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I. INTRODUCTION

IT was pointed out by Fisher (1952) in the Bateson lecture that the
factorial method of experimentation, now used extensively in agri-
culturc and other fields of research, derives its name and structure
from the simultaneous segregation of Mendelian characters.

Kempthorne (1955) stressed the genetic origins of the ideas of
factorial experimentation when he used these techniques in the
splitting up of the genctic variance into components in a system
involving the average effects and interactions of unspecified polygenes.
In this paper, however, we shall consider major gene effects and their
interactions such as are available from a multiple linkage experiment.

In recent years multiple linkage data have bcen analysed with
series of simple y2 tests. A discussion of these has been given by
Fisher (1949), Parsons (1957, 1958) and Wallace (1947, 1957). In
this paper, by applying the principles of factorial analysis, we are
attempting to give an alternative and rather more integrated method
of analysis.

2. THE FACTORIAL SCHEME

In the data obtained from a backcross linkage test involving the
three factors A, B, C and their recessive alleles, each factor will be
either heterozygous Aa, Bb, Cc¢ or homozygous aa, bb, cc. This is
directly analogous to three trcatments at two levels in a 23 factorial
experiment in which there are cight possible treatments which can be
represented as 1, a, b, ¢, ab, ac, be, abc. The letters a, b, ¢ denote one
of the treatment levels and may be taken to represent the recessive
homozygotes aa, bb, ¢c in the genetical analogy. Thus the treatment
effects of the factorial experiment correspond to the genotypic via-
bilities. The main effect in the factorial experiment corresponds to
the main viability cffect of a gene and interactions between main
effects to viability interactions.

The blocks in the factorial experiment correspond to the modes of
gamete formation. If each genotype is represented equally in each
mode of gamete formation (or block), we can carry out an analysis
of variance in the usual way, and hence obtain an analysis of y2,
giving measures of the viability effects and interactions, and of the
recombination effect (block effect). This implies that all the possible
multiple heterozygotes must be used as parents, and that each must
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contribute equally to the data. In this casc the experiment may be
called ‘‘ orthogonally balanced >. A sum of squares (S.S.), and hence
a x2 for the differences in parental heterozygote contributions can be
calculated which is a measure of the departure from orthogonality.
Yates and Cochran (1938) have shown in similar situations that such
a S.S. may be adequate to account for the non-orthogonality provided
that deviations from orthogonality arc not too severe. If there are
severe deviations, a weighted analysis ought to be used. In sections
3 and 4 a full analysis of x? for data from three-point backcross experi-
ments will be described.

As in agricultural factorial experiments, the higher-order viability
intcractions may, intuitively, be expected to be of no importance.
Even if information were lacking on some of the higher-order inter-
actions it is, nevertheless, probable that the estimates of the recombina-
tion fractions would not in fact be biased. In agricultural factorial
experiments information on higher-order interactions is often sacrificed
so as to be able to usc smaller blocks, this process being termed con-
founding (Fisher, 1935-53), and the same may be done in a genetical
linkage experiment.

For example, in a four-point test, the eight possible quadruple
heterozygotes can be divided into two sets of four by confounding the
abed or 4-factor interaction where d represents the fourth factor. This
interaction can be found by evaluating (a—1) (b—1) (¢—1) (d—1)
which equals:

1—a—>b—c—d-abt-ac4ad +be +bd +-cd—abec —abd —acd—bed -+-abed

Confounding this interaction means that the terms of this expansion
with negative signs (1 and g factor effcets) are in one block, and those
with positive (o, 2, and 4 factor effects) in the other. Considering
those with negative sign, it can be seen that a, b, ¢, d represent the
same quadruple heterozygotes as bed, acd, abd, abc so that one set
would be :(—

aBCD AbCD ABcD ABCd

Abcd’ aBed’ abCd’ abeD’

and the other
ABcd AbCd AbeD ABCD
abCD’ aBcD’ aBCd’  abed

Hence it is essential to assume that the sum of the o, 2 and 4 factor
cffects is cqual to the sum of the 1 and g factor effects in estimating
recombination from one such set in a four-point linkage test. If this
assumption can be made, and there is orthogonality within a set, it can
easily be seen that recombination may always be estimated by the
addition of the numbers in each mode of gamcte formation without
risk of bias.

