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I. INTRODUCTION

The modern conception of the hereditary process, or the "chromo-
some theory of inheritance " as it is sometimes referred to, rests
essentially on two broadly based facts. First, hereditary factors are
readily classifiable into well-defined groups (known as linkage groups)
according as they segregate independently or not ; and secondly,
the number of these groups in any species corresponds exactly to the
haploid complement of chromosomes characteristic of the species in
question. In terms of this conception the precise specification of the
genetic constitution of an organism is achieved by assigning to each
of its genes a certain location on a linkage map. The unit of measure
in terms of which this might best be achieved is by no means obvious
and it is only in the last few years in fact that a satisfactory metric
has been put forward. Before describing this it is perhaps worthwhile
recalling in very brief outline the attempts to develop a consistent
theory of genetical recombination. Morgan propounded the cross-
over theory in 1911. On the basis of this theory the segregation ratios
of genetic factors belonging to the same linkage group were attributed
to the exchange of chromosomal material during the meiotic process,
and it was conjectured that the proportion of recombinants was in
some way related to the distance apart of the genes on the chromosome.
Subsequent research showed this to be an excellent first approximation
where the recombination fractions were small, but that its effectiveness
diminished as the recombination fraction increased. The recombina-
tion fraction could not therefore be regarded as a satisfactory metric
and was eventually superseded by the map distance. Defined as the
average number of cross-overs in an interval this was clearly additive,
but it had the disadvantage of being unobservable, so that necessarily
therefrom attention was focused on clarifying the precise relation
between it and the observable recombination fractions. The difference
between the map distance, x say, and the recombination fraction,
p say, is due to two causes, multiple crossing-over and genetic inter-
ference, and it was the second of these which presented the main
obstacle to progress. It was perhaps not very surprising therefore
that the first relation to be established (Haldane, i9ig) was based on
the simplifying assumption of no interference ; namely,

y(x) =
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The attempts to establish relations of wider applicability have been
more numerous. Perhaps the best of them is Kosambi's empirical
relation,

5(x) = tanh 2X.

In many organisms, particularly for describing gene loci on median
segments in long arms, this is a very useful relation; so much so that
one feature to be expected of any theory of genetical recombination
is that it should agree with Kosambi's relation over median ranges.
Even so in other respects it has many serious shortcomings (see section 5)
and this rather unsatisfactory state of affairs remained until the
combined work of Fisher et al. (i4') and Owen ('949). Their theory
is not dependent on any particular conception of the meiotic process
it is simply formulated in terms of the probabilities of cross-overs
occurring, and allows the observed recombination fractions them-
selves to provide the criterion as to whether a given probability
distribution is well chosen or whether it should be altered so as to
describe more accurately what has been observed.

2. THE GENERAL THEORY OF GENETICAL RECOMBINATION

This theory starts from the point of view that recombination between
two loci takes place when, in terms of a single strand, an odd
number of exchange points occurs between them during meiosis. The
recombination fraction therefore is the probability that i, or 3, or 5,
or in general an odd number of interchanges has taken place, so that
denoting the recombination fraction by and using an obvious
notation for the probabilities,

S = Pi+P3+Ps+ = . . . (1)
On the other hand the map distance, defined as the average number
of exchange points,

xOP0+1P1+2P2+3P3+... =ZTPr . . ()
adequately supplies a consistent measure of location on the linkage
map.

In a more general way, for the case of several loci on a finite arm,
if we let .r denote the joint probability of just r1, r2, ..., r
exchange points in each of say n genetically distinguishable segments
then for the kth segment, the map distance,

=ZTkPrrt
&lrk

= the expected number of exchange points in the kth segment,
and the recombination fraction,

S Ic = 2Pr.. .rk...r,
oddri= the probability of an odd number of exchange points in the

kth segment.



