
HEREDITY VOLUME 10 PART I APRIL 1956

THE F2 AND BACKCROSS GENERATIONS FROM
A SET OF DIALLEL CROSSES

J. L. JINKS
Agricultural Research Council Unit of Biometrical Genetics,

Department of Genetics, University of Birmingham

Received 20.Viii.55

I. INTRODUCTION

THE theory and analysis of F, and parental data from a set of diallel
crosses has been described and illustrated using the results of our
own crosses between eight varieties of X. rustica and published work
on other species (Jinks and Hayman, i; Jinks, 1954a, i954b,
1955; Hayman, 1954). The method, which is an extension of that
developed by Mather (1949), permits the estimation of parameters
for acLditive, dominance and environmental effects and allows the
recognition of non-allelic interaction. The analysis has now been
extended to cover the F2 and backcross generations of a diallel set
of crosses and is illustrated by the same diallel cross, the F, analysis
of which was described in the earlier paper (Jinks, i954b).

Before proceeding with the analyses of the later generations we
will briefly restate the conclusions reached from the analysis of the
parents and F1s. Of the two main characters followed, the time of
flowering showed incomplete but significant dominance and a complete
absence of non-allelic interaction for the two seasons 1951 and 1952.
The other character, final height, appeared to show overdominance
but this was traced to a spurious inflation of the dominance component
by non-allelic interaction of a type comparable with the comple-
mentary genes of classical genetics. After omitting from the analyses
the crosses showing significant non-allelic interaction, all of which
occurred in arrays i, 2 and 4, re-analysis revealed only complete
dominance.

2. MATERIAL AND METHOD
The 1951 and 1952 experimental layout has already been described in detail.

In including F,s and backcrosses as well as parents and F,s the i 953 experiment
was identical in design with that of 1952 so that we have the parents and F1s of the
diallel cross for three consecutive seasons and the F, and backcross generations
for the last two.

3. THE ANALYSIS OF MEANS

() Genotype-environment interaction
In the first paper of this series (Jinks, i 4b) one method of

detecting genotype-environment interaction was discussed, namely
the within plot variance of non-segregating parental and F1 families,
i.e. E,. The analysis showed that for the two seasons 1951 and 1952
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there was no significant difference between the mean E1 for parents
and that for the F1s. Furthermore, the significant heterogeneity of
the E1s over families, i.e. both parents and F,s, was attributable to
the varying reaction of the different genotypes to environmental
differences. Since then estimates of the E,s for 1953 have been
obtained and a second genotype-environment interaction, the variance
of family means over the three seasons, has been investigated. The
analysis of these two statistics has been presented and discussed by
Jinks and Mather (i) in relation to the stability in development
of homozygotes and heterozygotes.

(ii) Scaling tests
The expected means of each generation following a cross between

two inbred lines in the absence and presence of non-allelic interaction
are given by Mather (i4) and Hayman and Mather (i)
respectively. In the absence of interaction the following relationships
hold

F2 =
B, =
B2 = P2+F,

In the presence of non-allelic interaction, however, these equalities
no longer hold. Although this test can be made on the three equalities
independently as described by Mather (ig4) and Mather and Vines
(1952), a more convenient method which combines these three tests
has been developed by Cavalli (1952) and used for the detection of
non-allelic interaction by Jinks (i 954a, 1955). This test consists of
estimating by weighted least squares the three parameters L'd, Eh
and M (the mid-parent) taking as weights the reciprocals of the
squared standard errors of the generation means. The expectations
of the generations in terms of these three parameters are as follows
P1 = M+'d (L'd and 'h here refer to the balance of

= M—L'd genes in opposition, e.g. 2'd is the net balance
F1 = M + 2'h of the alleles with a positive contribution
F2 = M+L'h to the mean (+d) minus the contribution
B, = M+Ed+L'h of the alleles with a negative effect (—d)).
12 = M—Ed+Zh

The estimated parameters can be tested for consistency over
generations by comparing the observed and expected generation
means, in this particular case as a x2 for three degrees of freedom.

(a) Height. Our earlier analyses of height using the regression of array covariance
on array variance suggested that we should find non-allelic interaction in arrays i,
2 and 4, i.e. crosses involving lines 2, 5 and i 2 as one parent. They further suggest
that while parent 2 interacts with 5 and I 2 the latter do not interact with one
another. The scaling tests fully confirm these expectations. For both the xgz and
1953 seasons all crosses, apart from the cross 3 >< 8, exhibiting significant interaction
on the scaling test, have one of these three lines as a parent (tables i a and i b.



A SET OF DIALLEL CROSSES 3

One difference in detail over the two seasons is that two crosses 5 X 2 and X 4
which show no significant interaction in i 952 (P =o1-o o5 and 07-0 5 respectively)
do so in 1953.

Having separated all the crosses into two groups, the interacters and non-
interacters, we can now return to the individual scaling tests to examine the ways
in which the three equalities given earlier have failed. For this purpose we have

TABLEx
The incidence of significan non-allelic interaction for height in the 8 x8 diallel in 1952

and 1953 and flowering time in 1953 as revealed by the joint scaling test

Height

Ia 1952 ib 1953

Arrays 23456782345678

Flowering time

IC 1953

2345678
I +—+———+
2 +——+—+
3 +———+
4 —+—+
5

— — —
6 ——
7

—

+—+———++—++—++———+++—+— — ———
—

—+—±+—+++—+—+——±—+——+—+ — —
++

—

independently pooled all interacting and non-interacting crosses over reciprocals,
blocks and seasons for each generation (table 2).

The expected values for the F2 and backcross generation means have been
calculated according to the three equalities given earlier. Examination of the
observed-expected deviations in table 2 shows that the most marked difference

TABLE 2
The three scaling tests carried out independently for the non-interacting and interacting crosses

pooled over reciprocals, blocks and seasons for each generation for the character height

Generation P, P, F, F, B, B,

Item

Pooled (

interacting
crosses

Observed .

Expected .
Deviation .

4018
...

...

5194
...
...

6098
...

...

53-23
53-52
—029

5310
5058
+252

5332
56'46
—314

Pooled non-
interacting i

crosses

Observed .
Expected .
Deviation .

3876 4501
... ...
.. ...

4593
...
...

43.47
4391
—ot

4254
4235
+019

4428
4547
+119

between the crosses showing significant interaction and those showing no interaction
lies in the two backcross means (B, and B,). Thus the means of the backcross
families showing non-allelic interaction are virtually the same irrespective of whether
the F1 is backcrossed to the smaller or the larger parent, i.e. B, and B, respectively.

(b) Flowering time. For flowering time the scaling tests revealed no crosses
showing non-allelic interaction for the season 1952. This includes the cross r X 3
which gave rise to a deviation from the F, Wr/Vr regression in a manner suggesting
non-allelic interaction. It will be recalled that the latter interpretation of this
deviation was discounted at the time and an alternative explanation based on the
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pre-planting treatment in this season was put forward. Contrasting with this we
find a number of crosses showing significant interaction in the scaling tests for the
1953 season as shown in table ic.