When there are both coupling and repulsion data for every possible
pair of factors in a multi-point linkage test, the resulting set of data is
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said to be balanced (Fisher and Mather, 1936 ; Wallace, 1957). In
a two-point linkage test, the two possible double heterozygotes are
necessary for balance in this sense, and in the three-point test the four
possible triple heterozygotes. However, in the four-point test, each of
the two sets of four defined above by confounding the four-factor
interaction is balanced. Such a set of four may be called a balanced
set.

This condition for balance corrcsponds to the condition that no
two-factor interactions should be confounded. The nature of the
occurrence of the genotypes in complementary pairs ensures that the

TABLE 1a
Genotypes in a 4X4 Latin square
I
Mode of gamete formation
Parental
heterozygote
(0) (1) (2) (12)
abc/+ + + abe a c b
I be ab ac
+ bela+ + a abe b c
be I ac ab
ab+ [+ b+ ¢ b abe a
ab ac I be
a+c/+ b+ b c a abe
ac ab be I

main effects are never confounded and so only one parental hetero-
zygote is needed if all the interactions are negligible.

In five- and higher-point data, the problem of selecting balanced
sets is complicated and may involve confounding several interactions.
A scheme in which balanced sets may be found for higher-order
experiments has been devised by Edwards (1958).

3. THE THEORY OF THE xz ANALYSIS

The data from a balanced three-point backcross linkage experi-
ment can be set out as in table 14 (¢f. Parsons, 1957), where a genotype
is designated by small letters for the loci at which it is homozygous.
The expectations assumed for each observed class are usually taken to
be the product of three quantities representing respectively a contribu-
tion from the parental heterozygote, a contribution from the mode of
gamete formation, and a contribution for the viability of the particular
genotype observed. The expectations for the observed classes, cor-
responding to the genotypes listed in table 14, are given in table 15,
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where allowance is made for possible intcractions between these three
sourccs of variation. The parameters are defined as follows :—

a; == proportionate contribution from :t" parental heterozygote ;
p; = proportionate contribution from ;" mode gamete formation ;
v, = proportionate contribution from the £t genotype ;

e;;x = proportionate contribution for the interaction of the 4% genotype
with the ¢t heterozygote and the jt mode of gamete formation.

There are thirty-two observed classcs, leaving thirty-one degrees of
TABLE 16

Expected proportions corresponding to the genolypes in 1a

; Mode of gamete formation
Parental !
heterozygote 1 i }
i (o) (1) (2) (12)
H i
abe/+ ++ | apwienn | apatserzs | aiptslss | Qipavoeis
Aipiva112 | A1pa04€124 a;p3Vei36 a1psUs€1a8
+ beju+ + Azp1V3621;3 Az fiat18221 31308237 24056245
@p\Useary  Qapala€ap | GafsUseass | Azpalclrss
i
{
ab+/+ +c¢ A3prsesrs | Aapalzeaay | A3pPaVi€szr | @3Pali€343
O3p106€316 | A3Palslsag | QaPilz€azz | G3fsls€a4s
atc/+b+ AiP1ls8aa7 | @if2ls€azs | Aafi3Us€a33 | AaPalrésan
asprUgesrs | Aapalofaze | Aufslslszs | AapaVaysz

freedom after the restriction that the total observed must equal the
total expected has been taken into account.
Let us assume that

a; = (1 4a;), p; = 1 4my), v = (1 +A) and e = 1 g

Then the expectation of the observed total from the ¢t heterozygote,
in the j** mode of gamete formation for the A® genotype 1s

m(1 ~+a; -, A, 5, Hhigher-order terms)

if it is assumed that a;, 7;, A, and gy, arc small and m = N/g2 where
is the obscrved total. Thus, when the deviations of the proportionate
contributions from zero arc small, the expectations are approximately
lincar functions of the parameters.

