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1. INTRODUCTION

BODMER and Parsons (1959) and Bodmer (1959) have given a method
for a comprehensive analysis of balanced multi-point linkage experi-
ments using the techniques of factorial experimentation. The cases
of two and three points were discussed in detail. In this paper the
method is extended to four- and higher-point data. The problem of
distinguishing between additive and multiplicative systems, con-
sidered by Bodmer (ig), is discussed in relation to four-point data
in the house mouse published by Parsons (1958).

2. FOUR-POINT DATA

The data from a complete n-point backcross linkage test can, in
general, be set out in a 2 ° >< 2 latin square whose elements are the
observations for pairs of complementary genotypes. As for the three-
point test, the columns correspond to the modes of gamete formation,.

TABLE i

Scheme for the analysis of variance of a four-point test

Latin square of sums D.F.
Parental heterozygote (rows) . . . . . . . 7
Recombination (columns) . . . . . . . . 7
Two-factor interactions . . . . . 6

(diagonals)Four-factor interaction ) . . .
Error . . . . . . . . . . 42

63

Latin square of differences
Viability>< Parental heterozygote (rows) . . . . . 7

Viability>< Recombination (columns) . . . . . . 7
Main effects and three-factor interactions with the exception of that

represented by the total of the differences square (diagonals) . 7
Error . . . . . . . . . . . 42

63

One of the main effects or three-factor interactions (that which represents
the total of the differences square) . . . . . .

Total . . . . . . . . 127

the rows to the parental heterozygotes and the diagonals to the 2
possible pairs of complementary genotypes. Thus the total S.S.
(sum of squares) for any complete backcross linkage test consists of
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[S.S. of sums of complementary genotypes] +[S.S. of the differences
of complementary genotypes] + a S.S. for the total of the differences.
The first two items represent S.S. for latin squares which can be
partitioned in the normal way into components for rows, columns,
diagonals and an error term, whose meanings are exactly analogous
to the meanings of the corresponding components in the three-point
test discussed by Bodmer and Parsons

For a four-point test the data may be set out in an 8 >< 8 square
with 128 classes. The scheme for the analysis of variance is given in
table i, and is identical with the three-point situation except for the
allocation of viabilities and their interactions.

There are six two-factor interactions and one four-factor interaction.
The S.S. for the two- and four-factor interactions is, symbolically,

th[{(a— ,) (b—i) (c+ ') (d+ i)}2+{(a_ i) (b+ i)(c—i) (d+i)}2
+{(a—i)(b+I)(c+I)(d—i)}2+{(a+I)(b—i)(c—I)(d+i)}'
+ {(a+ ') (b—i) (c+ ') (d— i) }2{(a+ i) (b + i) (c—i) (d— i) }2
+ ((a—i) (b—i) (c—i) (d—i)}2]

(abcd+i (abcd+
+(a+bcd)2 +(a+bcd)
+(b+acd)2 +(b+acd)

— +(c+abd)2 1 +(c+abd)— 16 +(cd+ab)2
— 128 +(cd+ab)

+ (ad+bc)2 + (ad+bc)

+ (bd+ac)2 + (bd+ac)

+(abc+d)' +(abc+d)

where abed, etc. represent the total contributions of the corresponding
genotypes to the eight modes of gamete formation. This is the
diagonals S.S. of the sums square as shown in the analysis of variance.

The interpretation of the diagonals S.S. for the differences square
is a little more difficult. The abc interaction may be written symbolically
as,
(a—i) (b—i)(c—i) (d± i)= (abed—i) + (a—bed) + (b—acd) + (c—abd) + (cd—ab) + (ad—bc)

+ (bd—ac) + (abc—d)
If the differences square is made up by taking the differences between
complementary pairs as is shown in this expression, the S.S. for the
total of the differences square will represent the abc interaction. The
diagonals S.S. of the differences square can then be shown to represent
the four main viability effects and three of the four three-factor inter-
actions, the fourth being the abc interaction.