This raises a problem that we have not so far discussed, namely, that certain
types of interaction may escape detection in the F1 Wr/Vr regression analysis.
Duplicate genes, for example, might well escape detection by this method and yet
be picked up by the scaling tests. Further discussion of this matter will be postponed,
however, until the results of other methods of detecting interactions have been
described.

One thing is certain, even at this stage, namely, that the non-allelic interactions
for flowering time in 1953 are a distinct system from those that appear in the
inheritance of height and, as we shall see later, for leaf length. Apart from the
differences in behaviour in their respective F1 Wr1Vr regression, they also have a
different distribution amongst the families ann give rise to different types of upsets
in the individual scaling tests. Thus of i2 crosses showing interaction for height

TABLE 3

The three scaling tests carried out independently for the interacting and non-interacting crosses
pooled over reciprocals and blocks for leaf length

Generation P2 F1 F2 B1 B2

Pooled (
interacting {

crosses I

Item

Observed
Expected .
Deviation .

i86o
...
...

2442
...
...

2381
...
...

216o
2266
—xo6

22292I2I
+io8

2298
24II
—113

Pooled non- (
interacting

crosses

Observed .
Expected .
Deviation .

i8zj
...
...

2373
...
...

2287
...
...

2202
2P92
+oro

2o9O
2053

+O37

2387
233O
+O57

in 5953 and the i crosses showing interaction for flowering time in the same season
only 5 show interaction for both characters—the expectation on a random basis
being 6. Furthermore the effect of the interaction in flowering time is in all cases
to give F2 and backcross families which flower earlier (i.e. have a lower mean) than
one would expect from their parental and F1 flowering times.

(c) Leaf length. While the character leaf length failed to show any significant
non-allelic interaction on the F1 Wr/Vr regression analysis for the two seasons over
which it was tested, there were some indications of interaction. For example, the
regression coefficient was always lower than expected for no interaction (o7)
but not significantly so because of the large standard error. Examination of the
graphs of Wr against Vr shows that the large error and low regression coefficient
are in all cases due to the point for array i, all other points being a good fit with
the expected slope of one. The joint scaling test for 1952 (leaf length was not scored
in 1953) shows that non-allelic interaction is indeed present and is mainly con-
centrated in array i. Two crosses show significant interaction at the i per cent.
level, namely i x2 and 3 x 4, while a further six crosses, three of which occur in
array 1, are significant at the 5 per cent. level. All crosses showing non-allelic
interaction for leaf length also show interaction for height at a higher level of
significance. It would seem, therefore, that we are dealing with the same group of
interacting loci with two different levels of effect.

The observed and expected generation means for the averages of interacting
and non-interacting crosses are given in table 3.

As with height, the backcross generation means for leaf length for the backcross
to the smaller and larger parent are more alike than expected in the crosses exhibiting
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non-allelic interaction. Unlike the height means, however, the deviation of the
observed F, from its expectation is of the same order of magnitude as that of the
backcrosses.

The existence of non-allelic intcraction in certain crosses raises the problem of
rescaling. This has been investigated not only in the N. rustica data but also in
re-analyses of published maize diallels (Jinks, 1955). Suitable changes of scale
such as log transformations will remove interaction from all crosses exhibiting this
phenomenon. Unfortunately in a diallel set of crosses where only a proportion
of the crosses show non-allelic interaction, any change of scale that successfully
removes this interaction results in the appearance of significant disturbances in
previously non-interacting crosses.

(iii) Heterosis

The relationship between the parental and F1 means is the same
for all three seasons. Thus the overall F1 mean for height is significantly
greater than that of the overall mid-parent, while the F1 mean flowering
time is significantly earlier than that of the average parent. An
analysis of variance to test the consistency of the magnitude of the
difference between the F1 mean and the parental mean over seasons
is given in table 4.

TABLE 4
The analysis of variance of the relationship of the

overall parental and F1 mean over seasons

Character Flowering time Height

Item N MSS MSS

PvF1 .
PvF1xseasons .
Duplicate error .
Reciprocal differences .

1

2
192
84

5997
383

3•9
241

215V4
I525

5.9
I4'9

Two error variances are available for testing the significance of
the parental and F1 differences and their consistency over seasons.
These are the duplicate error derived from the SS of differences
between identical parental and F1 families in the two blocks for the
three seasons and the SS of differences between reciprocal F1 families
in the three seasons. The latter SS is significant for both characters
against the duplicate error; but this significance must be interpreted
with caution. As pointed out in previous papers, the design of the
experiment was such that while reciprocal families were independently
randomised prior to sowing the seed, blocks were not independently
randomised until planting out into the field. This inadequacy of the
design has now been remedied, but for the present results the reciprocal
difference SS must be regarded as the better estimate of error in the
experiment as a whole.

For flowering time the F1 heterosis is significant and consistent
in magnitude over seasons. For height, on the other hand, there is
a significant overall heterosis over the three seasons, but the magnitude
of this heterosis varies significantly over seasons.
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4. SECOND DEGREE STATISTICS

(I) Analysis of F1s and parents for 1953
Before proceeding to the F, and backcross analyses we will first

consider the analysis of the 1953 F, and parental means and compare
them with those given earlier for i 951 and i 952.

In all essential details the 2953 results agree with the earlier ones
(table 5).

The character height again shows significant overdominance( > and significant non-allelic interaction (b1> i) while

flowering time again shows incomplete but significant dominance

(o<' <I)
and no indication of non-allelic interaction (briyr i).

Analysis of array 7 for the character height, i.e. the only array showing
no significant interaction in the scaling test (table ib) gave only
complete dominance. As in previous seasons, therefore, the high
dominance ratio can be related to an inflation due to non-allelic
interaction.

TABLE 5
The analysis of height and flowering lime for 5953

Statistic
Height

Flowering time

Complete Array 7

D . . . .
H1 . . . .
H, . . . .
F . . .

.

.
bWr/Vr . . .

646635
23P0404
i8•66

—I335268
37'
09726

05626±01134

646635
764384
...

—I394684
ii8i
...
...

1479608
83ozr7
692g76

+404673
05619

o2o84
09I54±0056O

Other points of similarity over seasons are the product ii for
height, which has never varied from 017, and the distribution of the
array points on the Wr/Vr graphs for both characters. As the latter
comparison has been analysed in detail by Allard (in preparation),
it will not be discussed further here except in reference to the F2
and backcross Wr/Vr graphs.

Certain statistics show differences over the three seasons. Thus
the genetical components D, H1, H, and F are greater in magnitude
for both characters in 2953 than in either of the previous seasons.
For flowering time this change has apparently not influenced the
dominance ratio, but for height the ratio is definitely higher than
in previous seasons. On the whole the height statistics have remained
much more constant over seasons than those for flowering time.
Further discussion of this subject will, however, be delayed until
least squares estimates of the statistics have been obtained.
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(ii) The expectations for the F2 and backcross analyses

The expected statistics for the F2 generation are of the same
general form as those of the F1 except that the contribution of h is
halved by the one generation of inbreeding. For this reason the
coefficients of H and H2 are of those of the F1 statistics, while the
coefficient of F is halved, being second and first degree statistics in
h respectively (table 6).