THEORY OF RECOMBINATION 131

This simple and direct approach is the basis of the theory of
genetical rccombinatiori developed in recent years by Fisher and
Owen. It requires only the specification of the probability distribution
of the exchange points on a single strand after meiosis, and is not
dependent in any way on the particular manner in which a single
exchange point occurs. Since the detail of this process is unobservable,
this is an advantage as the theory would otherwise contain a formal
aspect, i.e. one not testable by observation. Like many recent advances
in biology during the past few decades it recognises variability and
treats it as a whole, realising that what may happen in a particular
instance depends on a large number of factors, which are either
unknown or too complex to be treated individually even if they were
known, while all that is necessary very often is the statistical regularity
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Fin. i—The intercept length distribution, '4(t)dt = 4te_atdt
having a variance =

which can be observed and measured. Evidently, therefore, the only
essential requirement of this theory is a specification of the intercept
length distribution between successive exchange points on a single
strand ; from this the probabilities used in (i) and (2) can be inferred.
In this feature lies the great flexibility of the theory ; one has only
to find a distribution consistent with the observed recombination
fractions and this will automatically subsume the composite effect of
genetic interference. Furthermore the existence of a satisfactorily
postulated form for the intercept distribution embodies the entire
observational record of recombination fractions in an organised form
and therefore provides an empirically established piece of knowledge
for which future, more detailed investigation of genetic interference
must account. Therefore, apart from allowing a consistent description
of observed recombinations, which it does without prejudging the
mechanism of genetic interference, it summarises in a compact way
the observational experience with which any possible postulated mode
of interference must accord.

To set up the requisite probabilities used in (i) and (2) Fisher
recognised that there is nothing sacrosanct about the map distance.

05 I•0 I•5
Intercept length

20 28



132 L. C. PAYNE

(As Owen (1950) has demonstrated, there are an infinite number of
possible additive metrics.) He chose, therefore, to define the intercept
length distribution in terms of a metric in which it was supposed that
the interference was uniform ; mathematically there is everything to
be gained by adopting this procedure. If we denote this metric by t
then the postulated form he chose,* is given by the X24 distribution,

24(t)dt = 4te—2tdt . . . . ()
This is shown graphically in fig. i.

In terms of the auxiliary metric t one may express the probabilities
p,, and hence x andy, for

= p1(t) +p3(t) +p5(t) +... =y(t)
and similarly x = x(t).

Perhaps the first reaction of the reader is that the X24(t) distribution
is rather arbitrary, but it is the purpose of this paper to show in a
summary fashion that if only a small departure from the essential
form of the 24(t) distribution is made, then this leads to results
which are directly at variance with current genetical experience, and
that therefore the X24(t) distribution must simulate the actual intercept
distribution rather closely.

3. THE kx24(t) THEORY

In 1951 Fisher showed that the frequencies of all recombination
classes among any number of marked loci on a finite arm can be
expressed in terms of the following four functions,

()

Note that in this notation t represents twice the metrical length. If
products of these are formed in a certain combinatorial way (Fisher,
1951) then the frequency of each recombination class is readily
deduced. However, for the purpose of this paper, it is more convenient
to adopt a slightly different procedure. Suppose we have an arm of

* The kX'4 distribution was suggested by Owen (ig) as a mathematically more

convenient mimic of the tanh(4is)sech(i,s)ds distribution originally proposed by Fisher

('947).

For the detailed analysis the reader is referred to Payne (5956).
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five segments defined by four internal markers between the centromere
and terminus ; in addition consider the 2 >< 2 matrix.

(a \
/3 a)

. . .

