitted specifically allow for gene interactions and this in turn
enables average additive and dominance effects which are free of inter-
actions to be estimated. Why then is it necessary to obtain estimates of
the components of variance? The reasons are twofold; firstly to
determine the role of linkage in the inheritance of a given character and
secondly to calculate the relative magnitudes of additivity and
dominance, since the components of the means only estimate the
balance of these effects over all genes and as such they cannot, for
example, yield an estimate of dominance. When fitting models to the
variances and covariances no allowances for interactions are possible
because there are never enough statistics available to permit them all to
be estimated. Consequently these effects will be incorporated into
those components which are being estimated and also into their errors.
Discrepancies can therefore arise between the components of means
and those of variances. But, since the former can take account of
interactions, greater reliability can be placed on the qualitative genetic
picture which they give as opposed to the one presented by the
components of second degree statistics.

Focusing our attention now on the relative merits of the backcross
and F2 selfing series approaches to quantitative inheritance, un-
doubtedly the extra demands both on time and labour made by the
backcrosses must be entered on the debit side of the account. Assuming
that the species concerned can be readily selfed it will take at least four
times as long to generate the complete set of backcross progenies than
it will to obtain the F3 generation. There are, however, other factors
to be reckoned with in biometrical investigations which should out-
weigh the purely technical considerations. Basically these factors come
under the heading of what might be termed the overall experimental
efficiency. This can be subdivided into two parts, general and specific,
of which the former is a property of the number of families and
individuals raised in a given experiment. Clearly the number of

H2
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plants grown should be sufficient to ensure that statistics based on them
are estimated with reasonable precision. The specific portion of the
overall efficiency will depend in turn upon the actual generations
grown in an experiment; the number of statistics which can be derived
from those generations and finally the amount of information which the
available statistics can supply about the components being estimated.
Judging the two approaches on the basis of these criteria, the backcross
technique is unquestionably the more efficient.

In the first place the backcross approach yields considerably more
information both about the components of means and of variances. It
permits all the first and second order interaction parameters to be
estimated if needs be, whereas, excluding the parental generations, the
selfing series can only yield information about [ii], [1] and [z] irrespective
of the model being used to define the parameters. Likewise two
generations of backcrossing provide at least 21 statistics with which to
estimate the genetic components of variance, whereas selfing would
have to be continued at least until the F6 generation before an
equivalent number of statistics could be obtained. Moreover the
backcross method is, comparatively speaking, an efficient method of
estimating H, since none of the available statistics in the current experi-
ment has a coefficient of less than for this component. As one
progresses down the selfing series, on the other hand, the coefficient in
H decreases according to the formula () 1 ( ) n — r where r = rank and

the generation such that n r + I 2. A similar, though less rapid,
decline would be observed in the H coefficient if backcrossing were
continued beyond the second generation, but as some 20 statistics have
already been amassed by this time there is no real need to raise
succeeding backcross generations. The other components, being more
efficiently estimated, are rather less sensitive than H to compositional
changes in the experiment.

An added advantage which is conferred by the present experimental
procedure is that, since all covariance statistics are essentially cor-
relations between half sibs, they will be largely free from any of the
more gross effects of genotype x environment interactions. For this
reason parent-offspring correlations, such as W1/j-j, which involve
plants grown in successive seasons under entirely different environ-
mental conditions, have been deliberately excluded from the list of
available statistics. In the F2 selfing series all the covariances are of
this latter type. Normally genotype xenvironment interactions reduce
the parent-offspring correlation, but under very exceptional circum-
stances it is conceivable that the observed correlation could be higher
than its expected value.

On the balance therefore backcrossing would appear to be the
better of the two approaches for investigating the inheritance of
quantitative characters. Still further improvements would be possible,
however, if statistics yielding more information about H could be
devised. Overcoming this obstacle would entail an extensive crossing
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programme involving principally the F2 and i St backcross generations.
Plants chosen at random from these generations would have to be
selfed and crossed in turn to each parent and the F1 generation. This
would give a set of z8 closely interwoven generations providing between
them well over 40 statistics, 6 of which would contain coefficients of 1-H.
Such a crossing programme may in certain instances make prohibitive
demands on both time and labour, but given suitable material this
design will furnish detailed information about the components of
variation and many other aspects of quantitative inheritance.

7. SUMMARY

A biometrical investigation into the inheritance of flowering time
and final height in Jv'. rustica has been carried out over a period of three
successive years by means of recurrent backcross generations derived
from the two inbred varieties i and 5.

Both characters are subject to environmental and non-allelic
interactions, though there is evidence suggesting that height is less
susceptible to them than flowering time. From the components of
generation means it is clear that the genes controlling both characters
show additivity and dominance, whilst for flowering time the genes
concerned exhibit duplicate type interactions. The genetic picture
which emerges from both the weighted and unweighted estimations of
the components of variation is predominantly one of additivity.
Despite the prevalence of interactions there is reasonable evidence for
dominance amongst the genes controlling height, and likewise for
breakable repulsion linkages between those genes concerned with the
expression of flowering time.

A comparative study of the recurrent backcross and F2 selfing series
approaches from a biometrical standpoint indicates that, technical
considerations apart, the former is to be preferred on the grounds of
greater experimental efficiency. However, this design is not by any
means the most efficient attainable, and an alternative is suggested
which should in theory supply valuable information on many of the
problems encountered in investigations of continuous variation.
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