TABLE 6

F2 expected means and variances

Original parent lines
Male

Female

Genotype
Frequency
Mean

AAu
d5

aa
V5
da

Mean of
array

AA. u5. da. Genotype of F2 .
Frequency .
Mean
Variance

AA
Ua2
da
o

IAA : IAa : Iaa
U5V5
lb5

1d52+*haz
uada+vaha

lvada2+lvaha2

aa. U5. d5. Genotype ofF2
Frequency
Mean
Variance

fAA : fAa : faa
U5Va
fha

.ldai+1h52

aa
us2

da
o

—vada+fUaha
fuada-+fuaha2

Parental mean (ua—va)da Overall mean of progenies (ua—va)da+uavahs
Overall mean variance of progenies uavada2+fuavaha2.

The composition of the F2 variances and covariances are as
follows :—

Many independentF2 statistic One gene enes

Mean variance of arrays = uavsds2+fuavaha2— = *D+rHrIF+Es
unva(uava)daha

Mean covariance of arrays = 2u5v5d52 —uava(uava(ua—va)daha = fD—fF +- E2

Variance of array means = uavoda2 + fuavaho' —u52v52h52 — = fD+ eHi — —

uavo(ua—va)daha lF+ E2
Mean family variance = uavada2+iuavaha2

The analysis of the means of reciprocal backcross families is divided
into two parts. The first makes use of the fact that in any cross of a
diallel set of crosses the following relationship holds between the
F2 family mean and the means of the two reciprocal backcrosses
provided noji-allelic interaction is not present. F2 = (B1+B2)
(table 7).

Thus the expected statistics for the analysis of the means of
reciprocal backcross families of a diallel set of crosses are identical
with those given for the analysis of F2 family means.
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The second part of the analysis of backcrosses ut.ilises the statistics
obtained from the differences between the means of reciprocal back-
cross families. These terms are entirely composed of the additive
component of variation, i.e. d (table 7).

The expected variance and covariance for the analysis of the
differences between reciprocal backcross family means are as follows :—

Many independentStatistic One gene genes

Mean variance of arrays = uavada2 =

Mean covariance of arrays =
n

Variance of array means = uavada' = kD+E,

The mean covariance of arrays will be positive or negative
according to whether the analysis has been arranged such that B1
is the backcross of the F1 to the larger (or the smaller) of the two
parents.

One further statistic is available from the backcross generation,
namely the mean summed reciprocal backcross family variance. For
the one gene model the expectation of this variance is :—

UaVada2 +Uavaha2

which for many independent genes becomes
ID +1H1 +2E1.

(iii) Non-allelic interaction

The contribution of non-allelic interaction to the family means
differs over the generations under consideration here (Hayman and
Mather, 1955). Since the contribution of non-allelic interaction is
taken up by the four genetic parameters D, H1, H2 and F, and as
this contribution does not appear explicitly in our analyses, these
parameters will be homogeneous over generations only in the absence
of interactions (Mather, i4r Mather and Vines, 1952). The
homogeneity of least squares estimates of the four parameters over
generations will therefore provide us with a further test of non-allelic
interaction.

(iv) Linkage

Linkage, though not affecting family means in the absence of
non-allelic interaction and hence the second degree variances and
covariances derived from them, shows its effect in the within family
variances of segregating generations (Mather, 1949).

The simplest case of two linked loci, A-a and B-b, independently
distributed in the parental lines but showing a recombination value
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p( = i —q), makes the following contribution to the mean variance
of F, and summed reciprocal backcross families from a set of diallel
crosses. Mean family variance of F,

= uavada'+UbVbdb' +uavaha' +UbVbhb'
+2UaVaUbVb(I 2p)'hahb

Mean summed reciprocal backcross variance
= uavada2+ubvbdb2 +uavaha'+ubvbhb'

+4uavaubvb(I 2P)hahb
If we define two linkage parameters such that

H3 = I6EUaVaUbVb(12p)2hahb
and H4 = I6EUaVaUbVb(12p)hahb

Then for many genes, some of which show linkage, the expectations
for the two mean family variances are

F2
backcross 1D+H1+H4+2E,

Both linkage parameters can take sign. Thus if the linked genes
show reinforcing dominance, i.e. the dominance deviations have the
same sign, then H3 and H4 will be positive. If, on the other hand,
dominance is in opposition, i.e. the dominance deviations have opposite
signs, then H3 and H4 will be negative. Linkage between genes
showing reinforcing dominance will, therefore, lead to an inflation
of the within family variance, while linkage between genes showing
opposing dominance will lead to a deflation.

Although complete specification of simultaneous linkage and non-
allelic interaction is now possible (Hayman and Mather, 2955) the
limited number of statistics available in the present analyses is not
sufficient for their estimation. The question now arises as to how far
tests of heterogeneity of the specified components D, H,, H2, F and

over statistics, can distinguish between the two sources of disturb-
ance. In so far as components for non-allelic interaction appear
in all our statistics (except for the mean variance of F2 families),
it follows that non-allelic interaction can lead to heterogeneity of
components whether these be derived from an analysis of family
means or family variances of segregating generations of a diallel set
of crosses. Linkage, on the other hand, effects only family variances
and so can lead to heterogeneity only if this type of statistic is included
in the estimation of components. Any heterogeneity of components
over the statistics excluding family variances must, therefore, be
ascribable to non-allelic interaction. Should such heterogeneity exist,
then any further heterogeneity introduced by including the family
variances in the estimations can obviously no longer be unambiguously
ascribed to linkage. Our linkage test, therefore, is only valid where
non-allelic interaction plays no significant part in the inheritance
of the character under consideration.
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(v) Non-random distribution of alleles in the parent lines
One further source of disturbance may lead to heterogeneity of

the components of variation as estimated from the analysis of family
means and those obtained from the mean variance of families of
segregating generations. Such disturbances may arise from non-
random distribution of alleles in the original parental lines. Since
these do not affect the homogeneity of the components of variation
obtained from the diallel analyses of family means, they will not be
confounded with disturbances arising from non-allelic interactions.
They will, however, be confounded with linkage. A full account of
the possibilities and magnitudes of such confounding is outside the
scope of this paper and only pertinent results will bL mentioned here.

Association of alleles combined with reinforcing dominance will
inflate the components of variation obtained from family means but
will not affect those obtained from the mean family variances. It
will thus mimic linkage between loci exhibiting opposing dominance.
The alternative situation, i.e. dispersion of alleles and opposing
dominance, in so far as it will deflate the components of variation
from family means while not affecting those from mean family
variances, will mimic linkage between loci exhibiting reinforcing
dominance. Combinations of association and opposing dominance
or dispersion and reinforcing dominance will also mimic linkage,
but the magnitude of the effect will be much less than that arising
from the previous two combinations, while the linkage phase it mimics
will depend on the relative magnitude of the deviation from random
distribution and the dominance ratio.