I I

C t1 t3 t4 t T
To form the frequency of non-recombinants in all five segments we
write down the matrix product,

E—tf—* t2* t3± t4+ t5*
(a /3(a 13\(a P\j'a 13\(a o
o oJ aJ\/3 a/\ a)\f3 o

that is, we associate the matrix ( 1) with each internal segment, its

first row with the segment proximal to the centromere, and its first
column with the terminal segment. If recombination occurs in any
segment, e.g. in the second, the appropriate frequency for that

/a/3\.particular class is given by exchanging -) for a) in the
second segment (i.e. we merely interchange the elements of the matrix
according to whether they are underlined or not). Thus we may
regard,

as the " non-recombination matrix"\ (LJ

and as the "recombination matrix ".
'/3 j

According as we use one or the other in each segment we thus obtain
in a straightforward way the full set of 2 frequencies (2— i recom-
binant, i non-recombinant) appropriate to there being recombination
or n(n-recombination in each of the five segments. Incidentally we
note that the sum of recombinants and non-recombinants in a given
segment is found by adding,

____t__>_ ÷__t__* *——---— 1____>.

(a + (a 'i (aH-a /3+/3\ (cosh I sinh t
\/3 a1 fl g) \+j3 a-i-a) sinh I cosh t

so that the sum of all recombination frequencies is just,

*—t1—-———---)-

/cosh sinh\ /cosh sinh\ /cosh o\
o o ) Isinh cosh) sinh ) = cosh(t1+12+ ... +t)

or simply cosh T, where T is twice the total metrical length of the
arm. This will therefore be a constant divisor for finding absolute
frequencies.

12
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In the same way that the expressions are built up for the recom-
bination frequencies from the "recombination" and "non-recom-
bination" matrices, so we can build up the expression for the map
distance from the following "map distance matrix."

4. THE X6 THEORY

The above summary of a method for quickly findingy(t) and x(t)
in the 1X24 case can readily be extended to other metrics. Since we
are anxious to determine the genetic consequences implicit upon a
slight change in the kX24 distribution of intercept length we now
investigate the case of the X26 distribution. Explicitly,

Intercept length

FIG. 2.—Curve (a) kX'(t) 4—2t (variance =
Curve (b) X'e(t) = jt'e3 (variance j).

1(t sinh t
2t cosh t+sinh t

t cosh t—sinh t
t sinh t

*X26(t)dt = t2e—3tdt.

graphically with the X24 distribution in fig. 2.This is compared
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The expressions for x(t) and y(t) in this case can be
terms of the following six functions,

formulated in

(6)

a(t)=I+6

6! 12!++....
fl(t)=±+L1

y(t)=_T+i
+,
+—j +....

t3(t)=—+—3!
t
9!

t15+—
15!

+....
t4(t)=—+——+--—4!

tb

jo!
tlfi

ii! +....
t5(t)=—+—+—5 !

t"
xi !

t17

17
+....
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Note that in this notation t represents thrice the metrical length. The
expressions for x(t) and y(t) can now be formed in exactly the same
way as for the X24 case, but using instead the following matrices,

fa /3
a /3 ) is the "non-recombination matrix"

\/3 ' a/
/a /3 v\

y a /3 )
is the "recombination matrix"

'fl V

/ tç t3—€ tc—2\
and ( te+ tc6 18—€ ) is the " map distance matrix ",

\t+2e t€-- tç /
where, a+, e /3+fi and q

By associating one or other of the first two matrices with each
internal segment and the first row and column with the segments
proximal to the centromere and terminus respectively, the full set of
recombination frequencies can be obtained. Similarly the map
distances are obtainable from the third matrix.

We note that each matrix is of order 3 >< 3 ; for this reason no
confusion is likely to arise from the notation adopted for the sets of
functions (.) and (6), and something is perhaps gained by observing
the natural extension of the way in which the matrices can be built
up. Finally we note that in this case the sum of all possible frequency
classes is just (T) ; this is therefore the constant divisor required to
obtain absolute frequencies.

5. COMPARISON OF THE TW® DISTRIBUTIONS

With the above summary of how, within the framework of the
general theory of genetical recombination, the required relation
between x andy can be found, (x = x(t), y =y(t) expresses it para-
metric form), in the cases of the two assumed forms for the intercept
distribution (which we note subsumes the effects of multiple crossing-
over and genetic interference) we can now pass on to compare the
implicit genetic consequences.