We have defined four parameters each for the heterozygote and
modc of gamete formation effects, and eight parameters for the
viabilities or genotype effects.  These must be subject to the restrictions

Zai;o,zﬂ'i:O’XAk:O . M (3")
i k
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leaving thirteen independent parameters for these effects. The thirty-
two parameters u;;, are subject to the restrictions
z Iu'ljk =0, > ,u'wk =0, z Rige = O, z Hije = O . (32)
given i given j given k all gk
of which fourteen are independent. This leaves eighteen independent
parameters to describe interaction between genotypes, heterozygotes
and modes of gamete formation which, together with the thirteen para-
meters describing the effects discussed above, make up the thirty-one
available degrees of freedom.

If values of the parameters are fitted assuming that ¢,;; = 1 for all
¢,  and k by the method of maximum likelihood, the equations for
estimation of the remaining thirteen parameters are given by equating
observed row, column and diagonal totals to their expected values.
These imply in fact the restrictions 3.2. It is also clear that assuming
separate viabilities for the pairs of genotypes in a cell does not affect
the estimation of the relative frequencies of the modes of gamete
formation.

Now the general procedure followed in applying Fisher’s method
of scoring (¢f. Fisher 1956) is as follows. Suppose we make observations
on 7 classes, and the expectation of the 7tk observation «a, is M, (6, ... 6,),
where 0, ... 8, are parameters to be estimated. Then we consider the
k linear scores

a n
S = Z a’@ﬁ (log M,) = Z K, a, say

r=1
corresponding to the £ parameters, and also the information matrix

1l;; =% K;, K;, M,. If now m, and k,, are the values taken by M, and

r=1,

K, when, say, 0, = 0 =0, = ... = 0, approximations to the maximum
k
likelihood estimates of 6, ... 6, are given by the equations X [}, §; = §,.

If the matrix /;; is diagonal, that is /;; = o when ¢ 5% 7, the parameters 6,
may be termed orthogonal and the approximate estimates of them are
0; = S;/I; where I; = I,; An approximate test of significance for the
departure of §; from zero is then given by x? = $2/I,, More accurate
estimates and tests arc obtained by repeating the scoring procedure
with the values of 8, given above instead of taking all the 8, to be zero.
Now if we assume the state §; = o = ... = 6, corresponds to equality of
the expected classes, we have

M, = m[1 +k;,0; +o (62)]

where £, has the meaning attached to it above and m = N/n. Thus k;,

give the scores appropriate for a linear system, whatever the values of

the 6; and so scoring at §; = o is equivalent to assuming a linear system.

This is the assumption made in the analysis of variance, where the

various effects are made to form a set of orthogonal parameters and
K2
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the total sum of squares (S.S.) is split into components which measure
the extent of these effects. Now the y? testing departure from equality
(a,—N/n)? a’ 1
of the observations q, is x>, = L ~———— = Z —~—N = —xS.S. of
r Xn-1 N/n m 'N m X
the a,. If, therefore, we define the parameters 6; corresponding to
the various effects as for an analysis of variance, we have

Si=Xkya, I, — T Em

k
and the Total S.S. =X (a,—m)? =m X §}/];+Residual S.S. with

n—1—Fk degrees of freecdom where m $%/I, is the component of the
S.S. for the ¢tt effect, and on division by m this provides the y? detecting
the departure of §; from zero.

Hence if we carry out an analysis of variance on the data from
such a linkage cxperiment, and divide the component S.S. by m, we
obtain an exactly analogous partition of x* for detecting departures
from equality of the expected classes. The accuracy of the x? tests
thus obtained on the assumed expectations given in table 15 depends
on the departures from equality being small, so that the expectations
are to a good approximation linear functions of the parameters.