Two considerations make the confounding between correlated gene
distribution and linkage less serious than it might appear at first.
Firstly, non-random distribution of alleles can be detected before the
estimation of the effects due to linkage is undertaken. The detection
depends once again on the fact that the regression of Wr on Vr is
a line of slope one only if our hypothesis of independence of the genes
is true. It can therefore be used to detect not only non-allelic inter-
actions but also non-random distribution of the alleles. Thus associa-
tion gives a curve which is convex upwards while dispersion gives a
curve which is convex downwards. Although a regular curvature
of the line is unlikely to be mistaken for non-allelic interaction we
have at least two methods of discrimination should such difficulty
arise, namely, the scaling test and the test of homogeneity of the
components of variation over statistics derived from family means,
both of which detect only disturbances arising from non-allelic inter-
actions. In the one case where difficulty may arise in interpreting
the Wr/Vr regressions, i.e. where both sources of disturbance are
present, the estimation of linkage is in any case invalidated by the
presence of non-a1llic interactions.

Secondly, in some cases, for example where the inbred lines used
in the diallel crosses are derived from a common mating pool, any
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non-random distribution of alleles will probably be due to the linked
genes themselves. In such cases confounding between the two, while
it might disturb the magnitude of the linkage efièct, will not lead
to the drawing of wrong conclusions regarding the presence or absence
of linkage.

In our own data, where a valid estimate of linkage effects is
confined to the 1952 flowering time results, there is no suggestion of a
downward convexity of the Wr/Vr regressions, i.e. dispersion of alleles,
which would give rise to the significant reinforcing linkage (see later).

(vi) The regression of array covariance on array variance
The relationship between array covariance and array variance

described for the F1 analyses also holds, within the same limitation of
independence of the genes, in the F2 and averaged reciprocal backcross
analyses, i.e. the regression of array covariance (Wr) on array variance
(Vr) has a slope of one. There is one difference, however, in that
the point of interaction of the regression line with the Wr axis is no
longer Wr—Vr = (D—H1) but 1(D—H1).

TABLE 8
The regression coefficients of Wr on Vr combined over blocks

and seasons for the three generations

Character Height Flowering time

Generation Complete data 2, 4 and 7 diallel Complete data

F, . . .

F, . . .

Backcross .

0598±0173 1057±0081 0943±o020

o8o2±oo54 I 1OI7o062 P083±0155

0677±0219 10O4±oo88 og99+oo5o

Interaction between non-allelic genes may lead to deviation from
the expected slope in all three generations, although in our own data
the deviation is less marked in the F2s and backcrosses. The regression
coefficients for the three generations obtained from a combined
analysis over blocks and seasons are given in table 8. Also included
for comparison are the regression coefficients of a 3 X3 diallel extracted
from the height data which contains no cross showing non-allelic inter-
action (table xa, ib). This small diallel consists of the three parents
of arrays 2, 4 and 7 and their F1, F2 and backcross progeny means.

For flowering time and the 3 X 3 diallel extracted from the height
data the regression coefficients do not differ significantly from one,
so that there is no suggestion of non-allelic interaction in any of the
three generations for either season. The regression coefficients for
the complete height data, on the other hand, always give a regression
coefficient less than one, but it is only significantly so for the F1
generation.
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In the absence of interaction, the Wr/Vr graphs for the F2 and
backcross generations should be identical, but in the presence of
interaction this is not necessarily true. For both characters we find
that the two regressions do not differ significantly either in slope or
mean. While the joint regression for flowering time (fig. i) does
not differ significantly from a slope of one, the joint regression for
height is significantly less than one (b =o722±o '30), indicating
significant non-allelic interaction for height in these two generations.

A further relationship exists between the regressions of Wr on Vr
for the F1 and F2 (or backcross) generations. If for each array we
draw a line through the Wr/Vr coordinates for its F, and F2 array

50

•3/
Wr

25

0 25 50
Vt

Fin. i.—The regression of array covariance (Wr) on array variance (Vr) for the F3 (full
circles) and backcross (crosses) generations for flowering time. The array points of
both generations fall on the same straight line of unit slope. This indicates absence
of non-allelic interactions but presence of dominance. The 8 arrays fall in the same
order along this line in both generations. This order reflects the varying proportions
of dominant and recessive alleles in the common parents of the arrays. Those with
most dominant alleles have low variances and covariances, e.g. 5, 8 and 7, while those
with most recessive alleles have high variances and covariances, e.g. 1, 3 and 6.

points, they will all converge on a common point of intersection
whose own coordinates vary characteristically with the degree of
dominance. The Wr coordinate for the point of intersection is
independent of the dominance relations as it contains only terms in d,

.4
x4
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being ID = E2uvd2. The Vr coordinate, however, does vary with
the degree of dominance and for a one gene model is given by the
expression

f 1- 2 I UaVaa aUaVa a
UaVa a'1a) —1-- . 2UV9 a a•

uavadaha

This expression has a maximal value of ID when h = o.
The point of intersection for other generations, e.g. F2 and F3,

can be obtained by halving the contribution of dominance in the
above expression to allow for the additional generation of inbreeding.
Thus for the ntb and (n + I)th generation of inbreeding the coordinates
of intersection will be

/Wr = 2UaVada2 and Vr = uava (da —ha
\ n

I f' \2
— uavadaha uava (- han \fl / 2+ . — UaVadaha

I n
— UaVadahan

where n is large the Vr coordinate approaches the value of

ID = Euavada2.

Therefore with a low initial degree of dominance or a large number
of generations of selfing the point of intersection approaches the
coordinates for the WrJVr array points of an F1 diallel showing no
dominance.

These relationships break down in the presence of non-allelic
interaction in such a way as to allow us to detect the interacting
arrays. This may be illustrated by the following two gene models.
The first model, which shows no interaction, consists of four parental
lines AABB, AAbb, aaBB and aabb such that da = db = ha = hb = 2.
The second model is the same except that the allele A in the presence
of B contributes 4 units instead of 2 to the mean. In both these models
the points on the Wr/Vr graph for arrays AAbb and aaBB are identical
leaving us with only three distinct points on the graphs. These are
given in figs. 2 and 3. For the first model the lines shown through
the F1 and F2 points of each array intersect at the point expected for
a system showing complete dominance, namely Wr = -ID, Vr = ID.
In the second model, the line drawn through the array points for
arrays AAbb and aaBB passes below the expected point of intersection
while the other two arrays pass slightly above it but intersect very
close to it.

Illustrations of both types of model can be found in the 1V. rustica
data. For this purpose blocks and seasons have been combined,
and the F2 and backcross Wr/Vr points pooled to give the graphs of
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Fzo. 2.—The above graph shows the F1 (full circles) and F2 (crosses) points of the Wr/Vr
regression for a two gene model showing complete dominance. The lines drawn
through the F1 and F2 array points for each array intersect at a common point. The
Wr coordinate of this point is fD and is independent of the degree of dominance.
The Vr coordinate on the other hand increases with decreasing dominance to a
maximum value of ID. For the complete dominance model Vr ID.