Thus the composition of the diagonals S.S. of the differences square
depends on the interaction that is represented by the total of the differ-
ences square.
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3. FIVE-POINT DATA

The data from a complete five-point test may be set out in a i6 x i6
square split into complementary pairs giving a total of 512 classes
leaving 511 D.F. after the restriction that the total observed must
equal the total expected. The 511 D.F. may be split as in table 2.

TABLE 2

Scheme for the analysis of variance of a Jive-point test

Latin square of sums D.F.
Parental heterozygotes (rows) . . . 15
Recombination (columns) . . 15
Two-factor interactions I . 10

(diagonals)Four-factor interactions . .
Error . . . . 210

255

Latin square of dzfferences
Viability x Parental heterozygote (rows) . . . . 15
Viability x Recombination (columns) . . . . 15
Main effects 10

(diagonals)Three-factor interactions ) 5
Error . . . 210

255

Five-factor interaction . . . .

Total . . 511

In this case, the S.S. of the sum of the differences square is arranged
to represent the five-factor interaction (a— i)(b— i)(c— i)(d— i)(e— i),
although it could equally well represent a main effect or three-factor
interaction.

In the three-point situation discussed by Bodmer and Parsons
(1959) the S.S. for the total of the differences square represents the
iibc interaction, although the calculation could be equally well done
if the sum of the differences square represented one of the three main
effects. In the two-point situation, the S.S. of the total of the differences
square represents either the main effect of a or of b.

This analysis may be extended to data involving six or more
factors, although it is unlikely that experiments of this magnitude
would be undertaken.

4. CONFOUNDING IN FOUR- AND HIGHER-POINT DATA

It was pointed out by Bodmer and Parsons (x), that, as in
agricultural factorial experiments, if we are willing to neglect higher-
order interactions, the technique of confounding may be used to
reduce the number of heterozygotes needed in a balanced multi-point
hackcross linkage experiment.

Only interactions involving an even number of factors can be
confounded, as the complementary genotypes cannot be separated.
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The general problem of selecting such subsets is complicated, but
a scheme for finding them has been devised by Edwards (1958). We
shall consider in detail the analysis needed for a confounded four-point
test.

Bodmer and Parsons (1959) showed how it was possible to confound
the four-factor interaction in a four-point test and so reduce the
number of heterozygotes needed from 8 to 4. The data from such a
set of four heterozygotes can be set out as in table 3, where a genotype
is designated by small letters for the loci at which it is homozygous.
The four pairs of complementary genotypes (i, abcd), (bc, ad), (cd, ab)
and (bd, ac) are arranged in a latin square whose rows correspond to

TABLE 3

Genotypes from the four heterozygotes which constitute a balanced set

Modes of gamete formation
Parental __________________ ________ __________________________________

heterozygote
(o) (a) (123) (13) (I) (12) (23) ()

a b c d abcd cd bd ad a b c d
i ab ac bc bcd acd abd abc

a b ++ cd abcd ad bd b a d c
++ c d ab bc ac acd bcd abc abd

fb+d bd ad abcd cd c d a
a+c+ ac bc ab abd abc bcd

b
acd

+ b c +
a + + d

ad
bc

bd
ac

cd
ab

abcd
i

d
abc

c
abd

b

acd
a

bcd

the heterozygotes, and columns to the four modes of gamete formation
(o), (2), (is) and (123). The remaining pairs of genotypes form a
second latin square whose columns are the modes of gamete formation
(r), (12), (3) and (23). The total S.S. for data from such an experi-
ment may therefore be split into the S.S. from these two latin squares,
which we shall call A and B, say, and the S.S. for the difference between
the totals of the squares. This latter is then the confounded degree of
freedom. The S.S. for each of A and B may then be split up as in the
analysis of the three-point experiment into a latin square of sums, a
latin square of differences, and a contribution from the total of the
differences square. The interpretation of the components is similar
to that considered in previous sections, except that corresponding
components from A and B have to be combined to make them repre-
sent the viability effects and interactions. Thus if the differences
squares are arranged so that their total represents the abc-interaction
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we have
8 x abc interaction = (abcd—') + (cd—ab) + (ad— bc) + (bd—ac)