The total S.S. for the observations from such a three-point backcross
linkage experiment is

2))5.‘51 +Z-y?jz —2n [

2 (i i) \
=1 [Z (Din Fin)?—n (f(i),n_{hyl) ]

+3 [z Gen—usn)2—n (W);“J’_z))z] 4" [Eﬂff.ﬁlﬁzl]z

2n

Z_ﬂizﬂn] g

2 n

where y;;; and y;;, arc the two obscrved totals for the complementary
genotypes from the tt heterozygote and the j** mode of gamete forma-
tion, and n = 16. In other words the total S.S. consists of 1[S.S. of
the sums of complcmentary genotypes] +3[S.S. of the differences of
complementary genotypes] +% S.S. due to T (9;;;—%). The sums
and differences of the complementary genotypes form two 4 X 4 Latin
squares and the S.S. from Z( y;;;, —%:;,) is the S.S. for the total of the
differences square. The ‘‘sums” square is the form in which the
data are usually presented for the detection of linkage and interference
(see Fisher (1949) and Wallace (1957)). The S.S. for the Latin squares
can be partitioned in the usual way, namely into components for rows,
columns, diagonals and an error term.

If the a; as defined above are all equal, then the experiment is
orthogonally balanced, that is, all the different genotypes are repre-
sented equally for each mode of gamete formation. In this case, the



MULTI-POINT LINKAGE TESTS 151

usual treatment effects and interactions represent the corresponding
viability effects and interactions of the various loci, as described in
the previous section. For example, the S.S. for the two-factor inter-
action is, symbolically,

4x§[{(a—1) (b—1) (c+1)}24+{(a—1) (b+T1)

(c—1) P+
(b—1) (c—1)}7]

{(a +1)
te 4 X% (abe 4+1) +(c +ab) —(a +bc) — (b +ac) }?
+{(abec +1) +(b +ac) —(c +ab) —(a +bc) }?
+{(abec +1) 4-(a +bc) — (b +ac) — (¢ +ab)}>
=4xX%( 4" (abe+1)27] [ (abe+41)7
+(a+be)> | | +(a-+be)
+(b 4ac)? +(b +ac)
+(c +ab)? +(c +ab)

where abe etc. represent the means of the contributions of the cor-
responding genotypes to the four modes of gamete formation. This
is one-half the diagonals S.S. for the ““sums” square. In a similar
way it can be shown that the diagonals S.S. for the * differences”
square is twice that for the main viability effects, and the S.S. for the
total of the “ differences » square is the S.S. for the three-factor inter-
action. The expectation of each term in the ‘ differences” square
consists only of the difference of the viability contributions from
complementary genotypes if the interactions u,; are all zcro. Hence
the S.S. for rows in the “ differences ** square measures the interaction
of viabilities and heterozygotes, and the S.S. for columns, the inter-
actions of viabilities and modes of gamete formation. We therefore
obtain the scheme for the analysis of variance given in table 2.

TABLE 2

Scheme for analysis of variance

% “sums ” Latin square d.f.
Parental Heterozygote (rows) . 3
Recombination (columns) 3
2-factor interactions (diagonals) . . . . .3
Error 6
15

% “ differences ”’ Latin square
Viability x Parental heterozygote (rows) . . . .3
Viability X Recombination (columns) . . . . 3
Main viability effects (diagonals) . . . . .8
Error . . . . . . . . . 6
15

g-factor interaction
(S.S. from total of * differences ” squares) . . R

Total . . . . . . .31
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There are in fact 12 degrces of freedom for error, so that only 6
of the 18 degrees of freedom available for describing interactions
between the genotypes, the heterozygotes and the modes of gamete
formation have been used. These 6 d.f. are made up of g d.f. each
for the wviability X heterozygote and viability X rccombination inter-
actions. 'The remaining unused 12 d.f. would be used to account for
recombination X heterozygote and other higher-order interactions.
High components for the two “ error” terms would indicate the
existence of such disturbances.

On division by m = N/g2 the various components of the analysis
of variance will be turned into y2s for the corresponding degrees of
freedom.

Excluding maternal effects, a viability X heterozygote interaction
would indicate a “‘ competition > effect, that is a dependence of the
viability of a genotype on the rclative proportions of the genotypes
with which it is competing. Such  competition” effects may be
expected to occur quite generally and to be of considerable importance
in the study of population genetics. Haldane (1924) has investigated
one form of such an ecffect occurring in populations, which he has
termed “ familial selection”. The competition effect would be
indicated by the viability X heterozygote intcraction, becausc the
different genotypes are represented in differing proportions amongst
the offspring of each heterozygote. A balanced linkage expecriment
may thus be of importance when regarded as a means for detecting
viability competition effects duc to a number of linked loci.