7
0 10 20

5 10
Vt

20

-10

Vr
Fio. 3.—The above graph shows the F1 (full circles) and F2 (crosses) points of the WrfVr

regression for a two gene model showing a complementary type of non-allelic inter-
action. There is no common point of intersection when lines are drawn through the
array points for the F1 and F2 generations for each array. This absence of a common
point of intersection provides a means of detecting non-allelic interaction. The
Wr/Vr regressions, of course, have a slope of less than i.
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figs. 4 and 5. For the complete height analysis there is no common
point of intersection, as would be expected from the high incidence
of non-allelic interaction. The lines drawn through the array points
for the F1 and combined F2 and backcross generations fall roughly
into three groups (fig. 4). The first group consists solely of array 7,
which, it will be recalled, has never given any indication of the presence
of non-allelic interaction in any of the tests so far applied. This line
passes through the coordinates Wr = -iD, Vr = *D, which are those
for a system showing complete dominance. The second group consists
of arrays 2, 4 and 8 which intersect at a point whose coordinates
are approximately Wr = *D, Vr = D. These three arrays have
certain interaction properties in common. Thus they all show
significant non-allelic interaction in their crosses with the common

Wc

40

0

Fio. 4.—Illustrates the application of the method of detecting non-allelic interaction
shown in figs. 2 and 3 for our height data. The F1 array points are indicated by
full circles and the F2 and backcross generations have been combined to give the array
points indicated by the crosses. The presence of non-ailelic interactions leads to the
absence of a common point of intersection. Only array 7, which contains no inter-
acting crosses, intersects the Wr coordinate of the expected point of intersection
(indicated by the dotted line). The remaining arrays fall roughly into two groups
consisting of arrays 2, 4 and 8 and i, , 5 and 6, a grouping that is confirmed by the
scaling tests (tables Ia and ib). The two Wr/Vr regression coefficients are less than r.

parents of arrays i, and 6 (table ia, ib). The remaining four
arrays I, 3, 5 and 6, each of which shows interaction with two or
more of the common parents of arrays 2, 4 and 8, all lie above the
expected point of intersection and only two of them, i and 3, intersect
with one another where Wr D and Vr *D.

If we now analyse the small 3 X 3 diallel, involving the interaction-
free crosses of arrays 2, 4 and 7, in the same way we obtain a picture
similar to our first model (fig. 5). There is only one point of inter-
section and its coordinates are approximately Wr -D and Vr = 1D.

'4

8

•40 80
yr
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After allowing for the environmental components of the Wr's and
Vr's, this situation is compatible with a system showing just under
complete dominance and absence of non-allelic interaction.

When we apply the same test to the 1953 flowering time data
we obtain unambiguous evidence of widespread nonallelic interaction
as suggested by the earlier scaling tests. If we use the array points
for the F1 and joint F2 and backcross Wr/Vr regressions we find
that the lines drawn through only two arrav,s, 4 and 7, pass anywhere
near the point of intersection expected from a genetical system showing
partial dominance. This is in agreement with the scaling test which

tOO

Wr 50

0 50 100
Vr

Fio. 5.-.-—IllustrateS the application of the method of detecting non-allelic interaction
shown in figs. 2 and 3 to a portion of the height data known to Contain no crosses
showing non-allelic interaction. This is identical with the model of fig. 2. There
is only one point of intersection which falls on the expected Wr coordinate, i.e. Wr =
(indicated by dotted line), while the Vr coordinate is approximately that expected
of a system showing almost complete dominance, The F1 Wr/Vr array points are
again indicated by full circles and the combined F2 and backcross points by crosses.
The two Wr/Vr regressions have a slope of,.

suggests that these two arrays exhibit oniy a low incidence of crosses
showing non-allelic interaction. The lines for the remaining arrays,
while not showing a common point of intersection, all converge on a
small area whose centre is approximately at the point Wr
Vr = D. In the 1952 analysis we find no serious evidence of inter-
action on this test, which is again in complete agreement with the
scaling test and also the Wr/Vr regression analyses. Although three
of the lines drawn through the array points, namely those for arrays 5,

B

4
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8 and 6, do not pass through the expected point of intersection, they
do pass close enough for any deviation to be regarded as the con-
sequence of error variation.

While this method of detecting non-allelic interaction is not
independent of the Wr/Vr regression method it does allow us to
detect and in some cases classify the interacting arrays in a manner
approaching the accuracy of the scaling test.

5. ESTIMATION OF THE COMPONENTS OF VARIATION
The process of estimation has been dealt with in detail by Mathcr

(1949) and Mather and Vines (1952). In these analyses we depart
from this method in only one respect, namely the treatment of the
environmental components of variation. Of these only E1 is
independent of the design of the experiment, the rest, which are
derivatives of E2, being dependent on the number of parental lines
employed. Because of the obvious advantages of a general least
squares solution applicable to all diallel crosses, it was decided to
correct the observed statistics for all environmental components
dependent on "n" prior to the estimation of the remaining para-
meters.

E,, which is included in the least squares estimation, and is only
used in connection with the family variances of the segregating
generations, is obtained as the mean within plot variance of the non-
segregating parental and F1 generations as described by Mather
(it). The E2 component, however, is derived independently for
each generation, as the mean variance of duplicate or reciprocal
plot means, and is used only in connection with the generation from
which it is derived. This is necessary because the variances and
covariances of the diallel analysis of segregating generations contain
both an environmental and a sampling component. By using an
E2 derived from the same generation, both these components are
accommodated simultaneously, while an E2 predicted from parents
and F1s, as described above for the E1s, would depend only on the
environmental portion. In many cases, the sampling error contributes
the larger proportion of the non-inherited variation. This may be
illustrated by reference to the E2 components for the height analysis.
For this purpose all E2s have been expressed on a single plot basis
and averaged over blocks and seasons (table 9).

The first column of table 9 gives the E2s calculated from the mean
variance of duplicate and reciprocal plot means for each generation.
The second column contains the expected E2s for the F2 and backcross
generations assuming no sampling error as PE2+FlE2. The excess
of the observed E2s over this predicted E2, which is ascribable to
sampling error, is contained in the third column. For comparison

are included the expected sampling error calculated as - (mean plot

variance) where n is the number of plants per plot, i.e. five.
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Having corrected the observed statistics for all these non-inherited
components of variation except E1 we can now proceed with the
least squares estimation.

TABLE g
The environmental and sampling components of variation for height

Generation Observed E5
Estimated

environmental
component

Estimated
sampling
component

Expected
sampling
component

P . - .
F1 . . .
F2 . . .
B1 and B2 .

40538
8-s6o

is-i87
17-5213

40538
8-sg6o
6-1249
61249

0.0000
0-0000
50598
11-3964

...
79403
125843

(ii) Exclusive analysis
The analysis allowing for the presence of linkage, i.e. the exclusive

analysis of Mather, involves two further components of variation,
H3 and H4, making seven in all. We have the same sixteen equations
for their estimation and we can again obtain a matrix of multipliers
(table ii). As three of the components H3, H4 and E1 are confined

(I) Inclusive analysis
Without making allowances for the possible effects of linkage,

i.e. the inclusive analysis of Mather, five components of variation are
involved, D, H1, H2, F and E1. The sixteen basic equations available

TABLE 10
Inclusive c matrix

0-643932 CH1D 0-615684 CH2D —0257111 CFD
0-615684 GH,H1 l984O244 CH5H1 10411285 CFH1

—0257111 CH1H2 10411285 CH2H2 26573565 CFH2
1558234 CH1F 9224883 CH,F —2054586 CFF

—0-144625 CH1E1 —2543653 CH2E1 —1-052370 CFE1

CDD
CDH1
CDH2
CDF
CDE1

CDD
CDH1
CDH2
CDF
CDE1
CDH3
CDH4

1558234 CE1D —o144625
9224883 0E1H1 —2143653

—2054586 CE1H2 —1-052370
I202s402 CE1F —1-255705
—1.155705 CEE1 O4O8O42

for their estimation may be combined to give five equations yielding
least squares estimates of the five components as described by Mather
(i9.) The solution of these five sets of equations leads to a matrix
of multipliers as shown in table to.