+ (a—bcd)+ (b—acd) + (abc—d) (c—abd)
A+B say

and 8 >< d-effect = (abcd— r) (cd—ab) + (ad— bc) + (bd—ac)
— [(a—bcd) (b—acd) (abc—d) + (c—abd)]

=Y YB

where )A and )B represent the totals of the differences squares from
A and B. Hence the S.S. from the totals of the differences squares,
which is

1 ( 2 j_ 2 ' — 1 ( .J '\2J_ i I —A BI — 65\YA I .YB) 64\_YA )B) ,

is also the S.S. for the abc-interaction and the d-effect. In a similar
way it can be shown that the S.S. for the diagonals from the two
differences squares is the S.S. for the remaining one- and three-factor
effects, and the S.S. for the diagonals of the two sums squares is the
S.S. for the two-factor interactions. The heterozygote effect will be
represented by the S.S. of the totals of the heterozygote contributions,
and when subtracted from the S.S. for the rows of the sums squares,
leaves a residual representing interaction between viabilities and modes

TABLE 4

Scheme for the analysis of a confounded four-point experiment
D.F.

Parental heterozygotes . 3from S.S. for rows of sums squaresResidual interaction ) 3
Recombination—from S.S. for columns of sums squares . 6
Main viability effects . 4
Two-factor interactions . . 6
Three-factor interactions . 4
Viability>< Parental heterozygote—from S.S. for rows of differences

squares . . . . . 6
Viability x Recombination—from S.S. for columns of differences squares 6

6

: - error terms from the four latin squares

E4 I . 6
Confounded degree of freedom—from S.S. for the difference between

AandB . . . . . . . i
Total . . . . . . . 63

of gamete formation. The S.S. for rows and columns o1 the differ-
ences squares have their usual interpretation as viability x hetero-
zygote and viability x recombination interactions and there are four
error terms. The resulting scheme for the complete analysis of a
confounded four-point experiment is given in table 4.

5. NUMERICAL APPLICATIONS TO FOUR-POINT DATA

Data for a complete four-point backcross linkage test performed
on the house mouse were given by Parsons (1958). They involve the
factors fuzzy (fz), Splotch (Sp), leaden (in) and polydactyly (py), of which
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all except the second are recessive. Since we are interested in the
effect of Sp on viability and this only occurs heterozygously, we must
consider the heterozygote Sp+ as representing the same treatment
levels as the recessive homozygotes fzfr, mm, pyp. The analysis of

on the complete male data is presented in table 5, where the total of

TABLE 5

Analysis of x2 of Parsons' (1958) four-point male data for the house mouse

D.F. x° Pinpercent.

Latin square of sums
Parental heterozygotcs (rows) . . . 7 25512 <<o•I
Recombination (columns) . . . . 7 368736 <<'<01
Two-factor and four-factor interactions 7 3927 <0.,

(diagonals)
fzSp-interaction . . . 268
fz in-interaction i . . . 028
Sp-ln-interaction i . . . 259
fzpyinteraction x . . . 037
Sppy-interaction I . . . 886 o5-o1
lnpy-interaction I . 2375 <0.'
ft in Sppy-interaction I . . .

Error . . . . . . 42 41893 <<O•I

63

Latin square of d(fferences
Viabilityx Parental heterozygote (rows) . 7 534
ViabilityXRecoinbination (columns) . 7 1529 5-25
Main effects and three-factor interactions other 3294

than thefz in py-interaction (diagonals)
Main effect offz I . . i359 <n1
Main effect ofSp . . . ''
Main effect of in i . . . 042
Main effect ofpy . , . . . 1388
fzSpp-interaction I . . . 059
fz Sp in-interaction i . . . 048
Sp inpy-interaction I . . . i-os

Error . . . . . . . 42 6892 I-01

63

fz in py-interaction (total of differences square) i 025

127 452338

the differences square has been taken to represent the fz In py inter-
action. Only significance levels less than io per cent. are indicated.