To do this we adopt a suitable convention for representing the
level of interference induced over a finite arm already used by Fisher.*
Taking an arm length of 90 cM. between centromere and terminus
we mark off segments at distances such that the recombination fraction
for each segment is io per cent. The Kosambi coefficient is then

* A chart, based on an arm length of 6o cM. is exhibited as a wall diagram in the Dept.
of Genetics, Cambridge.

j The Kosambi coefficient of interference is given by

K12 =YI+YI.YI+I = C
4Y1YSYI+2 2Yi+z

where C is the coefficient of coincidence between segments s and 2.
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calculated for each adjacent pair of segments and plotted against the
central marker as absciss. The matrix method of the previous
sections facilitates the calculation of the necessary recombination
fractions and map distances. To illustrate the method consider the
calculation of a single point on the graph. Let two segments, i and
2 say, be specified by 11 = 27, 12 = 40 and 13 = 5! cM. (these points
refer to the standardised metric ; i.e. put 2t for t in the formul of
the previous sections).

o cM 27 cM 40 cM 5! cM 90 cM

C t2 t3 T
For the éX24 case the appropriate expression for the recombination
fractiony(t112) is as follows.

*——2t-—--*E---2 (12
—1)—*÷—2(T—t3)--÷

5(1112) (cosh sinh) ( ) (c)/cosh 2T =
A.B.C.

say.cosh 2T

Hence if Si and 52 refer to the respective recombination fractions of
segments x and 2 then we have (simply substituting in the above for
the appropriate t1 and 12) that,

÷—A---* +—B—-----÷

III494(10I86I178) (16685' These are as
Yi(27, 40) =

10.5666 00225I82flI.3356}
= 00997 near to io per

(I.3374( 1o2277512) II4I28 cent. as the
Y2(40,51) = =01011

o888i 1o0238657) (09981 tables* permit.

(II494) (04045I87 114128)
whilst 31÷2(27, 51) = to.s666Jlo.o86469ir1o.99811

= O!925.

Thus the Kosambi coefficient K12 is,

51+52 J1÷2
1(12 — _________ — I 070.

4.Yi52)1÷2

This is therefore plotted against the central marker t2 = 40 cM as
abscissa; but this point corresponds to a map distance of,

/2tsinh2t 2tcOsh2t—siflh2t\/cOSh 2(T—t) o\ /
x(t) = . IIcosh2T0 0 j\sinh 2(T—t) o,/

= (2tsinh 2t—Siflh 2tSinh 2(T—t)) /2 cosh 2T
which for t = o40 gives,

x(o.4o) = {o.8 sinh (I.9)—sinh (o.8) sinh (11)}/3.4,77
= 2o9O cM.

K = i 07 is therefore plotted against x = 20.9 cM as abscissa. The
* The segmental functions (4) are tabulated in Fisher and Yates' Statistical Tables

('953).
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entire set of results obtained in the above manner are given in table I.
The ordinate value K0 = 278 for x = o is derived on the assumption

TABLE i

t . 00O0 2700 4000 5100 6ioo 7000 7800 85oo 9100

x(f) . 00'OO 1073 2090 3115 41.74 5242 63o6 7349 835o

Is. . . 278 ,6i 1.07 085 o•69 057 047 0'38 ...

that there is no interference across the centromere so that the corres-
ponding y1 refers to segments on either side of the centromere, and
is therefore given by,

.Y1+2 Y1+)22.Yj)2= o1+o1—2(o1 xox)
oi8,

whence K0 = 278.
TABLE 2

0000 3667 4933 5867 66oo 7233 7767 8200 8600

0000 1027 2029 3018 3988 5004 602I 6987 8005

278 o88 034 oi8 0ii 007 o04 003

A similar calculation applies to the X26 case ; the only difference
is that x(t) andy(t) are built up from the 3 >< 3 matrices instead of the

30 -

\
25 .

20 —\

5 .
LI•0-

.5 - -

—
0 20 30 40 50 60 70 90

Map distance from centromere (cM.)