0-68508
II4917
0-00000
I 8635
0-00000

—25I934
—I83425

CH1D
CH1H
CH5H2
CH1F
CH1E1
CH1H3
CH1H4

I149s7
27 1940
1422222
1343646
0-00000

—2991774
—2876857

TABLE ii

Exclusive c matrix

CH2D o00000
CH,H1 1422222
CH2H2 28-44444
GH1F oooooo
CH2E1 o-ooooo
CH2H3 —1422222
CH1H4 —1422222

CFD
CFH1
CFH2
CFF
CFE1
CFH,
CFH4

2-85635
1343646
o ooooo

I432044
0-00000

— 1714917— 1529282

CE1D
GE1H1
CE1H5
CE1F
CE1E1
CE1H3
CE1H4

0-00000
o ooooo
o ooooo
000000
200000

—8ooooo
—8-ooooo

CH,D —251934
CH,H1 —299I774
CH1H2 —1422222
CH5F —17.14917
CH3E1 —8-ooooo

GH3H3 262 95641
CH,H4 9643708

CHD —1-83425
CH4H1 —28-76857
CH4H2 —I422222
CH4F —1529282
CH4E1 —8-ooooo

CH4H3 9643708
CH4H4 110-60283
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to three equations, the latter must be a perfect fit with expectations.
This provides an alternative method of exclusive analysis, whereby
least square estimates of the four components D, H1, H2 and F are
obtained from the remaining thirteen equations. The other three
components are then obtained by direct estimation from the observed
statistics using the least squares estimates of D and H1. Both methods
give identical results, but the seven by seven matrix of multipliers
has the added advantage that the standard errors of all components
can be obtained directly from it.

From the observed statistics we can now find the least squares
estimates of the components of variation in both the inclusive and
exclusive analyses for each of the two blocks within the two seasons.

TABLE 12

Analysis of variance of the height and flowering lime data

Item
Height Flowering time

N MSS N MSS

Linkage . . . .
Residual interaction . .

Between seasons—
Linkage .
Residual interaction .

Components . .

Within seasons
Linkage . .
Residual interaction .
Components . .

...
II

...
150.39

2
9

13466
2868

...
11

5

...
3! 41

26177

2
9
5

17029
8894

595310

...
22
tO

...
9.14

11192

4
t8
tO

t496
459

4336

By substituting these estimates in the sixteen basic equations we can
arrive at least squares estimates of the expected values of the observed
statistics. The analysis of variance of the sum of squares of deviations
of observed from expected and the consistency of these deviations
over blocks and seasons have been dealt with in detail by Mather
and Mather and Vines, so that only the final analyses are given here
(table 12).

As pointed out earlier, significant non-allelic interaction invalidates
our test for linkage, and therefore the linkage items are not given for
the height analysis although they have been estimated and found
to be non-significant.

(iii) Consistency of components over seasons and blocks

The above analysis reveals a marked difference in the stability
of the components of variation over blocks and seasons for the two
characters height and flowering time. Thus the components of
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variation for height are not significantly more variable between
seasons than they are between blocks in the same season. The com-
ponents of variation for flowering time, on the other hand, are
considerably more variable over seasons than they are within seasons.
This one might expect if the change in the components in the former
case had been brought about in response to differences in soil fertility
presented by different blocks, while in the latter case they were induced
by differences in the weather conditions in the two seasons. This
explanation is not only adequate to explain our present analyses but
has the added advantage of falling into line with the findings of
Mather and Vines, in respect of the character height, and with current
views on the physiology of the two characters we are investigating
here.

TABLE '3

The components of variation of the exclusive analysis for
flowering time 1952 and inclusive analysis for 5953

Component

Season

1952 2953

D . . . .
.

112 . .
F . . .

.

H, . .

.

oo88 31603
44254+200658
2 155o±2o3633
52862±144487
13532I 38181

Iio'26o2±4874o1
1328985±401544

1319830± 3'9340
750777±218369
655492+252722
310838±169979
225840± 31316

...

The above analysis of variance does not allow us to partition the
heterogeneity of components over seasons between the additive and
dominance components of variation. We can, however, arrive at a
partial solution of this problem by comparing the least square estimates
of the various components over the two seasons. The components
for flowering time obtained from the exclusive analysis in 1952 and
the inclusive analysis in 1953 are given in table i

Since the analyses of the separate seasons reveals no significant
disturbances after allowing for linkage in 1952, the standard errors
of the components for this season have been calculated from the
sum of squares of block differences of the observed statistics and so
are based on sixteen degrees of freedom.

In 1953 there are other significant disturbances which will be
discussed later and for this reason the standard errors of the components
include the significant sum of squares for heterogeneity over statistics
within blocks (i.e. residual interaction) and are therefore based on a
total of twenty-seven degrees of freedom. For the same reason the
linkage components are not given as their estimation is invalided.

Of the I 952 components of variation for flowering time H1, H2 and
B2
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F are not significant, while only F is non-significant in 1953. That
dominance plays a part in the inheritance of flowering time in 1952
is, however, beyond dispute. Apart from the significant linkage
components which are both terms in Eh, we have the significant
Wr/Vr regressions for all three generations, and the significant heterosis
for early flowering. But what is of more importance to our present
discussion is that all components of variation apart from F are
significantly different in the two seasons. Furthermore the dominance
components H1 and H2 have changed by a greater factor than any
of the other components of variation. This greater change, while
large and consistent, is not significant. While, therefore, there is a
suggestion that the dominance components are somewhat more
variable over seasons than the additive components, in the present
analyses they are not significantly so.

TABLE 54

The components of variation of the inclusive analysis of height

Component

Season

5952 1953

block I block II combined blocks
D
H,H
F
E1

.

.

.

.

.

.

.

.

37'33'± 372O9
767428±206538
6I•75I6±239o3o

—6o9226±I6o77o
727± 2962O

444929+ 52323
2174862±29O433
I556763+336I22

—I493846±226O74
52820± 4I65I

66oo78± 59605
2284762±33O852
1812954±382900

—1672167±257536
1o7260± 4'7447

552504± 50740
22298I2±28I648
1684859±32•5956

—I583OO7±2P9236
8oo4o± 40391

We find essentially the same situation for the components of
variation of height. Owing to the presence of significant non-allelic
interaction the standard errors of the components are based on the
pooled sums of squares of block differences and residual interaction
for a total of twenty-seven degrees of freedom. The components
themselves, of course, are variously biased by the non-specified effects
of the non-allelic interaction. They do serve, however, to illustrate
the present discussion.