By far the largest component is that due to recombinaton. There
is also very severe non-orthogonality indicated by the highly significant
parental heterozygote component. Such severe non-orthogonality
may seriously affect the terms for viability interactions involving an
even number of factors and will in general make the 5 analysis some-
what inaccurate. This accounts for the significant error term in the
sums square, and also for the apparent Sp py and in p interactions.
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Terms in the differences square are less affected by non-orthogonality,
although even here the error term is significant as also is the viability x
recombination interaction. This latter represents an effect which could
have no simple biological meaning and its significance is almost
certainly due to the non-orthogonality. Some confidence can be
placed in the significant effects for fz and py. The factor f. is well
known to have a somewhat deleterious effect. Polydactyly is not
generally associated with viability deficiency, but was, in the stock used
by Parsons, not perfectly manifesting. It was shown by Parsons
K 1958) that the polydactyly effect in these data was almost certainly
due to misclassification of the polydactyly and not to any viability
disturbance. The problem of estimating recombination in multiple
linkage tests with one factor imperfectly manifesting has been con-
sidered by Parsons (1957). An examination of the scheme of expecta-
tions given for such a situation indicates that the general effect of
misclassification on the analysis of2 will be indistinguishable from the
effect of a corresponding viability deficiency. The Sp effect is a little
inflated which might be interpreted as an indication of a slight viability
deficiency. It is, however, the largest of the remaining six interactions
involving an odd number of factors, and so its significance must be
modified accordingly. The three-factor interactions are all well below
significance, as would be expected.

It has been pointed out that the differences square can be arranged
in a number of ways, according to which effect will be represented by its
total. It is clear that these will in general result in different values
for the rows, columns and error terms of the differences square. Each
arrangement will give legitimate measures for viability >< heterozygote
and viability >< recombination interactions. However if the error
term is significant, usually indicating either severe non-orthogonality,
or disturbances not taken into account by the analysis, these com-
ponents may differ considerably for different arrangements of the
differences square, and thus not provide reliable measures of viability><
recombination and viability x heterozygote interactions.

The data from the four heterozygotes

f+lnpy fz+++ +++Py and
+Sp++' +Splnpy' fzSPln+ fzSp+py

only, have been analysed as if they represented the outcome of a con-
founded four-point experiment. The resulting analysis of x2 is given
in table 6, where as before, the total of the differences square represents
the fz lnpy-interaction. It is on the whole similar to that for the
complete data. The effect of the non-orthogonality on the two-factor
interactions is more severe, but the main effects and three-factor
interactions are still not disturbed by the non-orthogonality. The
significance of the residual interaction of 3 D.F. is also a result of the
non-orthogonality. The most striking difference is the non-significance
of the py-effect. This is, however, in the same direction as that for the
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complete experiment and a heterogeneity x comparing the ratio of
polydactyls to normals for the two halves of the experiment gives
only I42.

It is clear that in order to obtain more reliable measures of the
viability effects and interactions, some sort of logarithic transformation
is needed. The logarithmic transformation cannot be applied to
the data as they stand, because of the small numbers of observations
in some of the classes. However, if we take the logarithms of the

TABLE 6

Analysis of a confounded four-point experiment based on Parsons' (1958) data

D.F. Pinpercent.