Recombination X heterozygote interactions are rare, though Parsons
(1957) has observed a variation in recombination according to the
parental heterozygote which is such an interaction. The occurrence
of viability X recombination interactions is most unlikely, as such an
effect is almost inconceivable. The interpretation of terms from the
‘ differences ” square will be unaltered by significant non-orthogonality
as these depend only on the difference of the complementary genotypes,
for which the heterozygote contributions must necessarily be equal.

It is clecar that a similar analysis of x2 can be obtained for any
balanced two- or higher-point experiments.

The accuracy of the analysis presented above, which is based on the
multiplicative expectations given in table 15, depends on being able
to take the expectations as approximately linear expressions in the
parameters which is only possible if the effects are small. If, however,
logarithms are taken, the expectations arc then lincar functions of the
logarithms of the various parameters. The scores for the logarithms
of the paramcters are therefore constant, and the information may be
expected to vary little with variation in the paramecters. It would
seem, therefore, that a more accurate analysis could be obtained by
doing the calculations on the logarithms of the observed data.

By comparing the analysis obtained before and after taking
logarithms it is possible in some cases to distinguish between additive
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and multiplicative action of genes. This subject is considered further
by Bodmer (1959).

4. APPLICATIONS OF THE ANALYSIS OF x2 TO
PUBLISHED DATA ON THREE-POINT EXPERIMENTS

(i) Data of Wallace (1947)

The data are for a balanced three-point test involving the factors
wavy-2 (wv2), shaker-2 (sh2) and sex in the house mouse (Mus musculus).
The analysis of y2 is presented in table 3.

TABLE 3
Analysis of x* for Wallace’s (1947) data

Latin square of sums d.f.| S.S. x? Pin %

Rows (parental heterozygotes) .
Columns (recombination)
Diagonals (two-factor interactions)
Error

5784 | 409 | 30-20
112459 | 79'44 | <€o'1

509 | 0'36| 95-90

116°19 821 | 30 —20

[oplE. NELREN]

15 | 130371 | 9210 | <Zo°1

Latin square of differences

Rows (viability x parental heterozygote) 3 62°59 4°42 | 30 —20
Columns (viability x recombination). . . . 3 19°34 1:37 | 8070
Diagonals (main viability effects) . . . . 3 1:09 008 | >99
Error . . . . . 6| 15869 11°21 | 10-5

15 | 241°71 | 17°08

Three-factor interaction . . . . . . I 4278 302 | 10 -5

31 | 158820 | 112°20 | <<o'1

The overall departure from equality of the observed classes is
clearly highly significant. By far the largest component is that for
recombination, which is, in fact, the only significant component.
However, the y2s for the two-factor interaction and the main effects
are suspiciously small compared with that for the three-factor inter-
action. The error y;{ in the differences square is also on the verge of
significance at 5 per cent. indicating the possible existence of some
disturbance, not taken into account in the analysis, as discussed in
the previous section. It is clear that, as shown in Wallace’s original
paper, there is no evidence for non-orthogonality or two-factor
viability interactions which might disturb the crude estimates of
recombination. The x: obtained by Fisher (1949) for the two-factor
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interactions by more complicated analysis was 0-43, leaving a devia-
tion x; of 7-40, which corresponds with the *“ error ”” term of the sums
square, These agree well with the results presented in table 3. There
is no evidence from the data of any viability X heterozygote interaction
or competition effect and, as expected, there is no viability X recombina-
tion interaction.