Apart from E1 all other components of variation are significantly
higher in 1953 than in 1952. This increase in magnitude is again
more marked in the case of the dominance components H1 and H2
than in the additive component D, but again there is no significant
difference in this respect between the two types of components. Since
the components show almost as large a difference between blocks
within seasons as they do between seasons, the components for 1953
have been separated into the two blocks. The standard errors of
these components have been derived from the heterogeneity of com-
ponents over the observed statistics within each block, and are hence
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based on eleven degrees of freedom. Although these standard errors
are inflated by disturbances arising from significant non-allelic inter-
action, they are the only ones available and will therefore have to
serve for our present purpose. The only component that shows a
significant difference in the two blocks is the additive component D.
We have therefore examples where the dominance components are
apparently less stable over environmental fluctuations and others
where the additive component seems the less stable. In conclusion
we can only say that on the whole the two components of variation,
the additive and the dominance, are equally susceptible to changes
in the environment, the latter in the case of height being predominantly
relatable to the soil conditions.

TABLE i5

The analysis of variance of flowering time in 1952 and '953

Item
1952 1953

N MSS N MSS

Linkage . . . .
Residual interaction . . 9

i687i
I587

2

9
136.21
101 76

1658
53I
563

Between blocks—, Linkage . . .
Residual interaction .
Components . .

2

9
5

1335
388

8o8
2

9
5

(iv) The linkage components
The analysis of the two seasons separately shows that linkage plays

a significant role in the inheritance of flowering time in both seasons
(table 15).

Not only is this linkage apparently significantly variable over
seasons (tables 32 and 13) but in 3953 there is also significant residual
interaction which, while confirming the findings of the scaling tests, etc.,
invalidates both the test for linkage and the least squares estimates
of the linkage components. Further discussion of linkage must therefore
be confined to the 1952 analyses where no further interactive disturb-
ances have been revealed by any of the available tests.

In 3952 the linkage components H3 and H4 are both positive and
significantly different from zero. This suggests a preponderance of
linkage between loci exhibiting reinforcing dominance. Since we only
estimate the balance of the two types of dominance relations of the
linked loci we cannot exclude the possibility that a proportion of the
linked loci controlling flowering time shows opposing dominance
relations.
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From the ratio of the least squares estimates of the two linkage
components 113 and H4 we can obtain an estimate of the linkage
relations of the linked loci.

Thus I6EUaVflUbVb(12P)hahb
H4
—

x6Euavaubvb(I—2p)hahb

which when ha = hb=h5 and Ua = ub = u becomes

113 = I—2p

where p is the mean recombination frequency of the linked genes.
If these conditions are not fulfilled then the mean recombination
frequency will be weighted in favour of linked genes with larger

TABLE i6

The fall ratios

Fall ratios
(Mather, 1949)

Our comparable
estimate

Observed fall ratios for
1952. Flowering time

I

2

3

DF,

(h')

DF—DF,
DF

H1
H1+aH4

H1
H1+H,
2H,—2H4
H1+2H4

00197±00896

o•o164+oo777

o1676±o47o2

dominance effects and equal allele frequencies. For the 1952 flowering
time data we find that p = oo852+o 1277. Owing to the relatively
large standard error of this estimate it tells us very little except that
there is significant linkage, i.e. p is significantly smaller than O5O.

With preponderant reinforcing linkage such as we have found
in the 1952 flowering time analyses we can use the relative magnitude
of H1 and the two linkage components H, and H4 to obtain some
idea of the number of linked genes (Mather, The difference
between these three components depends on the relative magnitude
of hahb etc., on the recombination frequencies and the number of
genes involved. The estimation of the number of genes assumes
equality of the hahb etc. and equal spacing along the genetical
chromosome. Failure of either or both assumptions leads to an
underestimation of the number of genes as does also the presence of
a proportion of genes showing opposition linkage. The process of
estimation depends on the observation that the maximum fall ratio
is characteristic of the number of linked genes within the limitations
of the above assumptions. Three fall ratios described by Mather can
be adapted to our present components (table i6).
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In equating our fall ratios to those of Mather we are making one
further assumption, namely that for each pair of linked genes
4UaVa +4UbVb = 32UaVaUbVb. Non-equality will lead to a further
reduction in the apparent number of linked genes, as calculated by
all the above fall ratios.

All three observed fall ratios are smaller than their own standard
errors. In fact the third fall ratio in table 15 gives no evidence of
linkage at all. The other two, in so far as they are both significantly
smaller than one, show that there is at least significant linkage in
the flowering time data. Furthermore they are both significantly
smaller than the maximum possible fall ratios for four linked factors
which are o4o and o54 respectively (P =oooi).

(v) Disturbances due to interaction

As pointed out earlier in this account, interaction, though not
appearing explicitly as components of variation, may nevertheless be
detected by their effects in causing heterogeneity of the specified

TABLE 17
Exclusive matrix for single array analysis

CDD 0116050 CH1D 1185185 CFr —I925926
CDH1 I185185 CH1H1 28444444 CFrH1 —14222222
CDFr —1-925926 CH1F I4222222 CFrFr 15III043

components. In the case of height there is significant residual inter-
action in both seasons. The joint analysis of 1952 and 1953 (table 52)
confirms the significant residual interaction and, while showing
significant heterogeneity of interaction over seasons, this heterogeneity
is significantly smaller than the seasonal heterogeneity of the specified
components of variation. In fact the residual interaction items are
more stable over seasons and blocks within seasons than any other
component of variation.

A constant feature of the analyses of these experiments by the
Wr/Vr regression method has been that, following the omission of
all crosses showing non-allelic interaction from the data, we have
never found a dominance ratio significantly greater than one. We
can now test this finding on a joint analysis over generations and
seasons. Two fragments of the height data have been consistently
free from interaction on all the tests made so far, namely array 7 and
the 3 X 3 diallel between the common parents of arrays 2, 4 and 7.
The latter can be analysed by the method already employed for the
complete diallel, but the analysis of the single array requires a new
matrix of multipliers. The equations appropriate for the analysis
of single arrays have been given elsewhere (Jinks, x 955) and they
provide nine statistics for the estimation of three components of
variation, D, H1 and Fr (Fr = 8Euvdh). The appropriate matrix
of multipliers for the general solution, i.e. one omitting the environ-
mental components that depend on the design of the experiment, is
given in table I 7.
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We can now calculate the least squares estimates of the three
parameters in the usual way and from them predict the expectations
of the nine equations. The analysis of variance of the sums of squares
of deviations of observed from expected is given in table x8.

Thc only significant item in the above analysis of variance is the
heterogeneity of components, i.e. D, H1 and Fr, over seasons. There

TABLE i8

Analysis of array i for height (exclusive)

Item N

6

MSS

8o'6iResidual interaction . . .

Between seasons—
Residual interaction . .
Components . . .

V
bO

6 12122
2315'87

0
Within seasons—

Residual interaction . .
Components . . .

12
6

42'19
136'52

is no significant residual interaction and the heterogeneity of residual
interaction over seasons, which borders on significance, is probably
merely a reflection of the significant heterogeneity of components.
As the analysis of seasons separately reveals no significant disturbances,
the standard errors of the components in the two seasons are based
on the sum of squares of block differences of the observed statistics
for nine degrees of freedom (table is).