FIG. 3.—Values of K for pairs of segments, each with 10 per cent. recombination, plotted
against the position of the central marker. Curve (a) corresponds to the intercept
distribution and curve (b to the distribution.

2 Y 2. (Tables for the six functions (6) have been calculated by the
author.) The results for the case are summarised in table 2.

A graphical illustration of tables i and 2 is given in fig. 3.
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One notices that the range of values predicted by the kX24 theory
is consistent with current genetical evidence, whilst those predicted
by the *X26 theory are of a much lower order. The fact that only a
relatively slight departure from the 1X24 distribution (see fig. 2) is
sufficient to imply very different K values from those which have been
observed suggests that the X24 distribution simulates the actual
intercept distribution rather closely.

6. RELATION TO KOSAMBI'S THEORY

Kosambi's empirically derived relation between the map distance
and the recombination fraction is of the form,

,y(x) = tanh 2X

from which it may be verified that the Kosambi coefficient is unity
throughout the arm. This follows from the implicit addition formula,

— 1+Y2Y1+2 — ________

It also follows from this that for n loci only the recombination fractions
between n(n—I) pairs of points can be derived, whilst there actually
exist i recombination classes. Therefore this relation does not
provide an adequate basis from which to infer all the gametic frequencies
in the cases of four or more loci. Further, it requires that y be a
monotonic function of x, sets an upper limit of 50 per cent. to the
recombination fraction for any segment and implies uniform properties
for a chromosome arm throughout its length. However, it is known
to give good agreement in many cases for segments distal from the
centromere on long arms, and it will be expected therefore of any
theory (such as that based on the X24 or *X26 distribution) that
apart from overcoming the weaknesses of the Kosambi relation, it
will agree closely with it over median ranges (where K is approximately
unity). One may observe in fig. 3 that there is a range of values
of x over which, for the X24 curve, K is near unity, i.e. the value
given by Kosambi's relation. For this range one may therefore expect
there to be good agreement between these theories, and correspondingly
less good agreement between Kosambi's relation and the *X26 theory.
The relevant approximations are * given by the following expressions.

X24 :y(x) = (i —e2' cos 2x)

*x2o :y(x) = e_3x. {3(3x) +2(3x) +2'(3x) +2y(3x) +P(3x)}
These are compared with Kosambi's relation in table 3. Both
approximations agree fairly well with Kosambi over this range, though
as we anticipated from fig. 3 the agreement is rather better in the
iX24 case.

In other respects the X26 analysis enjoys qualitative advantages
similar to the X24 theory, in that it does not confine all recombination

* See Owen (1951), Payne (i956).



THEORY OF RECOMBINATION I3
fractions below 50 per cent., nor ascribe uniform properties throughout
the length of a finite arm, but does allow us to calculate any required
recombination class frequency and provide a consistent measure of
location in an additive metric. It will be interesting to see if there
are any species where the theory of recombination based on the

distribution of intercept length, corresponding to more severe
genetic interference, gives better agreement than that based on the
+X24 distribution. The simple experimental criterion suggested by
fig. 3 should assist such investigation.

TABLE 3

x (cM) Kosambi X24 *X'6

0 0000 0000 0000
4 0040 0040 0040
8 0079 0079 oo8o

12 o,,8 o,r8 0120
i6 0155 0155 0159
20 0190 0191 0198
24 0223 0226 0235
28 0254 0258 0272
32 0283 0289 0307
36 0308 0317 034o

7. SUMMARY

A simple algebraic method is given for obtaining the relation
between the map distance x and the recombination fraction in the
cases of two assumed distributions for the intercept length between
successive exchange points on a single strand (the 1X24 and *X26
distributions). Since these correspond to different levels of genetic
interference the interference levels are calculated in either case. It is
clear from this that whereas the distribution yields results in
good agreement with current genetical evidence, the *X26 distribution
does not, and as the difference between these distributions is slight
one is led to infer that the 1X24 distribution (due to Fisher and Owen)
simulates the actual intercept length distribution rather closely.
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