Parental heterozygotes . . . . . 3 14908 <<01
Residual interaction . . . . . 3 ii05
Recombination . . . . . 6 159114 <<<o•i
Viabilityxhetcrozygote . . . . . 6
Viahilityxrecombination . . . . 6 1421 5-25
Main effects fz . . . . . . I 724 I-05

Sp . . . . . . 020
in . . . . . . 3.70 10-5

I 246
Two-factor interactions fz Sp . . . i 11.98 <0.1

fzin. . . . I 326 10-5
Spin . . . I 4196 <<0'
fzpy . . . 1 326 10-5
Sppy . . . I 965 05-01
inpy . . . I 2866 <0.1

Three-factor interactions fz Sp in . . . i i33
fzSppy . . . I 020
fzinpy . . '
Spinpy . . . i i62

E1 ) . . . 6 13476 <<01E, from sums squares . . . 6 3I93 <01
E3) . I . . . 6 1236from differences squares i . . . . 8E4 6 31
Confounded degree of freedom . . . I 3.05 10-5

63

totals observed for each genotype, we will at least obtain unbiased
measures of multiplicative effects involving an odd number of factors..
Thus in terms of logarithms thefz-effect, for example, is

[Iogj.-logj Sp+Iogfz in+logfzpy-f-logfz Sp in+Iogfz Sppy
+logfz in py+logfz Sp in fly—log Sp—log ln—.-log pg—log Sp in
—log Sppy—log inpy—log Sp lnpy—log i]

= log8 /..fz .fzSp .jin .fzpy .fzSpin .fzSppy .j.inpy .fzSpinpy
Sp.in.pf.Spin.Sppy.lnpy.Spinpy.i

where fz, Sp, etc. and i represent the totals observed for the corres-
ponding genotypes. The antilog, of this will be the multiplicative
effect of j. Using Fisher's (1925-54) approximate formula for the
variance of a statistic expressed as a function of the observed frequencies,
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it is easily seen that the variance of each of the logarithmic multipli-
cative effects is x the sum of the reciprocals of the genotype totals.
If logarithms are taken to the base ten, this must be multiplied by
(loge 10)2. The square of each effect divided by this variance provides
an approximate X2i for measuring the significance of the effect. These
x21's are shown in table 7 together with the multiplicative effects ex-
pressed as a percentage of standard. The results are very similar to
those obtained by the analysis on the original data, and still show a

TABLE 7

Tests for multiplicative viability effects in Parsons' (1958) four-point data

Multiplicative
effects in X2i P in per cent.
per cent.

Main effects
fz . . . . . . 86 1501 <0!
SJ) . . . . . 9264 353 10-5
in . . . . . . 103! 059
py . . . . . . 8686 124! <01

Two-factor interactions
fzSp. . . . . . 9268 360
fzln . . . . . . 9731 044
Sft in . . . . . . 9311 i8 10-5
fzpy . . . . . 1024 035
Sppy . . . . . 1132 g6i 05-01
inpy . . . . . . 1230 2672 <0'

Three-factor interactions

fzSpln . . . . . 9656 076
fzSpp.y . . . . . 1041 098
fzlnpy . . . . . 1039 090
Splnpy . . . . . 1048 137

Four-factor interaction
fzSplnpy . . . . 1056 185

marked disturbance of the two-factor interactions by the non-ortho-
gonality. The additive effect ofjz, for example, was —2.9219 relative
to an overall mean of 20 ioi6, and the corresponding multiplicative
effect is —28886. The similarity between the two analyses shows
that the effects are too small for a difference between additive and
multiplicative systems to be detectable. The estimate for the fuzzy
viability of 85.63 per cent. has a standard error of 343. An examina-
tion of the expectations given by Parsons (i7) for situations in which
there is misclassification of one factor shows that if the py-effect is
entirely due to misclassification it will approximately be an estimate
of (i —A) /(1 + A) where A is the percentage misclassification of py.
This gives an estimate for A of 7o32+1992 per cent. which is in close
agreement with the value obtained by Parsons (1958) of69Io+I•959
per cent., by a different method.
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As there is no real evidence for any interactions involving Sp,
it is legitimate to neglect Sp and consider the results as if they had been
obtained from a three-point experiment involving fz, In and py. The
data are then no longer too sparse for a direct application of the
logarithmic transformation and so make possible an investigation of
the effects affected by severe non-orthogonality in the analysis on the
original data. The analysis of the data considered in this form and
after taking logarithms is given in table 8. It should be noticed that

TABLE 8

Analysis, after taking logarithms, of Parsons' (1958) data considered as a three-
point test invoicing fz, in and py

D.F. x2 Pinpercent.