TABLE 19

The components of variation for height in array 7 in 1952 and 1953

Component 1952 5953

D

.

Fr . .

4459O7 32035

38'1536±20'1910

393485+14'7165

61•196!± 5'1225

94'4I35±322854

102'3600±23'5314

Apart from H1 in 1952, which is not significantly different from
zero at the 5-I o per cent, level of probability, all other components
of variation are significant. Furthermore, there is no evidence of
overdominance in this non-interacting array, i.e. D-H1 is not
significantly different from zero. This is in marked contrast to the
analysis of the complete height data where there is significant inter-
action and significant overdominance. The only other point of note
is that all the components of variation are greater in 1953 than in
1952 but only D and Fr are significantly so.
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The analysis of the non-interacting 3 X 3 diallel does not differ
from the above in any important detail. Thus the dominance ratio
is again not significantly different from complete dominance, i.e.
H1/D 0.90, and there is no significant residual interaction.

Flowering time in 1952 shows no significant residual interaction
(table 15) when tested against its own heterogeneity over duplicate
blocks or against the pooled heterogeneities of all items. In 1953,
on the other hand, we have highly significant residual interaction.
This difference over seasons is confirmed by the joint analysis of the
two seasons (table i 2), where the heterogeneity of residual interaction
is also significant. Thus these findings confirm those obtained from
the scaling tests in both seasons. We have, therefore, four tests which
agree in detecting no interaction in i 952, and three tests (that is all
except the Wr/Vr regression), which have detected interaction in
1953. Their non-detection by the Wr/Vr regression is, however, a
valuable pointer to the type of interaction involved. There can be
no doubt that it is of a different type from that fouri,d in height, which
is comparable with the complementary gene interactions of classical
genetics. It in no way appears to lead to spurious infiations or any
other changes in the dominance ratio. Thus the unit slopes of the
Wr/Vr regressions show that the estimated dominance ratio is constant
over arrays, i.e. Wr—Vr = (D—H,) for the F, generation and
= (D—H) for the F2 and backcross generations, is constant, and
hence it must be relatively uninfluenced by the non-allelic interactions
whose incidence varies amongst the arrays (table IC). The only
comparable type of interaction in classical genetics which would fit
these observations are duplicate genes. Why these interactions
should be confined to the 1953 season, or alternatively, why they
should remain undetected by all available methods in 1952 we cannot
say as yet. But it is possible that the smaller total variation for this
character in 1952, which is approximately *th of that in 1951 and
1953 is at least partly responsible for this failure. On the other hand
there may be a genuine absence of interaction in i 952, which must
then be ascribed to genotype-environmental interactions which differ
in the two seasons.

6. CONCLUSIONS

The present paper in the series on diallel crosses has two primary
aims. Firstly, it aims to extend the theory and illustrate its application
to F2 and backcross generations derived from a set of diallel crosses
and secondly, it aims to see how far conclusions and predictions from
the analysis of parental and F1 means are borne out by the fuller
analyses made possible by the inclusion of these later generations.

The conclusions of these investigations into the character height
are easily summarised—in all essential details there is complete
agreement between the assessment based on parents and F,s alone
and that based on the analysis when extended to F2s and backcrosses
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This close agreement is nowhere more striking than in relation to
the genetical control of heterosis for this character. Every test
designed to detect non-allelic interaction has given a positive result
with the height data. Furthermore, the tests which allow one to
trace the origin of the non-allelic interaction to particular crosses or
arrays, e.g. the Wr/Vr regressions and the scaling tests, have in all
cases picked out the same combinations of parental lines as those
responsible for giving rise to the interactions. We may further note
that the inclusion of F2s and backcrosses in these analyses has in no
way altered our conclusions concerning the role of overdominance.
In the joint analyses in both seasons we have found no evidence of
overdominance after omitting from the analyses all crosses in which
we have detected non-allelic interactions by means of the scaling
tests and the F, Wr/Vr regressions. We can take it, therefore, that
all the heterosis is the result of interactions of a complementary type
between alleles at different loci. With such consistency over genera-
tions and seasons the diallel analysis of parental and F, means provides
an accurate and rapid method of assessing the potentialities of the
various F, combinations as well as providing valuable information
about the genetical control of heterosis. The ready availability of
such information cannot but seriously affect future methods of utilising
this heterosis for economic purposes.

Turning to flowering time, we again find good agreement between
the various methods of analysis, but for this character the agreement
is confined to within seasons, there being significant differences between
seasons for the genetical control of this character. Thus while all
tests agree that non-allelic interaction is absent in 1952, the same
tests consistently show its presence in 1953. The F, Wr/Vr regression
alone of all the available methods of detecting non-allelic interaction
has failed to detect non-allelic interaction for flowering time in 1953.
Since this was the only test available in '95' there is the possibility
that non-allelic interaction played a significant role in the inheritance
of flowering time in that season also. This failure of the F, WrjVr
method has been traced to its inherent insensitivity to the type and
magnitude of the non-allelic interaction found in 1953. Thus while
this method is highly sensitive to the complementary type of inter-
action, as found in our own height data, it is not so sensitive to duplicate
gene interactions which we have now found in the flowering time
data in i . For flowering time, therefore, the diallel analysis of
parental and F1 means provides an incomplete assessment of the
potentialities of the various crosses. Furthermore, the high degree
of instability of the genetical control of this character over seasons
makes an assessment based on any one season of doubtful value,
although, of course, the ability to detect these seasonal differences
and further to partition the changes in genetica) control amongst the
components of variation is an important contribution of this method
of analysis.
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7. SUMMARY

i. The theory of the diallel analysis of parental and F, means
has now been extended to the F2 and backcross generations derived
from a diallel set of crosses.

2. The joint analysis provides sufficient statistics to give least
squares estimates of the components of variation, i.e. the additive,
dominance and environmental effects, and their standard errors.

3. A number of methods of detecting non-allelic interaction are
given, including the regression of array covariance on array variance,
which is applicable to any generation, the joint scaling tests and the
homogeneity of the least squares estimates of the components of
variation over statistics.

4. If the within-family variances of the segregating generations
are also included in the analyses we can detect linkage and estimate
its effect.

Illustrations of the analyses are drawn from our own data from
Xicotiana rustica. This comprises an 8 x8 diallel, the parents and F,s
of which have been grown in three consecutive seasons and the F2s
and backcrosses in the last two.

These analyses have shown that
(i) All tests agree that heterosis for the character height is the

result of a complementary type of non-allelic interaction.
(ii) The differences in magnitude between the components of

variation for height in different seasons and different blocks within
seasons is a genotype-environment interaction dependent on soil
differences.

(iii) The analysis of parents and F,s alone in any one season
provides a satisfactory assessment of the genetical control of the
character height that is completely borne out by subsequent genera-
tions and seasons.

(iv) There are significant differences in the genetical control of
flowering time in the two seasons 1952 and 2953, primarily relatable
to differences in the weather. These differences involve not only
variation in the magnitude of the components of variation but also
differences involving the presence of duplicate gene interactions in
2953 and their absence in 2952.

(v) Linkage between alleles which exhibit reinforcing dominance
relations is detectable in the flowering time data of 2952 and involves
at least four factors.
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