TABLE 4
Analysis of x* for Parsons’ (1957) data
Latin square of sums d.f. S.S. x> Pin %

Parental heterozygotes 3 14,822 503 | o1
Recombination . . . . . . . 3 | 2,763,091 | 9,374'4 | <€o°1
Two-factor interactions . . . . . 3 2,056 7°0 | 10-5§

ab-interaction 1 435 1'5 | 80 —20

ac-interaction I 780 2:6 | 20-10

be-interaction 1 841 2'g | 10 -5
Error 6 24,781 840 | o1
Total . . . . . . . . {15 | 2,804,750 | 9,515°7

Latin square of differences

Viability X parental heterozygote 3 2,121 7'2 1 10 —§
Viability X recombination . . . . 3 76 026, 98 - 95
Main viability effects . . . . . . 3 18,928 642 | <or1

main effect of a . . . . . 1 648 2:2 | 20 — 10

main effect of 4 1 17,955 6o:g i <o'1

main effect of ¢ 1 325 1'1 | 30 —20
Error 6 22,997 780 | <on1
Total . . . . . . . . 115 44,122 14966
Three-factor interaction (abe) . . . . 1 o
Total . . . . . . . . 131 | 2,848,872 | 9,665°36] o1

|

(ii) Data of Parsons (1957)

These data are for the three loci scute (sc), crossveinless (cv) and
vermilion (v) situated on the sex chromosome of Drosophila melanogaster.
The analysis of y2 is presented in tablc 4.

The departure from equality is again wildly significant, with the
main contribution from the recombination effect. As predicted in the
last section, the variation in rccombination according to parental
heterozygote found by Parsons, is indicated by highly significant error
terms in both squares. Therce is a significant departure from ortho-
gonality, as might be expected when the numbers arc so large, but
this is not scverc. The only viability effect is the main effect due to
crossveinless, which is highly significant. There is no cvidence for
any other interactions, although the b¢c-interactions are a little inflated.
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The value of x; for the two-factor interaction obtained by Parsons
(1957) was 5-9 by the usual crude method and 12:6 by Fisher’s (1949)
method. The value obtained above lies between these two. The
residual x; of 414 given by Parsons is somewhat less than the error
terms of either of the Latin squares. However, with such large effects
as those indicated for Parsons’ data, the theory of the last section
would suggest some inaccuracy if scoring is done on the assumption of
equal expectations.

Both of these analyses therefore show that the mode of analysis
employed in agricultural factorial experimentation gives results in
agreement with the analyses using simple x2 tests. Some deviation
from orthogonality can be tolerated without serious bias as in the
Drosophila data. Furthermore, this method of calculation has the
advantage that all major sources of variation can be detected in one
computation.

5. DISCUSSION

The method of analysis of multiple linkage data discussed above
enables one to detect and isolate the major sources of variation without
much difficulty. The usual model assumed for the estimation of re-
combination fractions implies no competition effects, and in the case
of non-orthogonality may involve heavy computations.

Viability interactions in an orthogonal experiment do not affect
estimation of recombination by the addition of the column totals of a
Latin square, as they will cancel out (sections 2 and 3). For moderate
deviations from orthogonality, with small interactions, as usually occur
in practice, addition of the column totals will not result in much error
(Parsons, 1957). It seems probable, therefore, that errors in the
model which allow for genotypic viability differences are likely to be
of the same order as the error in the crude method of estimation obtained
by the addition of column totals. Each case must, however, be judged
on its own merits.

From the practical point of view, when estimates of recombination
are required, it is necessary to do a balanced experiment so allowing
for these disturbances. It is clear that deviations from orthogonality
should not be too severe.

The analysis of x> provides useful information on viabilities and
the form of their interactions associated with major genes which may
possibly have important applications in population genetics. A
similar method of analysis can be used for other sources of variation
associated with major genes. An example would be the fertility and
vigour associated with segregating blood-group genes.

6. SUMMARY

1. By applying the principles of the analysis of factorial experi-
ments in agriculture, a comprehensive method of analysing multiple
balanced backcross linkage experiments is presented.
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2. The technique of confounding provides an interpretation of
balance in terms of confounded interactions, and shows what a balanced
set as used in multi-point linkage tests implies.

3. It is possible, using this method of analysis, to obtain mcasures
of all the major sources of variation such as the viability effects and
interactions, recombination, and competition effects. The implica-
tions of performing an analysis on the logarithms of the obscrved data
are briefly discussed.

4. The method is illustrated on data from two balanced three-point
experiments.

5. The implication of the method in the estimation of recombina-
tion and other possible applications are discussed.
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