Latin square of sums
Parental heterozygotes (rows) . . .
Recombination (columns) . . . .
Two-factor interactions (diagonals) . .
fz In-interaction s . . . .
fzpy-interaction I . . . .
lnfty-interaction I . . . .

Error . . . . . . .

3
3
3

6

'5

i66
148387

66i
3.79
009
273ii8i

<<o•i
<<<01

10-55
...

10
50-5

Latin square of d/ferences
Viabilityx parental heterozygote (rows) .
Viabilityx recombination (columns) .
Main effects (diagonals) . . .

maineffectoffz I . .
maineffectofln I . . . .

main effect ofpy I . . . .
Error . . . . . . .

fz lnpy-interaction (total of differences square)

3
3
3

6

'5i
31

448
396

1569
o2I

1236
865

256

...

...
<•,
<0.,

...
<oi

...

...

the effects tested are multiplicative effects as defined above. The
error term of the sums square and two of the two-factor interactions
are still slightly inflated by the non-orthogonality, but the differences.
square is no longer affected. There is clearly no viability x hetero—
zygote or viability x recombination interaction. The power of the
logarithmic transformation in representing the situation on a multi-
plicative basis and eliminating the effects of the non-orthogonality
is quite striking.

6. DISCUSSION

The main purpose of this paper has been to apply the factorial
analysis of balanced multi-point linkage tests developed for two-
and three-point data to four- and higher-point data. The application
to the situation where all the possible multiple heterozygotes are used
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as parents in four- and higher-point data is a mere extension of the
previous work. The only difficulty is the allocation of the viability
effects and interactions.

However, the technique of confounding may be used to reduce
the number of heterozygotes needed in four- and higher-point experi-
ments. In a four-point experiment, therefore, by confounding the
abcd or four-factor interaction it is possible to reduce the number of
heterozygotes needed from eight to four. The analysis of variance for
such a balanced set of four is discussed and provides information on all
the components that the complete analysis gives with the exception
of the confounded abcd interaction. The analysis of balanced sets
formed by confounding various four and higher even-order interactions.
will be of greater importance in five- and higher-point data where it
would be increasingly laborious to make up all the possible multiple
heterozygotes.

The techniques developed in this paper are illustrated with an
analysis of x2 of some four-point data in the house mouse given by
Parsons (1958). The analysis gives a large x2 for the parental hetero-
zygote component indicating non-orthogonality and this accounts for
large two-factor interactions, viability x recombination interactions
and error terms. In a situation where the error term of the " differ-
ences" square is large, the magnitude of the components of the
"differences" square may vary considerably according to the viability
interaction represented by the total of the differences square. Thus
measures of viability x recombination and viability >< heterozygote
interactions will be unreliable under such circumstances.

However, after taking logarithms and analysing the resulting data
on the basis of a multiplicative system, the significant interactions
and error terms noted above were reduced on the whole to insigni-
ficance. Thus the power of the logarithmic transformation in repre-
senting the situation on a multiplicative basis is clearly demonstrated.
Further evidence of the power of the logarithmic transformation is
provided by data of Parsons (1959) in Drosophila melanogaster where
many interactions are reduced to insignificance after taking logarithms.

7. SUMMARY

i. The factorial analysis of complete four- and five-point linkage
data is discussed and the extension to higher-point data indicated.

2. The analysis of a balanced set in a four-point linkage test formed
by confounding the four-factor interaction is presented.

3. Four-point data in the house mouse (Parsons, 1958) is analysed
to illustrate the methods for both the complete data and the balanced
set.

4. The data are analysed after taking logarithms as proposed by
Bodmer (igg) and it is shown that the logarithmic transformation
provides a more realistic picture of the situation. This supports the
multiplicative basis of expectations assumed for such experiments.

21
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