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IN a recent article in Heredity, A. J. Bateman (1950) asks "Is gene
dispersion normal?" and assembles a considerable body of evidence
to support the general rule that diffusionary processes in populations
of living organisms give rise to spatial distributions which are
leptokurtic.

In discussing the origin of leptokurtosis he states "There is an
apparent contradiction between such a situation and the general
theory of normal distributions. Under this theory normality should
result whenever a large number of uncorrelated influences are at
work. The contradiction forces us to the conclusion that neither the
passive nor active movement of organisms is at random."

There are, however, alternative explanations which to my mind
seem likely. For example, if we consider the positions taken up by
the members of a whole population differing among themselves in
their activity or powers of dispersion, we can prove—without abandon-
ing the simplifying assumption of randomness—that a leptokurtic
distribution must arise of necessity.

For if the position of a particular organism moving randomly
in one dimension has probability function

f(x) = exp( .-4x2/c72}/aV(21r)
and therefore moment generating function

(t) = exp{orCt2},

and if the value of Or varies between the organisms in any manner
whatsoever—say with cumulative distribution function F(ci2) —then
the probability distribution of the position occupied by an organism
chosen at random will have moment generating function

(t) = fexp{a2t2}dF(or2) = M(t2)

where M(r) = L'jçr /r! = exp Zir'/r
is the moment generating function of the distribution of or2.

The cumulant generating function of the required distribution is

log3(t) = Ki(t2)+Ic2(t2)2+ . .

= 1c1t2/2 !+3K2t4/4 !+ . . . . . . (i)
Since ic2>o by the hypothesis that a2 varies, it follows that the 4th
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cumulant of this distribution is positive and the distribution lepto-
kurtic by definition.

Looking at this result in reverse we see that the second k-statistic
of the observed distribution is an unbiassed estimate of the mean of
a2 and that the fourth k-statistic of the distribution is an unbiassed
estimate of the variance of cr. In general

Expectation {k22n !/(2n) !} = K.
Let us now consider the effect of a further period of dispersion on

the form of the distribution. For a particular individual the probability
distribution will still be normal, and the variance of the final distribu-
tion will be the sum of those holding for the two periods separately.

If now the individuals of the population being considered maintain
the same relative differences in their powers of dispersal during the
second period as during the first, the effect of this extension in time is
merely to change the scale of a2. The value of K2/K12 therefore
remains invariant and as a result of (i) the degree of leptokurtosis is
unchanged.

If, however, the activities of the individual organisms vary with
time depending say on age or physiological condition, then the
relative differences between them on any single day will be greater
than those displayed on the average over a longer period. In such
circumstances the degree of leptokurtosis must decrease in time (as
indeed it has been observed to do), though it will not disappear entirely
if the individual differences in activity are not completely smoothed
out in the long run.

Theoretical distributions capable of graduating data on this
subject may be deduced providing that reasonable assumptions are
made regarding the variation in the dispersive powers of the individuals.

As an illustration consider the two dimensional case in which the
position of a particular organism has density function

f(x,y) = exp{—(x2+y2)/v}/lrv
where v = 2a2 is the mean square deviation from the origin.

The simple and very reasonable assumption that w i /v is
distributed among individuals as a gamma variate with density
function

g(w; p,A) = e_wA_lpA/r(A)
leads to the distribution

J(xj) = fexp{_w(x2-f-y2) —w}w'p"dw/1TI'(A)

= —/i x2+y2+1p /
In polar form this distribution is

2 \+1

dP(r) =P12Ardr/(I+) (2)
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The following relations may then be deduced :—

(a) The proportion of the population to be expected outside a
circle of radius R is

R2\ —
I dP(r)=(I+_)JR

(b) The mean value of r is pir1'(A -4)/1(A).
(c) The mean value of 2 isp/(A—i).

A set of 200 observations on the wanderings of 25 immature
millipedes (Blaniulus gutlulatus Bosc.) taken from the same nest is
shown in the fig. The variate r is the radial distance travelled in
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RADIAL DISTANCE (CM.) 20

cms. in one minute. Function (2) given above is fitted to the data
by the method of moments and compared with the function

f0(r) = e _/v2T/V

given by normal theory on the assumption of homogeneity. For
this function the maximum likelihood estimate of v is simply the mean
square dispersion of the observations from the origin.

In the same way, leptokurtic distributions can be deduced for
the expected location of offspring if the parent wanders during the
period of its reproductive life.
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